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Computing with  
Quantum Knots

uantum computers promise to perform calculations be-
lieved to be impossible for ordinary computers. Some of those calculations are of 
great real-world importance. For example, certain widely used encryption methods 
could be cracked given a computer capable of breaking a large number into its 
component factors within a reasonable length of time. Virtually all encryption 
methods used for highly sensitive data are vulnerable to one quantum algorithm 
or another.

The extra power of a quantum computer comes about because it operates on 
information represented as qubits, or quantum bits, instead of bits. An ordinary 
classical bit can be either a 0 or a 1, and standard microchip architectures enforce 
that dichotomy rigorously. A qubit, in contrast, can be in a so-called superposition 
state, which entails proportions of 0 and 1 coexisting together. One can think of 
the possible qubit states as points on a sphere. The north pole is a classical 1, the 
south pole a 0, and all the points in between are all the possible superpositions of 0 
and 1 [see “Rules for a Complex Quantum World,” by Michael A. Nielsen; Scien-
tific American, November 2002]. The freedom that qubits have to roam across 
the entire sphere helps to give quantum computers their unique capabilities.

Unfortunately, quantum computers seem to be extremely difficult to build. The 
qubits are typically expressed as certain quantum properties of trapped particles, 
such as individual atomic ions or electrons. But their superposition states are ex-

Q

By Graham P. Collins

A machine based on bizarre particles called anyons that 
represents a calculation as a set of braids in spacetime might 
be a shortcut to practical quantum computation

BY BR AIDING WORLD LINES (trajec tories) of 
special particles, one can perform a quantum 
computation that is impossible for any ordinary 
(classical) computer. The particles live in a fluid 
known as a two-dimensional electron gas.
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ceedingly fragile and can be spoiled by 
the tiniest stray interactions with the 
ambient environment, which includes 
all the material making up the computer 
itself. If qubits are not carefully isolated 
from their surroundings, such distur-
bances will introduce errors into the 
computation.

Most schemes to design a quantum 
computer therefore focus on finding 
ways to minimize the interactions of the 
qubits with the environment. Research-
ers know that if the error rate can be 
reduced to around one error in every 
10,000 steps, then error-correction pro-
cedures can be implemented to compen-

sate for decay of individual qubits. Con-
structing a functional machine that has 
a large number of qubits isolated well 
enough to have such a low error rate is a 
daunting task that physicists are far 
from achieving.

A few researchers are pursuing a very 
different way to build a quantum com-
puter. In their approach the delicate 
quantum states depend on what are 
known as topological properties of a 
physical system. Topology is the math-
ematical study of properties that are un-
changed when an object is smoothly de-
formed, by actions such as stretching, 

squashing and bending but not by cut-
ting or joining. It embraces such subjects 
as knot theory. Small perturbations do 
not change a topological property. For 
example, a closed loop of string with a 
knot tied in it is topologically different 
from a closed loop with no knot [see 
box on opposite page]. The only way to 
change the closed loop into a closed 
loop plus knot is to cut the string, tie the 
knot and then reseal the ends of the 
string together. Similarly, the only way 
to convert a topological qubit to a dif-
ferent state is to subject it to some such 
violence. Small nudges from the envi-
ronment will not do the trick.

At first sight, a topological quantum 
computer does not seem much like a 
computer at all. It works its calculations 
on braided strings—but not physical 
strings in the conventional sense. Rath-
er, they are what physicists refer to as 
world lines, representations of particles 
as they move through time and space. 
(Imagine that the length of one of these 
strings represents a particle’s movement 
through time and that its thickness rep-
resents the particle’s physical dimen-
sions.) Moreover, even the particles in-
volved are unlike the electrons and pro-
tons that one might first imagine. They 

are instead quasiparticles—excitations 
in a two-dimensional electronic system 
that behave a lot like the particles and 
antiparticles of high-energy physics. 
And as a further complication, the qua-
siparticles are of a special type called 
anyons, which have the desired mathe-
matical properties.

