Name:
CompID:

Theorem 1 The sum of all positive odd integers less than $2 n$ is n^{2}. problem 1 Prove theorem 1 using induction

Name: \qquad CompID:

Theorem 1 The sum of all positive odd integers less than $2 n$ is n^{2}.
PROblem 1 Prove theorem 1 using contradiction and the well-ordering principle

Name: \qquad
\qquad
problem 1 Fill in these combinatorics blanks
You may answer any question with factorial, choose, and unresolved arithmetic notation, but may not use ellipses. For example, the following are all $\mathrm{OK}: 120,5!, \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(3 \cdot 2 \cdot 1)},\binom{5}{3}$.

1. \qquad A seven-character computing ID is 3 letters, 1 digit, and 3 more letters. All 26 letters are used, but digits are limited to 2 through 9 (no 0 or 1). How many seven-character computing ID can this scheme create?
2. \qquad How many 6-element subsets of a 10-element set are there?
\qquad Which is larger: $\binom{45}{10}$ or $\binom{45}{50}$?
3. \qquad How many 6-element sequences can be made from elements of a 50element set without repeating elements?
4. \qquad How many 6-element sequences can be made from elements of a 50element set where no element can appear twice in a row? For example, $(1,2,1,2,1,2)$ is OK, but $(1,2,2,1,2,1)$ is not OK .
5. \qquad If I randomly shuffle a list containing 10 ds and 16 xs , what is the probability the shuffle will result in the exact sequence "ddddddddddxxxxxxxxxxxxxxxxxx"?
6. \qquad In a fair raffle, every participant has an equal chance of winning. I participate in two fair raffles: one with 10 people (myself included), one with 100 (myself included). What is my chance of winning at least one raffle?
7. \qquad Which adds more options when constructing sequences: doubling the number of options for each spot in the sequence or doubling the length of the sequence? Answer with one of options, length, or same. You may assume both the options and length are initially at least 2 .

Name: \qquad CompID: \qquad
Consider the following sets: $A=\{8,4,5\}, B=\{2,3,4\}, C=\mathcal{P}(\{8,2\})$
problem 1 Show all members of each set

1. \qquad

$$
=C
$$

2. \qquad $=A \cup B$
3. \qquad $=A \cap B$
4. \qquad $=A \backslash B$
5. \qquad $=\{3 x \mid(x \in \mathbb{N}) \wedge(2 x \in A)\}$
6. \qquad

$$
-=\{1\} \cap \mathcal{P}(\{1\})
$$

7. \qquad

$$
=\{x \mid(x \in A) \wedge(2 x \in B)\}
$$

8. \qquad

$$
=\{\{a, b\} \mid(a \in A) \wedge(b \in\{4,5\})\}
$$

problem 2 Answer each question
9. \qquad $=|A|$
12. \qquad $=8 \in A$
10. \qquad

$$
-=|\mathcal{P}(A)|
$$

11. \qquad

$$
=|\mathcal{P}(\mathcal{P}(A))|
$$

13. \qquad $=\{8\} \in A$
14. \qquad $=\{\{8\}\} \in A$

Name: \qquad
\qquad
Consider the following discrete structures questions.
problem 1 Write out in full
1.
2. \qquad

$$
=\left|\{1,2\}^{4}\right|
$$

3. \qquad $=$ all the subsequences of "ook"
4. \qquad $=$ a subsequence of "fun" that is not a substring of "fun"
5. \qquad $=$ the image of $\{0,3\}$ under $R(x)=x+2$
\qquad $=$ the set of edges of the graph $(1) \rightarrow$ (2) $\rightleftarrows(3)$

