Name: ______

CompID: _____

Theorem 1 The sum of all positive odd integers less than 2n is n^2 .

PROBLEM 1 Prove theorem 1 using *induction*

Name: _____

CompID: _____

Theorem 1 The sum of all positive odd integers less than 2n is n^2 .

PROBLEM 1 Prove theorem 1 using **contradiction** and the well-ordering principle

Name: _____

CompID: _____

PROBLEM 1 Fill in these combinatorics blanks

You may answer any question with factorial, choose, and unresolved arithmetic notation, but may not use

							_	_
ellipses.	For exam	ple, the f	following	are all	OK:	120	5	!
						- /	-	· · ·

$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$		$\left(5\right)$
$\overline{(2\cdot 1)(3\cdot 2\cdot 1)}$	'	(3)

^{1.} ______ A seven-character computing ID is 3 letters, 1 digit, and 3 more letters. All 26 letters are used, but digits are limited to 2 through 9 (no 0 or 1). How many seven-character computing ID can this scheme create?

2. _____ How many 6-element subsets of a 10-element set are there? 3. _____ Which is larger: $\binom{45}{10}$ or $\binom{45}{50}$?

4. _____ How many 6-element sequences can be made from elements of a 50-element set without repeating elements?

5. _____ How many 6-element sequences can be made from elements of a 50-element set where no element can appear twice in a row? For example, (1, 2, 1, 2, 1, 2) is OK, but (1, 2, 2, 1, 2, 1) is not OK.

^{6.} ______ If I randomly shuffle a list containing 10 ds and 16 xs, what is the probability the shuffle will result in the exact sequence "ddddddddddxxxxxxxxxxxxxx??

^{7.} ______ In a fair raffle, every participant has an equal chance of winning. I participate in two fair raffles: one with 10 people (myself included), one with 100 (myself included). What is my chance of winning at least one raffle?

^{8.} ______ Which adds more options when constructing sequences: doubling the number of options for each spot in the sequence or doubling the length of the sequence? Answer with one of **options**, **length**, or **same**. You may assume both the options and length are initially at least 2.

Name: _____

CompID: _____

Consider the following **sets**: $A = \{8, 4, 5\}, B = \{2, 3, 4\}, C = \mathcal{P}(\{8, 2\})$

PROBLEM 2 Answer each question

Name:	CompID:			
Consider the following discrete structures qu	iestions.			
PROBLEM 1 Write out in full				
1	$_ = \{1\} \times \{1\} \times \{2,3\}$			
2	$_{-} = \{1,2\}^4 $			
3	$_=$ all the subsequences of "ook"			
4	_= a subsequence of "fun" that is not a substring of "fun"			
5	_ = the image of $\{0,3\}$ under $R(x) = x + 2$			
6	_ = the set of edges of the graph $① \rightarrow 2 \rightleftarrows 3$			
PROBLEM 2 Draw				
7. $\bigcirc \longrightarrow \bigcirc \bigcirc \longleftrightarrow \bigcirc $ add a minimal number	of edges to make this the graph of a transitive relation			
8. $\bigcirc \longrightarrow \bigcirc \bigcirc \longleftarrow \bigcirc $ add a minimal number	of edges to make this the graph of a reflexive relation			
PROBLEM 3 Logarithms				
9. Simplify $\log_2(5) + \log_2(3)$:				
10. Re-write $\log_3(x^q)$ without exponentiation:				
11. Re-write $\log_4(x)$ using base-3 log(s) instead of base-4:				
12. Fill in the blank: $\log_4(9) = \log_2\left($)				

Name:

CompID: _____

Consider the following **logic** questions. You do not need to specify your domains, propositions, or predicate definitions, though you may if you wish.

PROBLEM 1 Convert the underlined parts to logic

1. "we know that any quiznidic number is prime"

2. "are there any three-element sets in Q?"

3. "Every woozle is a dingalo."

4. "At least one hefalump is a bear."

PROBLEM 2 Convert to English

domain: all animals M(x): _____x is a monkey L(x,y): _____x loves ____y p: Peevy 5. Write a clear English sentence that means $\forall x . \exists y \neq x . L(x,y)$.

6. Write a clear English sentence that means $\forall x, y : L(x, p) \lor (M(y) \to L(y, x))$.

(continued on reverse)

PROBLEM 3 Apply axioms

Show that $((P \land Q) \lor (K \land M)) \vdash (P \lor K)$ by direct proof and/or proof by cases. You may mix math and English if you wish; we are looking for sound logic, not prose proof technique.

