Name: \qquad
CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich Administered in class friday march 27, 2020

CompID: \qquad

Quiz 08

problem 1 Summation proofs

Prove the following theorems by induction.

1. $\sum_{i=1}^{n} \frac{2}{3^{n}}=\frac{3^{n}-1}{3^{n}}$

Proof.

This theorem is false except when $n=1$. Consider the case where $n=2$:

$$
\sum_{i=1}^{2} \frac{2}{3^{n}}=\frac{2}{3^{2}}+\frac{2}{3^{2}}=\frac{4}{9} \neq \frac{3^{2}-1}{3^{2}}=\frac{8}{9}
$$

The correct convergence of $\sum_{i=1}^{n} \frac{2}{3^{n}}$ is $\sum_{i=1}^{n} \frac{2}{3^{n}}=\frac{1}{3^{n}} \sum_{i=1}^{n} 2=\frac{2 n}{3^{n}}$ which can be shown directly via algebra; no induction needed.

The slightly different theorem with 3^{i} in the denominator is true: $\sum_{i=1}^{n} \frac{2}{3^{i}}=\frac{3^{n}-1}{3^{n}}$
Proof.
We proceed by induction.
Base Case When $n=1$ we have $\sum_{i=1}^{2} \frac{2}{3^{i}}=\frac{2}{3}=\frac{3^{1}-1}{3^{i}}$.
Inductive step Assume the theorem holds for some $k \in \mathbb{Z}^{+}$: that is, $\sum_{i=1}^{k} \frac{2}{3^{i}}=\frac{3^{k}-1}{3^{k}}$. Adding $\frac{2}{3^{k+1}}$ to both sides we get $\frac{2}{3^{k+1}}+\sum_{i=1}^{k} \frac{2}{3^{i}}=\frac{3^{k}-1}{3^{k}}+\frac{2}{3^{k+1}}$; the left-hand side is equivalent to $\sum_{i=1}^{k} \frac{2}{3^{i}}$ and the right-hand side can be re-written as

$$
\begin{aligned}
& \frac{3^{k}-1}{3^{k}}+\frac{2}{3^{k+1}} \\
= & \frac{\left(3^{k}-1\right) \cdot 3}{3^{k} \cdot 3}+\frac{2}{3^{k} \cdot 3} \\
= & \frac{\left(3^{k+1}-3\right)+2}{3^{k+1}} \\
= & \frac{3^{k+1}-1}{3^{k+1}}
\end{aligned}
$$

which is the theorem at $n=k+1$.
By the principle of induction, the revised theorem holds for all $n \in \mathbb{N}$.