Problem 2 Draw
7. $\bigcirc \longrightarrow \bigcirc \leftrightarrows \bigcirc \longleftarrow \bigcirc$ add a minimal number of edges to make this the graph of a transitive relation
8. $\bigcirc \longrightarrow \bigcirc \leftrightarrows \bigcirc \longleftarrow \bigcirc \quad$ add a minimal number of edges to make this the graph of a reflexive relation
problem 3 Logarithms
9. Simplify $\log _{2}(5)+\log _{2}(3)$: \qquad
10. Re-write $\log _{3}\left(x^{q}\right)$ without exponentiation: \qquad
11. Re-write $\log _{4}(x)$ using base- $3 \log (\mathrm{~s})$ instead of base-4: \qquad
12. Fill in the blank: $\log _{4}(9)=\log _{2}(\square)$

Name: \qquad
\qquad
Consider the following logic questions. You do not need to specify your domains, propositions, or predicate definitions, though you may if you wish.
problem 1 Convert the underlined parts to logic

1. "we know that any quiznidic number is prime"
2. "are there any three-element sets in Q ?"
3. "Every woozle is a dingalo."
4. "At least one hefalump is a bear."
```
problem 2 Convert to English
    domain: all animals
        M(x):
```

\qquad

``` \({ }_{x}\) is a monkey
\(L(x, y)\) :
``` \(\qquad\)
``` loves
``` \(\qquad\)
``` p: Peevy
5. Write a clear English sentence that means \(\forall x . \exists y \neq x . L(x, y)\).
```

6. Write a clear English sentence that means $\forall x, y . L(x, p) \vee(M(y) \rightarrow L(y, x))$.
problem 3 Apply axioms
Show that $((P \wedge Q) \vee(K \wedge M)) \vdash(P \vee K)$ by direct proof and/or proof by cases. You may mix math and English if you wish; we are looking for sound logic, not prose proof technique.

Symbols

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	T or 1	-1	T, tautology
false	false	False	\perp or 0	0	F , contradiction
not P	$!\mathrm{p}$	not p	$\neg P$ or \bar{P}	$\sim \mathrm{p}$	
P and Q	$\mathrm{p} \& \& \mathrm{q}$	p and q	$P \wedge Q$	$\mathrm{p} \& \mathrm{q}$	$P Q, P \cdot Q$
P or Q	$\mathrm{p}\|\mid \mathrm{q}$	p or q	$P \vee Q$	$\mathrm{p} \mid \mathrm{q}$	$P+Q$
P xor Q	$\mathrm{p}!=\mathrm{q}$	$\mathrm{p}!=\mathrm{q}$	$P \oplus Q$	$\mathrm{p} \sim \mathrm{q}$	$P \underline{\mathrm{v} Q}$
P implies Q			$P \rightarrow Q$		$P \supset Q, P \Rightarrow Q$
P iff Q	$\mathrm{p}==\mathrm{q}$	$\mathrm{p}==\mathrm{q}$	$P \leftrightarrow Q$		$P \Leftrightarrow Q, P$ xnor $Q, P \equiv Q$

Concept	Symbol	Meaning
equivalent	\equiv	$" A \equiv B$ " means " $A \leftrightarrow B$ is a tautology"
entails	\vDash	$" A \vDash B$ " means " $A \rightarrow B$ is a tautology"
provable	\vdash	" $A \vdash B$ " means both " $A \vDash B^{\prime \prime}$ and "I know B is true because A is true"" $\vdash B$ " (i.e.,
		without A) means " I know B is true"
therefore	\therefore	$\therefore A^{\prime \prime}$ means both " $\vdash A^{\prime \prime}$ and " A is the thing we wanted to show"

Graphs and Relations

Term	Definition
Walk	An alternating sequence of vertices and edges • starting and ending with a vertex, each edge (x, y) in the walk follows vertex x and is followed y
bath	
Closed Walk Cycle	A walk that does not visit any vertex twice A walk that begins and ends at the same vertex A closed walk that is a path except for its last vertex