Here is a what a computation might 
look like: first, create pairs of anyons 
and place them along a line [see box on 
page 60]. Each anyon pair is rather like 
a particle and its corresponding antipar-
ticle, created out of pure energy.

Next, move pairs of adjacent anyons 
around one another in a carefully deter-

mined sequence. Each anyon’s world 
line forms a thread, and the movements 
of the anyons as they are swapped this 
way and that produce a braiding of all 
the threads. The quantum computation 
is encapsulated in the particular braid so 
formed. The final states of the anyons, 
which embody the result of the computa-
tion, are determined by the braid and 
not by any stray electric or magnetic in-
teraction. And because the braid is topo-
logical—nudging the threads a little bit 
this way and that does not change the 
braiding—it is inherently protected from 
outside disturbances. The idea of using 
anyons to carry out computations in this 
fashion was proposed in 1997 by Alexei 
Y. Kitaev, now at Microsoft.

Michael H. Freedman, now at Mi-
crosoft, lectured at Harvard University 
in the fall of 1988 on the possibility of 
using quantum topology for computa-
tion. These ideas, published in a research 
paper in 1998, built on the discovery 
that certain mathematical quantities 
known as knot invariants were associ-
ated with the quantum physics of a two-
dimensional surface evolving in time. If 
an instance of the physical system could 
be created and an appropriate measure-
ment carried out, the knot invariant 
would be approximately computed auto-
matically instead of via an inconvenient-

■   Quantum computers promise to greatly exceed the abilities of classical 
computers, but to function at all, they must have very low error rates. 
Achieving the required low error rates with conventional designs is far beyond 
current technological capabilities.

■   An alternative design is the so-called topological quantum computer, which 
would use a radically different physical system to implement quantum 
computation. Topological properties are unchanged by small perturbations, 
leading to a built-in resistance to errors such as those caused by stray 
interactions with the surrounding environment.

■   Topological quantum computing would make use of theoretically postulated 
excitations called anyons, bizarre particlelike structures that are possible in 
a two-dimensional world. Experiments have recently indicated that anyons 
exist in special planar semiconductor structures cooled to near absolute zero 
and immersed in strong magnetic fields.

Overview/Quantum Braids

At first sight, a topological quantum computer  
does not seem much like a computer at all.
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ly long calculation on a conventional 
computer. Equally diffi cult problems of 
more real-world importance would have 
similar shortcuts.

Although it all sounds like wild theo-
rizing quite removed from reality, recent 
experiments in a fi eld known as frac-
tional quantum Hall physics have put 
the anyon scheme on firmer footing. 
Further experiments have been proposed 
to carry out the rudiments of a topolog-
ical quantum computation.

Anyons
as previously mentioned, a to-
pological quantum computer braids 
world lines by swapping the positions of 
particles. How particles behave when 
swapped is one of the many ways that 
quantum physics differs fundamentally 
from classical physics. In classical phys-
ics, if you have two electrons at locations 
A and B and you interchange their posi-
tions, the fi nal state is the same as the 
initial state. Because the electrons are 
indistinguishable, so, too, are the initial 
and fi nal states. Quantum mechanics is 
not so simple.

The difference arises because quan-
tum mechanics describes the state of a 
particle with a quantity called the wave 
function, a wave in space that encapsu-
lates all the properties of the particle—

the probability of fi nding it at various 
locations, the probability of measuring 

it at various velocities, and so on. For 
example, a particle is most likely to be 
found in a region where the wave func-
tion has a large amplitude.

A pair of electrons is described by a 
joint wave function, and when the two 
electrons are exchanged, the resulting 
joint wave function is minus one times 
the original. That changes peaks of the 
wave into troughs, and vice versa, but it 
has no effect on the amplitude of the 
oscillations. In fact, it does not change 
any measurable quantity of the two 
electrons considered by themselves.

What it does change is how the elec-
trons might interfere with other elec-
trons. Interference occurs when two 
waves are added together. When two 
waves interfere, the combination has a 
high amplitude where peaks of one align 
with peaks of the other (“constructive 
interference”) and has a low amplitude 
where peaks align with troughs (“de-
structive interference”). Multiplying 
one of the waves by a phase of minus 
one interchanges its peaks and troughs 
and thus changes constructive interfer-
ence, a bright spot, to destructive inter-
ference, a dark spot.

