\qquad
\qquad
CS 2102 - DMT1 - Fall 2020 - Luther Tychonievich
Administered in class friday april 10, 2020

Quiz 10

PROBLEM 1 Logic
Use the following definitions for items 1-4 below:

- P : The set of programs
- T : The set of testing plans
- $B(p)$: Program p has a bug
- $B(p, t)$: Testing plan t reports program p has a bug

1. A conservative test plan never reports bugs unless bugs actually exist. A complete test plan always reports a bug if one exists. Write logic that means "some test plans are neither conservative nor complete."

$$
\exists t \in T .(\exists p \in P . B(p, t) \wedge \neg B(p)) \wedge(\exists p \in P . B(p) \wedge \neg B(p, t))
$$

2. A perfect test plan reports bugs when they exist and only when they exist. A universal test plan works on all programs. Write logic that means "there's no perfect universal test plan."

$$
\nexists t \in T . \forall p . B(p) \leftrightarrow B(p, t)
$$

3. Convert this logic to English, clearly enough we can tell if you got the quantifiers in the right order:

$$
\forall t \in T . \exists p \in P . B(p) \leftrightarrow B(p, t)
$$

Every test plan has some program it handles perfectly.
4. Convert this logic to English, clearly enough we can tell if you got the quantifiers in the right order:

$$
\exists t \in T . \forall p \in P . B(p) \leftrightarrow B(p, t)
$$

There is a perfect universal test plan.
problem 2 Functions
5. Give an example function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ which is total and injective (one-to-one) but not surjective (not onto). You are welcome to describe it using pseudo-code, math, or any other unambiguous format we will understand.

Given a rational number that has reduced form $\pm \frac{x}{y}$, return $\pm \frac{2^{x}}{3^{y}}$ (with the same sign as the input). By the uniqueness of prime factorization, this is one-to-one; but it does not cover most fractions (e.g., $\frac{1}{2}$).
6. Give an example function $f: \mathbb{Q} \rightarrow \mathbb{N}$ which is total and surjective (onto). You are welcome to describe it using pseudo-code, math, or any other unambiguous format we will understand.

Given a rational number that has reduced form $\pm \frac{x}{y}$, return $|x|$.