The related definitions on relations $R: A \rightarrow A$ are

Term	Definition
$\overline{\mathrm{R}}$ is Reflexive	$\forall x \in A \cdot x \mathrm{R} x$
R is Irreflexive	$\forall x \in A \cdot \neg(x \mathrm{R} x)$
R is Symmetric	$\forall x, y \in A .(x \mathrm{R} y) \rightarrow(y \mathrm{R} x)$
R is Asymmetric	$\forall x, y \in A .(x \mathrm{R} y) \rightarrow \neg(y \mathrm{R} x)$
R is Antisymmetric	$\forall x \neq y \in A .(x \mathrm{R} y) \rightarrow \neg(y \mathrm{R} x)$
R is Transitive	$\forall x, y, z \in A .(x \mathrm{R} y) \wedge(y \mathrm{R} z) \rightarrow(x \mathrm{R} z)$

And those lead to these terms:

Term	Definition
Strict partial order	transitive and asymmetric
Weak partial order	transitive, reflexive, and antisymmetric
Equivalence relation	transitive, reflexive, and symmetric

The following operators are both associative (you can add and remove parentheses around them) and commutative (you can swap their operands' position): \wedge, \vee, \oplus

The following operator is commutative but not associative: \leftrightarrow

form 1	form 2	Name of rule
$A \rightarrow B$	$\neg A \vee B$	
$A \wedge(B \vee C)$	$(A \wedge B) \vee(A \wedge C)$	Distributive law
$A \vee(B \wedge C)$	$(A \vee B) \wedge(A \vee C)$	Distributive law
$\neg(A \wedge B)$	$(\neg A) \vee(\neg B)$	De Morgan's law
$\neg(A \vee B)$	$(\neg A) \wedge(\neg B)$	De Morgan's law
$(A \leftrightarrow B)$	$(A \rightarrow B) \wedge(B \rightarrow A)$	
$(A \oplus B)$	$(A \vee B) \wedge \neg(A \wedge B)$	

form 1	form 2	Name of rule
$A \oplus B$	$\neg(A \leftrightarrow B)$	
$A \leftrightarrow B$	$\neg(A \oplus B)$	xnor
$P \rightarrow(A \vee Q)$	$(P \wedge \neg A) \rightarrow Q$	

Given	Entails	Names
$\overline{\forall x \in S . P(x)}$	$P(s)$, for any $s \in S$ we care to pick	universal instantiation
$\exists x \in S . P(x)$	$s \in S \wedge P(s)$ where s is an otherwise-undefined new variable	existential instantiation
$s \in S \vdash P(s)$	$\forall x \in S . P(x)$	universal generalization
$P(s) \wedge s \in S$	$\exists x \in S . P(x)$	existential generalization

Given	Entails	Name
	$A \vee \neg A$	excluded middle
$A \wedge B$	A	
A and B	$A \wedge B$	
A	$A \vee B$	
$A \vee B$ and $\neg B$	A	disjuctive syllogism
$A \rightarrow B$ and $B \rightarrow C$	$A \rightarrow C$	hypothetical syllogism; transitivity of implication
$A \rightarrow B$ and A	B	modus ponens
$A \rightarrow B$ and $\neg B$	$\neg A$	modus tolens
$A \leftrightarrow B$	$A \rightarrow B$	
$A \rightarrow C, B \rightarrow B$, and $A \vee B$	C	
$A \rightarrow B, C \rightarrow D$, and $A \vee C$	$B \vee D$	
$A \rightarrow B$	$A \rightarrow(A \wedge B)$	
$\neg(A \wedge B), A$	$\neg B$	

A proof that assumes A and derives B entails that $A \rightarrow B$.
A proof that assumes A and derives \perp entails that $\neg A$.
$\log _{a^{b}}(x)=b^{-1} \log _{a}(x)$
$(a \in \mathbb{Z}) \wedge(a>1) \vDash(a$ has at least two factors $)$
$(a \in \mathbb{Z}) \wedge(a>1) \wedge(a$ has exactly two factors $) \equiv(a$ is prime $)$