It is not just electrons that pick up a 
factor of minus one in this way but also 
protons, neutrons and in general any 
particle of a class called fermions. Bo-
sons, the other chief class of particles, 
have wave functions that are unchanged 

when two particles are swapped. You 
might say that their wave functions are 
multiplied by a factor of plus one.

Deep mathematical reasons require 
that quantum particles in three dimen-
sions must be either fermions or bosons. 
In two dimensions, another possibility 
arises: the factor might be a complex 
phase. A complex phase can be thought 
of as an angle. Zero degrees corresponds 
to the number one; 180 degrees is minus 
one. Angles in-between are complex 
numbers. For example, 90 degrees cor-
responds to i, the square root of minus 
one. As with a factor of minus one, mul-
tiplying a wave function by a phase has 
absolutely no effect on the measured 
properties of the individual particle, be-
cause all that matters for those proper-
ties are the amplitudes of the oscilla-
tions of the wave. Nevertheless, the 
phase can change how two complex 
waves interfere.

Particles that pick up a complex 
phase on being swapped are called any-
ons because any complex phase might 
appear, not just a phase of plus or minus 
one. Particles of a given species, how-
ever, always pick up the same phase.

Electrons in Flatland
a n yons e x ist  on ly in a two-di-
mensional world. How can we produce 
pairs of them for topological computing 
when we live in three dimensions? The G
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TOPOLOGY AND KNOTS

a b c

= =

Topology of a closed loop (a) is unaltered if the string is pushed 
around to form another shape (b) but is different from that of 
a closed loop with a knot tied in it (c). The knot cannot be formed just 

by moving around the string. Instead one must cut the string, tie the 
knot and rejoin the ends. Consequently, the topology of the loop 
is insensitive to perturbations that only push the string around.
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answer lies in the fl atland realm of qua-
siparticles. Two slabs of gallium arse-
nide semiconductor can be carefully en-
gineered to accommodate a “gas” of 
electrons at their interface. The elec-
trons move freely in the two dimensions 
of the interface but are constrained from 
moving in the third dimension, which 
would take them off the interface. Phys-
icists have intensely studied such sys-
tems of electrons, called two-dimen-

sional electron gases, particularly when 
the systems are immersed in high trans-
verse magnetic fi elds at extremely low 
temperatures, because of the unusual 
quantum properties exhibited under 
these conditions. 

For example, in the fractional quan-
tum Hall effect, excitations in the elec-
tron gas behave like particles having a 
fraction of the charge of the electron. 
Other excitations carry units of the 

magnetic flux around with them as 
though the fl ux were an integral part of 
the particle. In 2005 Vladimir J. Gold-
man, Fernando E. Camino and Wei 
Zhou of Stony Brook University claimed 
to have direct experimental confi rma-
tion that quasiparticles occurring in the 
fractional quantum Hall state are any-
ons, a crucial fi rst step in the topological 
approach to quantum computation. 
Some researchers, however, still seek in-

HOW TOPOLOGICAL QUANTUM COMPUTING WORKS

BRAIDING
Just two basic moves in a plane—a clockwise swap and a counterclockwise swap—generate all the possible braidings of the world lines 
(trajectories through spacetime) of a set of anyons.

A logic gate known as a CNOT gate is produced by this complicated 
braiding of six anyons. A CNOT gate takes two input qubits and 
produces two output qubits. Those qubits are represented by triplets 
(green and blue) of so-called Fibonacci anyons. The particular style of 

braiding—leaving one triplet in place and moving two anyons of the 
other triplet around its anyons—simplifi ed the calculations involved 
in designing the gate. This braiding produces a CNOT gate that is 
accurate to about 10–3.

