Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Fall 2020 - Luther Tychonievich
Administered in class friday april 3, 2020

Quiz 09

problem 1 Counting

Number and write your answers to the following. You may use factorial, choose, and arithmetic notation, but may not use ellipses. For example, the following are all OK: $120,5!, \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1},\binom{5}{3}$; however, the following is *not* $\mathrm{OK}: 10+9+\cdots+2+1$.

There are 10 digits: 0 through 9.
There are 26 letters: ' a ' through ' z '.

1. $\underline{2}^{10}=1024$ How many sets of digits are there?
2. $\binom{10}{6}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1}=5040 \quad$ How many 6 -element sets of digits are there?
3. $26 \cdot(10+26)^{5}=1572120576$ How many 6 -character identifiers can be made with a leading letter following by 5 digits or letters (e.g. "cs2102" or "dmt1ok" but not "2012ok")?
4. $\underline{\frac{6}{6^{3}}}=\frac{1}{6^{2}}=\frac{1}{36} \quad$ I roll three fair six-sided dice. What is the probability I roll the same number on all three?
5. $\frac{6!}{2!}-1=359 \quad$ Two strings are anagrams if they are distinct but can have their characters rearranged to be the same. How many anagrams of "cs2102" are there?
problem 2 Proofs
Prove by induction that

$$
\forall n \in \mathbb{N} \cdot\left(\sum_{x=0}^{n}(2 x+1)\right)=(n+1)^{2}
$$

Proof. We proceed by induction.

Base Case When $n=0$ we have $\sum_{x=0}^{0}(2 x+1)=1=(2 \cdot 0+1)^{2}$, so the theorem holds for $n=0$.

Inductive step Assume the theorem holds for some $n=k$; that is, $\sum_{x=0}^{k}(2 x+1)=(k+1)^{2}$. Consider the sum evaluated at $k+1$:

$$
\begin{aligned}
\sum_{x=0}^{k+1}(2 x+1) & =(2(k+1)+1)+\sum_{k=0}^{k}(2 x+1) \\
& =(2 k+3)+(k+1)^{2} \\
& =2 k+3+k^{2}+2 k+1 \\
& =k^{2}+4 k+4 \\
& =(k+2)^{2} \\
& =((k+1)+1)^{2}
\end{aligned}
$$

which means the theorem holds at $k+1$ as well.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.

