

Spatial Reasoning

- The ability to think in terms of spatial information, such as shape and orientation
- Includes
 - Regressing from image to 3D model
 - -Representing a concept as a spatial model
 - Manipulating spatial models in the mind

On a scale from 1 to 10, where 1 is non-spatial fields like singing and 10 is highly spatial fields like sculpture, how spatial is computing?

873 10 10 10 9

Spatial Reasoning in CS

Correlation between HS spatial ability and career choice

Spatial Reasoning Matters

- Correlates with ability in many fields, including computing
- Correlation appears causative (increasing spatial reasoning skills has been shown to increase performance in related fields, including computing courses)

Why Does it Matter?

- Definitive answer not known
- Some ideas:
 - -We teach concepts visually
 - Variables = boxes, addresses = arrows, ...
 - Computing terminology is visual
 - Stacks, trees, threads, flow, branching, nesting, lining up, moving, addresses, ...

Why, continued

 Challenge: find a computing concept that is not visual in terminology and that you can explain without a spatial analogy

Binnyabstraction

Alonzo
Church / Turing λ - calculus

Boys Have the Advantage

- Taken as a group, boys have more skill at spatial reasoning than girls
 - Better are rotation and mechanical reasoning
 - Not better at folding, pattern matching, cross sectioning
 - Training can narrow gap

Boys Have Some Advantage

Advantage

No advantage

Differences

- Boys better at spatial reasoning at early age
- Higher economic class, more different genders are
- Experience definitely important

Spatial Experience

- Construction toys
- Shop, drafting, mechanics classes
- Some computer games
 - Especially 3D first-person shooters
 - Also geometric ones like Tetris
- Sketching
- Some ball sports, mathematics classes

Measuring Spatial Skill

Rotating

Measuring Spatial Skill

Folding

Measuring Spatial Skill

Mechanisms

- A. in direction A.
- B. in direction B.
- C. first in one direction and then in the other.

Small Change = Big Impact

How do you increase it?

- Provide exposure
 - Logic group activities
 - Draw when teaching and have them draw
- Manipulatives
 - -Physical objects in lesson
 - -E.g., if variables are boxes, bring in boxes
 - Also good to, e.g., cut the cutting tasks, rotate the rotating tasks, etc.

How do you Increase it?

- Teach process (use-modify-create)
 - Discuss the process of solving a spatial task
 - Work through a few examples
 - Provide a set of decreasingly similar tasks
- Interventions
 - Colleges have had success with 1-credit remedial spatial skills courses

Teacher ability matters too

 Teacher spatial anxiety correlated to end-of-year student spatial ability

Activities

4 Eglar A edge I tourhorck

$$f(x) = \begin{cases} 1 \\ f(x-1) \neq f(x-2) \end{cases}$$

.

orle unise

Variable -> box

Scureband

hem avery

F(3) +f(2) + F(2) + F(1) F(4) + F(3)

f(s)

De requisires

listed

assimed

hidden Geometry Pre rule Sparial