BUILDING A LOGIC GATE

COUNTERCLOCKWISE SWAP RESULTING BRAIDCLOCKWISE SWAP RESULTING BRAID

Time

=

G
E

O
R

G
E

 R
E

TS
E

C
K

 

Anyons =
Time

Time

Qubit

COMPUTING
First, pairs of anyons are created and lined up in a 
row to represent the qubits, or quantum bits, of the 
computation. The anyons are moved around by 
swapping the positions of adjacent anyons in a 
particular sequence. These moves correspond to 
operations performed on the qubits. Finally, pairs of 
adjacent anyons are brought together and measured 
to produce the output of the computation. The output 
depends on the topology of the particular braiding 
produced by those manipulations. Small 
disturbances of the anyons do not change that 
topology, which makes the computation impervious 
to normal sources of errors.
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dependent lines of evidence for the qua-
siparticles’ anyonic nature because cer-
tain nonquantum effects could conceiv-
ably produce the results seen by 
Goldman and his colleagues.

In two dimensions, an important 
new issue arises in the swapping of two 
particles: Do the particles follow clock-
wise tracks or counterclockwise tracks 
as they are interchanged? The phase 
picked up by the wave function depends 
on that property. The two alternative 
paths are topologically distinct, because 
the experimenter cannot continuously 
deform the clockwise paths into coun-
terclockwise paths without crossing the 
paths and having the particles collide 
somewhere.

To build a topological quantum 
computer requires one additional com-
plication: the anyons must be what is 
called nonabelian. This property means 
that the order in which particles are 
swapped is important. Imagine that 

you have three identical anyons in a 
row, at positions A, B and C. First swap 
the anyons at positions A and B. Next 
swap the anyons now located at B and 
C. The result will be the original wave 
function modifi ed by some factor. Sup-
pose instead that the anyons at B and C 
are swapped fi rst, followed by swap-
ping those at A and B. If the result is the 
wave function multiplied by the same 
factor as before, the anyons are called 
abelian. If the factors differ depending 
on the order of the swapping, they are 
nonabelian anyons. (The nonabelian 
property arises because for these an-
yons, the factor that multiplies the wave 
function is a matrix of numbers, and 
the result of multiplying two matrices 
depends on the order in which they are 
multiplied.)

The experiment by Goldman’s team 
involved abelian anyons. Nevertheless, 
theorists have strong reason to believe 
that certain fractional quantum Hall 

quasiparticles are indeed nonabelian. 
Experiments have been proposed to set-
tle that question. One was suggested by 
Freedman, along with Sankar Das Sar-
ma of the University of Maryland at 
College Park and Chetan Nayak of Mi-
crosoft, with important refinements 
proposed by Ady Stern of the Weizmann 
Institute in Israel and Bertrand Halperin 
of Harvard University; the second was 
presented by Kitaev, Parsa Bonderson of 
the California Institute of Technology 
and Kirill Shtengel, now at the Univer-
sity of California, Riverside.

Braids and Gates
once you h ave nonabelian anyons, 
you can generate a physical representa-
tion of what is called the braid group. 
This mathematical structure describes 
all the ways that a given row of threads 
can be braided together. Any braid can 
be built out of a series of elementary op-
erations in which two adjacent threads 
are moved, by either a clockwise or a 
counterclockwise motion. Every possi-
ble sequence of anyon manipulations 
corresponds to a braid, and vice versa. 
Also corresponding to each braid is a 
very complicated matrix, the result of 
combining all the individual matrices of 
every anyon exchange.

Now we have all the elements in 
place to see how these braids correspond 
to a quantum computation. In a conven-
tional computer, the state of the com-
puter is represented by the combined 
state of all its bits—the particular se-
quence of 0s and 1s in its register. Simi-
larly, a quantum computer is represent-
ed by the combined state of all its qubits. 
In a topological quantum computer, the 
qubits may be represented by groups of 
anyons.