Symbols

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	\top or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction
not P	!p	not p	$\neg P \text{ or } \overline{P}$	~p	
P and Q	p && q	p and q	$P \wedge Q$	p & q	$PQ, P \cdot Q$
$P ext{ or } Q$	p q	p or q	$P \lor Q$	plq	P+Q
$P \operatorname{xor} Q$	p != q	p != q	$P\oplus Q$	p^q	$P \underline{\lor} Q$
P implies Q			$P \to Q$		$P \supset Q, P \Rightarrow Q$
$P \operatorname{iff} Q$	p == q	p == q	$P \leftrightarrow Q$		$P \Leftrightarrow Q, P \operatorname{xnor} Q, P \equiv Q$

Concept	Symbol	Meaning
equivalent	=	" $A \equiv B$ " means " $A \leftrightarrow B$ is a tautology"
entails	Þ	" $A \models B$ " means " $A \rightarrow B$ is a tautology"
provable	\vdash	" $A \vdash B$ " means both " $A \models B$ " and "I know B is true because A is true"" $\vdash B$ " (i.e.,
-		without A) means "I know B is true"
therefore	÷.	": A " means both " $\vdash A$ " and "A is the thing we wanted to show"

Graphs and Relations

Term	Definition	
Walk	An alternating sequence of vertices and edges	
	• starting and ending with a vertex,	
	- each edge $(\boldsymbol{x},\boldsymbol{y})$ in the walk follows vertex \boldsymbol{x} and is followed by vertex \boldsymbol{y}	
Path	A walk that does not visit any vertex twice	
Closed Walk	A walk that begins and ends at the same vertex	
Cvcle	A closed walk that is a path except for its last vertex	

Term	Definition
R is Reflexive	$\forall x \in A . x \mathbf{R} x$
R is Irreflexive	$\forall x \in A . \neg (x \mathbf{R} x)$
R is Symmetric	$\forall x, y \in A : (x \mathbf{R} y) \to (y \mathbf{R} x)$
R is Asymmetric	$\forall x, y \in A \ . \ (x \ge y) \to \neg(y \ge x)$
R is Antisymmetric	$\forall x \neq y \in A \ . \ (x \ge y) \rightarrow \neg(y \ge x)$
R is Transitive	$\forall x, y, z \in A . (x \mathbf{R} y) \land (y \mathbf{R} z) \rightarrow (x \mathbf{R} z)$

And those lead to these terms:

Term	Definition
Strict partial order	transitive and asymmetric
Weak partial order	transitive, reflexive, and antisymmetric
Equivalence relation	transitive, reflexive, and symmetric

The following operators are both associative (you can add and remove parentheses around them) and com**mutative** (you can swap their operands' position): \land , \lor , \oplus

form 1	form 2	Name of rule
$A \rightarrow B$	$\neg A \lor B$	
$A \wedge (B \vee C)$	$(A \land B) \lor (A \land C)$	Distributive law
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributive law
$\neg (A \land B)$	$(\neg A) \lor (\neg B)$	De Morgan's law
$\neg(A \lor B)$	$(\neg A) \land (\neg B)$	De Morgan's law
$(A \leftrightarrow B)$	$(A \to B) \land (B \to A)$	
$(A\oplus B)$	$(A \lor B) \land \neg (A \land B)$	
form 1	form 2 Na	ame of rule
$A \oplus B$	$\neg(A \leftrightarrow B)$	
$A \leftrightarrow B$	$\neg(A \oplus B)$ xr	or

The following operator is *commutative* but not *associative*: \leftrightarrow

$\underline{P \to (A \lor Q)}$	$(P \land \neg A) \to Q$	
Given	Entails	Names
$\forall x \in S . P(x)$	$P(s)$, for any $s \in S$ we care to pick	univers

$\forall x \in S . P(x)$	$P(s)$, for any $s \in S$ we care to pick	universal instantiation
$\exists x \in S . P(x)$	$s \in S \land P(s)$ where <i>s</i> is an otherwise-undefined new variable	existential instantiation
$s \in S \vdash P(s)$	$\forall x \in S \ . \ P(x)$	universal generalization
$P(s) \land s \in S$	$\exists x \in S \ . \ P(x)$	existential generalization

Given	Entails	Name
	$A \vee \neg A$	excluded middle
$A \wedge B$	A	
A and B	$A \wedge B$	
A	$A \vee B$	
$A \lor B$ and $\neg B$	A	disjuctive syllogism
$A \to B$ and $B \to C$	$A \to C$	hypothetical syllogism; transitivity of implication
$A \rightarrow B$ and A	B	modus ponens
$A \rightarrow B$ and $\neg B$	$\neg A$	modus tolens
$A \leftrightarrow B$	$A \to B$	
$A \rightarrow C, B \rightarrow B, \text{and } A \lor B$	C	
$A \rightarrow B, C \rightarrow D, \text{and } A \lor C$	$B \lor D$	
$A \rightarrow B$	$A \to (A \land B)$	
$\neg (A \land B)$, A	$\neg B$	

A proof that assumes *A* and derives *B* entails that $A \rightarrow B$. A proof that assumes A and derives D entails that $\neg A$. $\log_{a^b}(x) = b^{-1}\log_a(x)$ $(a \in \mathbb{Z}) \land (a > 1) \vDash (a \text{ has at least two factors})$ $(a \in \mathbb{Z}) \land (a > 1) \land (a \text{ has exactly two factors}) \equiv (a \text{ is prime})$