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Fractals, such as this stack 
of spheres created using 
3-D modeling software, are 
one of the mathematical 
structures that were invent-
ed for abstract reasons yet 
manage to capture reality.
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Is math invented or discovered?  
A leading astrophysicist suggests that the answer  

to the millennia-old question is both

By Mario Livio

M
ost of us take it for granted 
that math works—that sci
entists can devise formulas 
to describe subatomic events 
or that engineers can calcu
late paths for space craft. We 
accept the view, initially es

poused by Galileo, that mathematics is the language of 
science and expect that its grammar explains experi
mental results and even predicts novel phenomena. 
The power of mathematics, though, is nothing short of 
astonishing. Consider, for example, Scottish physicist 
James Clerk Maxwell’s famed equations: not only do 
these four expressions summarize all that was known 
of electromagnetism in the 1860s, they also anticipat
ed the existence of radio waves two decades before 

German physicist Heinrich Hertz detected them. Very 
few languages are as effective, able to articulate vol
umes’ worth of material so succinctly and with such 
precision. Albert Einstein pondered, “How is it possi
ble that mathematics, a product of human thought 
that is independent of experience, fits so excellently 
the objects of physical reality?”

As a working theoretical astrophysicist, I encoun
ter the seemingly “unreasonable effectiveness of math
ematics,” as Nobel laureate physicist Eugene Wigner 
called it in 1960, in every step of my job. Whether I am 
struggling to understand which progenitor systems 
produce the stellar explosions known as type Ia super
novae or calculating the fate of Earth when our sun ul
timately becomes a red giant, the tools I use and the 
models I develop are mathematical. The uncanny way 

I N  B R I E F

The deepest mysteries are often the things 
we take for granted. Most people never 
think twice about the fact that scientists 
use mathematics to describe and explain 
the world. But why should that be the case? 

Math concepts developed  for purely ab-
stract reasons turn out to explain real phe-
nomena. Their utility, as physicist Eugene 
Wigner once wrote, “is a wonderful gift 
which we neither understand nor deserve.” 

Part of the puzzle is the question of wheth-
er mathematics is an invention (a creation 
of the human mind) or a discovery (some-
thing that exists independently of us). The 
author suggests it is both.

Math 

P H I LOSO P H Y O F SC I E N C E 

Works
Why 
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that math captures the natural world has fascinated me through
out my career, and about 10 years ago I resolved to look into the 
issue more deeply.

At the core of this mystery lies an argument that mathemati
cians, physicists, philosophers and cognitive scientists have had 
for centuries: Is math an invented set of tools, as Einstein be
lieved? Or does it actually exist in some abstract realm, with hu
mans merely discovering its truths? Many great mathemati
cians—including David Hilbert, Georg Cantor and the group 
known as Nicolas Bourbaki—have shared Einstein’s view, associ
ated with a school of thought called Formalism. But other illustri
ous thinkers—among them Godfrey Harold Hardy, Roger Pen
rose and Kurt Gödel—have held the opposite view, Platonism.

This debate about the nature of mathematics rages on today 
and seems to elude an answer. I believe that by asking simply 
whether mathematics is invented or discovered, we ignore the 
possibility of a more intricate answer: both invention and dis
covery play a crucial role. I posit that together they account for 
why math works so well. Although eliminating the dichotomy 
between invention and discovery does not fully explain the un
reasonable effectiveness of mathematics, the problem is so pro
found that even a partial step toward solving it is progress.

INVENTION AND DISCOVERY
mathematics is unreasonably effective in two distinct ways, one I 
think of as active and the other as passive. Sometimes scientists 
create methods specifically for quantifying realworld phenome
na. For example, Isaac Newton formulated calculus for the pur
pose of capturing motion and change, breaking them up into in
finitesimally small framebyframe sequences. Of course, such ac
tive inventions are effective; the tools are, after all, made to order. 
What is surprising, however, is their stupendous accuracy in some 
cases. Take, for instance, quantum electrodynamics, the mathe
matical theory developed to describe how light and matter inter
act. When scientists use it to calculate the magnetic moment of 
the electron, the theoretical value agrees with the most recent 
experimental value—measured at 1.00115965218073 in the ap
propriate units in 2008—to within a few parts per trillion!