In a quantum computer, the process 
of going from the initial state of all the 
qubits to the fi nal state is described by a 
matrix that multiplies the joint wave 
function of all the qubits. The similarity 
to what happens in a topological quan-
tum computer is obvious: in that case, 
the matrix is the one associated with the 
particular braid corresponding to the 
sequence of anyon manipulations. Thus, 
we have verifi ed that the operations car-

Errors will occur in a topological computation if thermal fl uctuations generate a 
stray pair of anyons that intertwine with the braid of the computation before they 
self-annihilate. Those strays will then corrupt (red lines) the computation. The 
probability of this interference drops exponentially with the distance that the 
anyons travel, however. The error rate can be minimized by keeping the 
computation anyons suffi ciently far apart (bottom pair).

PREVENTING RANDOM ERRORS

Strays
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ried out on the anyons result in a quan-
tum computation.

Another important feature must be 
confi rmed: Can our topological quan-
tum computer perform any computation 
that a conventional quantum computer 
can? Freedman, working with Michael 
Larsen of Indiana University and Zheng-
han Wang, now at Microsoft, proved in 
2002 that a topological quantum com-
puter can indeed simulate any computa-
tion of a standard quantum computer, 
but with one catch: the simulation is ap-
proximate. Yet given any desired accu-
racy, such as one part in 104, a braid can 
be found that will simulate the required 
computation to that accuracy. The fi ner 
the accuracy required, the greater the 
number of twists in the braid. Fortu-
nately, the number of twists required in-
creases very slowly, so it is not too diffi -
cult to achieve very high accuracy. The 
proof does not, however, indicate how 
to determine which actual braid corre-
sponds to a computation—that depends 
on the specific design of topological 
quantum computer, in particular the 
species of anyons employed and their re-
lation to elementary qubits.

The problem of fi nding braids for do-
ing specifi c computations was tackled in 
2005 by Nicholas E. Bonesteel of Florida 
State University, along with colleagues 
there and at Lucent Technologies’s Bell 
Laboratories. The team showed explic-
itly how to construct a so-called con-
trolled NOT (or CNOT) gate to an ac-
curacy of two parts in 103 by braiding 
six anyons. A CNOT gate takes two in-
puts: a control bit and a target bit. If the 
control bit is 1, it changes the target bit 
from 0 to 1, or vice versa. Otherwise the 
bits are unaltered. Acting on qubits, any 
computation can be built from a net-
work of CNOT gates and one other op-
eration—the multiplication of individual 
qubits by a complex phase. This result 
serves as another confi rmation that to-
pological quantum computers can per-
form any quantum computation.

Quantum computers can perform 
feats believed to be impossible for classi-
cal computers. Is it possible that a topo-
logical computer is more powerful than 
a conventional quantum computer? An- G
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TOPOLOGICAL ERRORS

NOT GATE
This proposed anyonic NOT gate is based on a fractional quantum Hall state involving anyons 
having one-quarter the charge of an electron. Electrodes induce two islands on which anyons 
can be trapped. Current fl ows along the boundary but under the right conditions can also 
tunnel across the narrow isthmuses.

ANYON DETECTOR
The device in this colorized micrograph was used 
by Vladimir J. Goldman and his co-workers to 
demonstrate that certain quasiparticles 
(excitations in the quantum Hall state) behave as 
anyons. The device was cooled to 10 millikelvins 
and put in a strong magnetic fi eld. A two-
dimensional electron gas formed around the four 
electrodes, with different types of quasiparticles 
present in the yellow and green areas. 
Characteristics of the current fl owing along the 
boundary confi rmed that the quasiparticles in the 
yellow island were anyonic.

Electron gas

Boundary
currentElectrode

Electron gas

Anyon

Electrode
Island

Boundary
current

2 To fl ip the qubit (the NOT operation), apply voltages to induce one anyon from the boundary 
(green) to tunnel across the device.

1 Initialize the gate by putting two anyons (blue) on one island and then applying voltages to 
transfer one anyon to the other island. This pair of anyons represents the qubit in its initial 
state, which can be determined by measuring the current fl ow along the neighboring boundary.

3 The passage of this anyon changes the phase relation of the two anyons so that the qubit’s 
value is fl ipped to the opposite state (red).

