1. Re-write $p^r = w$ without a exponent function: y = w $\log \left(\frac{x}{y} \right) = \log x - \log y$ 109, (16) + (09, (x3) 3. Re-write $\log_2(16x^3)$ with no constants or operators in a log's argument: $\frac{\mathsf{q}}{\mathsf{q}} + \frac{\mathsf{q}}{\mathsf{q}} \log_2(16x^3)$

3. Re-write
$$\log_2(16x^3)$$
 with no constants or operators in a log's argument: $\frac{4+3\log_2(x)}{\log_2(x)}$

4. What is $\log_3(5)\log_5(3)$? $\frac{1}{\log_2(5)} = \log_5(3)$.

- 6. Re-write $\log_a(b)$ with a base- $c\log 2$ loy, (a2) + loy, (b) 7. Re-write $\log_2(a^2 \cdot b)$ with no constants or operators in a log's argument: $2 \lg (a) + \lg (b)$
- $\frac{\log_b(b)}{\log_b(a)} = 1$ $\log_b(b) = \frac{2}{3}$ 8. Suppose $\log_a(b) = \frac{2}{3}$. What is $\log_b(a)$? ____
- 9. Complete the following proof that $\forall x \in \mathbb{Z}^+$. $\left(\log_3(x) \in \mathbb{Q}^+\right) \to \left(\exists n \in \mathbb{N} \cdot x = 3^n\right)$.

Proof. Assume that the implication does not hold; that is, that $\left(\log_3(x)\in\mathbb{Q}^+\right)\wedge\left(\nexists n\in\mathbb{N}:x=3^n\right)$. Since $\log_3(x)\in\mathbb{Q}^+$, there are positive integers a and b such that $\log_3(x)=\frac{a}{b}$. Re-writing that equation,

$$\log_3(x) = \frac{a}{b}$$

$$\log_3(x) = a$$

$$\log_3(x^b) = a$$

$$\frac{x^b}{a} = \frac{3}{a}$$
Since a and b are positive integers, both sides of the last equation above are integers. By the fundamental

3. But that contradicts our assumption that $\nexists n \in \mathbb{N}$. $x = 3^n$. Because the assumption led to a contradiction, it must be false; thus, $(\log_3(x) \in \mathbb{Q}^+) \to (\exists n \in \mathbb{N} : x = 3^n)$

theorem of arithmetic, both sides must have the same prime factors, meaning that all of \dot{x} 's factors must be

10. Complete the following proof that
$$\log_2(3)$$
 is irrational.
Proof. Because $3>2$, $\log_2(3)>1$. Assume that $\log_2(3)$ is rational. Then $\log_2(3)=\frac{a}{b}$, where a and b are

positive integers. Re-writing this equation we get

$$|\log_2(3)| = \frac{a}{b}$$

$$|\log_2(3)| = \frac{a}{b}$$

$$|\log_2(3)| = \alpha$$

$$|\log_2(3)$$

Write with at most one log not containing internal operators (show your work) • $\log_2(5) + \log_2(3)$

Because the assumption led to a contradiction, it must be false and $log_2(3)$ must be irrational. \Box

Since a and b are positive integers, both sides of the last equation above are integers. But they clearly

log_ (5-3) = lug_ (15)

share no prime factors, which contradicts the fundamental theorem of arithmetic.

$$\frac{1}{2} \log_{3}(\frac{1}{5}) = \frac{\log_{3}(24) - \log_{5}(4)}{\log_{3}(5) + \log_{3}(2)} = \log_{3}(5) + \log_{3}(2)$$

$$\log_{3}(5) + \log_{3}(5)$$

$$\log_{3}(5) = \log_{3}(5)$$

$$\log_{$$

$$\begin{array}{c} \bullet \log_{\sqrt{3}}(5) = \log_{3}\left(\begin{array}{c} 2 \ 5 \\ \end{array}\right) \\ \bullet \log_{\alpha}(b) \log_{\alpha}\left(\begin{array}{c} \alpha^{\log_{\alpha}(b)} \end{array}\right) = 1 \\ \bullet \log_{\alpha}(b) \log_{\alpha}\left(\begin{array}{c} \alpha^{\log_{\alpha}(b)} \end{array}\right) = 1 \\ \bullet \log_{\alpha}(b) \log_{\alpha}\left(\begin{array}{c} \alpha^{\log_{\alpha}(b)} \end{array}\right) = 1 \\ \bullet \log_{\alpha}(b) \log_{b}\left(\begin{array}{c} \alpha \end{array}\right) = 1 \\ \bullet \log_{\alpha}(b) \log_{a}\left(\begin{array}{c} \alpha \end{array}\right) = 1 \\ \bullet \log_{\alpha}\left(\begin{array}{c} \alpha \end{array}\right) = 1$$

• $(\log_a(b) = \log_b(a)) \rightarrow (a = b)$. Both direct proof and contradiction should be able to work here.

log₅(7) ∉ ℚ

• " $\forall n \in \{i \mid i \in \mathbb{Z} \land 1 < i < x\}$. $\log_i(x) \notin \mathbb{Q}$ " is true for all prime numbers x. Use contradiction.

• $\log_3(10) > 2$. Direct proof should be enough.

• $3\log_2(10) < 10$. Direct proof should be enough.

• $\log_3(x^q)$ without exponentiation

Re-write

- $\log_{10}(x^7)$ without exponentiation
- $log_4(x)$ using base-3 log(s) instead of base-4
- $\log_w(8)$ using base- $x \log(s)$ instead of base-w