Even more astonishing, perhaps, mathematicians sometimes 
develop entire fields of study with no application in mind, and yet 
decades, even centuries, later physicists discover that these very 
branches make sense of their observations. Examples of this kind 
of passive effectiveness abound. French mathematician Évariste 
Galois, for example, developed group theory in the early 1800s for 
the sole purpose of determining the solvability of polynomial 
equations. Very broadly, groups are algebraic structures made up 
of sets of objects (say, the integers) united under some operation 
(for instance, addition) that obey specific rules (among them the 
existence of an identity element such as 0, which, when added to 
any integer, gives back that same integer). In 20thcentury phys
ics, this rather abstract field turned out to be the most fruitful 
way of categorizing elementary particles—the building blocks of 
matter. In the 1960s physicists Murray GellMann and Yuval 
Ne’eman independently showed that a specific group, referred to 
as SU(3), mirrored a behavior of subatomic particles called had
rons—a connection that ultimately laid the foundations for the 
modern theory of how atomic nuclei are held together.

The study of knots offers another beautiful example of passive 
effectiveness. Mathematical knots are similar to everyday knots, 

except that they have no loose 
ends. In the 1860s Lord Kelvin 
hoped to describe atoms as knot
ted tubes of ether. That misguid
ed model failed to connect with 
reality, but mathematicians con
tinued to analyze knots for many 
decades merely as an esoteric 
arm of pure mathematics. Amaz
ingly, knot theory now pro vides 
important insights into string 
theory and loop quantum gravi
ty—our current best attempts at 
articulating a theory of space
time that reconciles quantum 
mechanics with general relativi
ty. Similarly, English mathemati Similarly, English mathematiSimilarly, English mathemati
cian Hardy’s discoveries in num
ber theory advanced the field of 
cryptography, despite Hardy’s 
earlier proclamation that “no one 

has yet discovered any warlike purpose to be served by the theo
ry of numbers.” And in 1854 Bernhard Riemann described non
Euclidean geo met ries— curious spaces in which parallel lines 
converge or diverge. More than half a century later Einstein in
voked those geometries to build his general theory of relativity.

A pattern emerges: humans invent mathematical concepts 
by way of abstracting elements from the world around them—
shapes, lines, sets, groups, and so forth—either for some specific 
purpose or simply for fun. They then go on to discover the con
nections among those concepts. Because this process of inventing 
and discovering is manmade—unlike the kind of discovery to 
which the Platonists subscribe—our mathematics is ultimately 
based on our perceptions and the mental pictures we can conjure. 
For instance, we possess an innate talent, called subitizing, for in
stantly recognizing quantity, which undoubtedly led to the con
cept of number. We are very good at perceiving the edges of indi
vidual objects and at distinguishing between straight and curved 
lines and between different shapes, such as circles and ellipses—
abilities that probably led to the development of arithmetic and 
geometry. So, too, the repeated human experience of cause and ef
fect at least partially contributed to the creation of logic and, with 
it, the notion that certain statements imply the validity of others.

SELECTION AND EVOLUTION
michael atiyah, one of the greatest mathematicians of the 20th 
century, has presented an elegant thought experiment that re
veals just how perception colors which mathematical concepts we 
embrace—even ones as seemingly fundamental as numbers. Ger
man mathematician Leopold Kronecker famously declared, “God 
created the natural numbers, all else is the work of man.” But 
imagine if the intelligence in our world resided not with human
kind but rather with a singular, isolated jellyfish, floating deep in 
the Pacific Ocean. Everything in its experience would be continu
ous, from the flow of the surrounding water to its fluctuating tem
perature and pressure. In such an environment, lacking individu
al objects or indeed anything discrete, would the concept of num
ber arise? If there were nothing to count, would numbers exist?

Like the jellyfish, we adopt mathematical tools that apply to 

The universe 
has regularities, 
known as 
symmetries, that 
let physicists 
describe it 
mathematically. 
And no one 
knows why.
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our world—a fact that has undoubtedly contributed to the per
ceived effectiveness of mathematics. Scientists do not choose an
alytical methods arbitrarily but rather on the basis of how well 
they predict the results of their experiments. When a tennis ball 
machine shoots out balls, you can use the natural numbers 1, 2, 3, 
and so on, to describe the flux of balls. When firefighters use a 
hose, however, they must invoke other concepts, such as volume 
or weight, to render a meaningful description of the stream. So, 
too, when distinct subatomic particles collide in a particle accel
erator, physicists turn to measures such as energy and momen
tum and not to the end number of particles, which would reveal 
only partial information about how the original particles collid
ed because additional particles can be created in the process.