Electron 
gas
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other theorem, proved by Freedman, 
Kitaev and Wang, shows that is not the 
case. They demonstrated that the opera-
tion of a topological quantum computer 
can be simulated efficiently to arbitrary 
accuracy on a conventional quantum 
computer, meaning that anything that a 
topological quantum computer can 
compute a conventional quantum com-
puter can also compute. This result sug-
gests a general theorem: any sufficiently 
advanced computation system that 
makes use of quantum resources has ex-
actly the same computational abilities. 
(An analogous thesis for classical com-
puting was proposed by Alonzo Church 
and Alan Turing in the 1930s.)

Particles In, Answers Out
i have glossed over two process-
es that are crucial to building a practical 

topological quantum computer: the ini-
tialization of the qubits before the start 
of the computation and the readout of 
the answer at the end.

The initialization step involves gen-
erating quasiparticle pairs, and the prob-
lem is knowing what species of quasi-
particle has been created. The basic pro-
cedure is to pass test anyons around the 
generated pairs and then measure how 
the test anyons have been altered by that 
process, which depends on the species of 
the anyons that they have passed. (If a 
test anyon is altered, it will no longer be 
cleanly annihilated with its partner.) 
Anyon pairs not of the required type 
would be discarded.

The readout step also involves mea-
suring anyon states. While the anyons 
are widely separated, that measurement 
is impossible: the anyons must be 
brought together in pairs to be measured. 
Roughly speaking, it is like checking to 
see if the pairs annihilate cleanly, like 
true antiparticles, or if they leave behind 
residues of charge and flux, which re-
veals how their states have been altered 
by braiding from the exact antiparticle 

relation in which they began their lives.
Also, it is not true that a topological 

computer is totally immune to errors. 
The main source of error is thermal fluc-
tuations in the substrate material, which 
can generate an extra pair of anyons. 
Both the anyons then intertwine them-
selves with the braid of the computation, 
and finally the pair annihilates again 
[see box on page 61]. Fortunately, the 
thermal generation process is sup-
pressed at the low temperature at which 
a topological computer would operate. 
Furthermore, the probability of the en-
tire bad process occurring decreases ex-
ponentially as the distance traveled by 
the interlopers increases. Thus, one can 
achieve any required degree of accuracy 
by building a sufficiently large computer 
and keeping the working anyons far 
enough apart as they are braided.

Topological quantum computing re-
mains in its infancy. The basic working 
elements, nonabelian anyons, have not 
yet been demonstrated to exist, and the 
simplest of logic gates has yet to be built. 
The previously mentioned experiment 
of Freedman, Das Sarma and Nayak 
would achieve both those goals—if the 
anyons involved do turn out to be nona-
belian, as expected, the device would 
carry out the logical NOT operation on 
the qubit state. The trio estimated that 
the error rate for the process would be 
10–30 or less. Such a tiny error rate oc-
curs because the probability of errors is 
exponentially suppressed as the temper-
ature is lowered and the length scale in-

creased. That exponential factor is the 
essential contribution of topology, and 
it has no analogue in the more tradition-
al approaches to quantum computing.

The promise of extraordinarily low 
error rates—many orders of magnitude 
lower than those achieved by any other 
quantum computation scheme to date—

is what makes topological quantum 
computing so attractive. Also, the tech-
nologies involved in making fractional 
quantum Hall devices are mature, being 
precisely those of the microchip indus-
try; the only catch is that the devices 
have to operate at extremely low tem-
peratures—on the order of millikel-
vins—for the magical quasiparticles to 
be stable. 

If nonabelian anyons actually exist, 
topological quantum computers could 
well leapfrog conventional quantum 

computer designs in the race to scale up 
from individual qubits and logic gates to 
fully fledged machines more deserving 
of the name “computer.” Carrying out 
calculations with quantum knots and 
braids, a scheme that began as an eso-
teric alternative, could become the stan-
dard way to implement practical, error-
free quantum computation.  
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from Stony Brook University. He 
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the director of Project Q at Microsoft, 
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of this article.
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The trio estimated that the error rate for their  
NOT gate would be 10–30 or less.
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