Name: _____

CompID: _____

CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Administered in class friday march 27, 2020

Quiz 08

PROBLEM 1 Summation proofs

Prove the following theorems by induction.

1.
$$\sum_{i=1}^{n} \frac{2}{3^n} = \frac{3^n - 1}{3^n}$$

Proof.

This theorem is false except when n = 1. Consider the case where n = 2:

$$\sum_{i=1}^{2} \frac{2}{3^{n}} = \frac{2}{3^{2}} + \frac{2}{3^{2}} = \frac{4}{9} \neq \frac{3^{2} - 1}{3^{2}} = \frac{8}{9}$$

The correct convergence of $\sum_{i=1}^{n} \frac{2}{3^n}$ is $\sum_{i=1}^{n} \frac{2}{3^n} = \frac{1}{3^n} \sum_{i=1}^{n} 2 = \frac{2^n}{3^n}$ which can be shown directly via algebra; no induction needed.

.....

The slightly different theorem with 3^i in the denominator is true: $\sum_{i=1}^n \frac{2}{3^i} = \frac{3^n - 1}{3^n}$ *Proof.*

We proceed by induction.

Base Case When
$$n = 1$$
 we have $\sum_{i=1}^{2} \frac{2}{3^{i}} = \frac{2}{3} = \frac{3^{1} - 1}{3^{i}}$.

Inductive step Assume the theorem holds for some $k \in \mathbb{Z}^+$: that is, $\sum_{i=1}^k \frac{2}{3^i} = \frac{3^k - 1}{3^k}$. Adding $\frac{2}{3^{k+1}}$ to both sides we get $\frac{2}{3^{k+1}} + \sum_{i=1}^k \frac{2}{3^i} = \frac{3^k - 1}{3^k} + \frac{2}{3^{k+1}}$; the left-hand side is equivalent to $\sum_{i=1}^k \frac{2}{3^i}$ and the right-hand side can be re-written as

$$\frac{3^{k} - 1}{3^{k}} + \frac{2}{3^{k+1}}$$

$$= \frac{(3^{k} - 1) \cdot 3}{3^{k} \cdot 3} + \frac{2}{3^{k} \cdot 3}$$

$$= \frac{(3^{k+1} - 3) + 2}{3^{k+1}}$$

$$= \frac{3^{k+1} - 1}{3^{k+1}}$$

which is the theorem at n = k + 1.

By the principle of induction, the revised theorem holds for all $n \in \mathbb{N}$. \Box