Over time only the best models survive. Failed models—such 
as French philosopher René Descartes’s attempt to describe the 
motion of the planets by vortices of cosmic matter—die in their 
infancy. In contrast, successful models evolve as new information 
becomes available. For instance, very accurate measurements of 
the precession of the planet Mercury necessitated an overhaul of 
Newton’s theory of gravity in the form of Einstein’s general rela
tivity. All successful mathematical concepts have a long shelf life: 
the formula for the surface area of a sphere remains as correct to
day as it was when Archimedes proved it around 250 b.c. As a re
sult, scientists of any era can search through a vast arsenal of for
malisms to find the most appropriate methods.

Not only do scientists cherrypick solutions, they also tend to 
select problems that are amenable to mathematical treatment. 
There exists, however, a whole host of phenomena for which no 
accurate mathematical predictions are possible, sometimes not 
even in principle. In economics, for example, many variables—the 
detailed psychology of the masses, to name one—do not easily 
lend themselves to quantitative analysis. The predictive value of 
any theory relies on the constancy of the underlying relations 
among variables. Our analyses also fail to fully capture systems 
that develop chaos, in which the tiniest change in the initial condi
tions may produce entirely different end results, prohibiting any 
longterm predictions. Mathematicians have developed statistics 
and probability to deal with such shortcomings, but mathematics 
itself is limited, as Austrian logician Gödel famously proved.

SYMMETRY OF NATURE
this careful selection of problems and solutions only partially 
accounts for mathematics’s success in describing the laws of na
ture. Such laws must exist in the first place! Luckily for mathema
ticians and physicists alike, universal laws appear to govern our 
cosmos: an atom 12 billion lightyears away behaves just like an 
atom on Earth; light in the distant past and light today share the 
same traits; and the same gravitational forces that shaped the 
universe’s initial structures hold sway over presentday galaxies. 
Mathematicians and physicists have invented the concept of sym
metry to describe this kind of immunity to change.

The laws of physics seem to display symmetry with respect to 
space and time: They do not depend on where, from which an
gle, or when we examine them. They are also identical to all ob
servers, irrespective of whether these observers are at rest, mov
ing at constant speeds or accelerating. Consequently, the same 
laws explain our results, whether the experiments occur in Chi
na, Alabama or the Andromeda galaxy—and whether we con
duct our experiment today or someone else does a billion years 

from now. If the universe did not possess these symmetries, any 
attempt to decipher nature’s grand design—any mathematical 
model built on our observations—would be doomed because we 
would have to continuously repeat experiments at every point in 
space and time.

Even more subtle symmetries, called gauge symmetries, 
prevail within the laws that describe the subatomic world. For 
instance, because of the fuzziness of the quantum realm, a giv
en particle can be a negatively charged electron or an electri
cally neutral neutrino, or a mixture of both—until we measure 
the electric charge that distinguishes between the two. As it 
turns out, the laws of nature take the same form when we inter
change electrons for neutrinos or any mix of the two. The same 
holds true for interchanges of other fundamental particles. 
Without such gauge symmetries, it would have been very diffi
cult to provide a theory of the fundamental workings of the 
cosmos. We would be similarly stuck without locality—the fact 
that objects in our universe are influenced directly only by their 
immediate surroundings rather than by distant phenomena. 
Thanks to locality, we can attempt to assemble a mathematical 
model of the universe much as we might put together a jigsaw 
puzzle, starting with a description of the most basic forces 
among elementary particles and then building on additional 
pieces of knowledge.

Our current best mathematical attempt at unifying all inter
actions calls for yet another symmetry, known as supersymme
try. In a universe based on supersymmetry, every known parti
cle must have an as yet undiscovered partner. If such partners 
are discovered (for instance, once the Large Hadron Collider at 
CERN near Geneva reaches its full energy), it will be yet another 
triumph for the effectiveness of mathematics.

I started with two basic, interrelated questions: Is mathemat
ics invented or discovered? And what gives mathematics its ex
planatory and predictive powers? I believe that we know the an
swer to the first question. Mathematics is an intricate fusion of 
inventions and discoveries. Concepts are generally invented, and 
even though all the correct relations among them existed before 
their discovery, humans still chose which ones to study. The sec
ond question turns out to be even more complex. There is no 
doubt that the selection of topics we address mathematically has 
played an important role in math’s perceived effectiveness. But 
mathematics would not work at all were there no universal fea
tures to be discovered. You may now ask: Why are there univer
sal laws of nature at all? Or equivalently: Why is our universe 
governed by certain symmetries and by locality? I truly do not 
know the answers, except to note that perhaps in a universe 
without these properties, complexity and life would have never 
emerged, and we would not be here to ask the question. 
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