
1

CS3102 Theory of Computation
Problem Set 6

Department of Computer Science, University of Virginia

Gabriel Robins

Please start solving these problems immediately, don’t procrastinate, and work in study groups.

Please prove all your answers; informal arguments are acceptable, but please make them precise / detailed /

convincing enough so that they can be easily made rigorous if necessary. To review notation and definitions,

please read the "Basic Concepts" summary posted on the class Web site, and also read the corresponding

chapters from the Sipser textbook and Polya’s “How to Solve It”.

Please do not simply copy answers that you do not fully understand; on homeworks and on exams we

reserve the right to ask you to explain any of your answers verbally in person (and we have exercised this

option in the past). Please familiarize yourself with the UVa Honor Code as well as with the course Cheating

Policy summarized on page 3 of the Course Syllabus. To fully understand and master the material of this

course typically requires an average effort of at least six to ten hours per week, as well as regular meetings

with the TAs and attendance of the weekly problem-solving sessions.

This is not a “due homework”, but rather a “pool of problems” meant to calibrate the scope and depth

of the knowledge / skills in CS theory that you (eventually) need to have for the course exams, becoming a

better problem-solver, be able to think more abstractly, and growing into a more effective computer scientist.

You don’t necessarily have to completely solve every last question in this problem set (although it would be

great if you did!). Rather, please solve as many of these problems as you can, and use this problem set as a

resource to improve your problem-solving skills, hone your abstract thinking, and to find out what topics you

need to further focus on and learn more deeply. Recall that most of the midterm and final exam questions in

this course will come from these problem sets, so your best strategy of studying for the exams in this course

is to solve (including in study groups) as many of these problems as possible, and the sooner the better!

Advice: Please try to solve the easier problems first (where the meta-problem here is to figure out

which are the easier ones ). Don’t spend too long on any single problem without also attempting (in

parallel) to solve other problems as well. This way, solutions to the easier problems (at least easier for you)

will reveal themselves much sooner (think about this as a “hedging strategy” or “dovetailing strategy”).

http://www.cs.virginia.edu/~robins/cs3102/basics.pdf
http://www.cs.virginia.edu/~robins/cs3102
https://www.amazon.com/Introduction-Theory-Computation-Michael-Sipser/dp/0534950973
https://www.amazon.com/gp/product/069111966X/
https://honor.virginia.edu/
http://www.cs.virginia.edu/~robins/cs3102/slides/CS3102_Syllabus.pdf

2

1. The following problems are from [Sipser, Second Edition]:

Pages 159-162: 3.4, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.22

Pages 182-184: 4.2, 4.3, 4.4, 4.6, 4.7, 4.9, 4.12, 4.15, 4.18, 4.19, 4.22, 4.26, 4.27, 4.28

2. Construct a context-sensitive grammar that generate {anbncn | 1n }. Make your grammar as

“small” as possible in terms of the number of non-terminals and productions in it.

3. Construct a context-sensitive grammar that generate {a(n^n) | 1n }. Make your grammar as

“small” as possible in terms of the number of non-terminals and productions in it.

4. Give (and prove) several example non-Turing-recognizable languages.

5. Describe a Turing machine that prints out its own description (regardless of its input).

6. Let L={0k | k is a Fibonacci number}. Describe a Turing machine that accepts L. Give

a (context-sensitive) grammar that generates L.

7. Describe a two-tape Turing machine that prints out on its second tape only prime

numbers (in either binary or unary, separated by commas), such that every prime number

will eventually be printed there.

8. Describe a two-tape Turing machine that prints out on its second tape valid encodings of

all Turing machines (separated by commas), such that every Turing machine (including

itself) will eventually be printed there.

9. Modify Turing machines so that they can insert new tape cells into their tape(s), and also

remove old tape cells from their tape(s), instead of only (over)writing existing tape cells.

(a) Define carefully the transition function and the computational behavior of such

machines. (b) Show that such a machine can be simulated by an ordinary Turing machine

with at most a quadratic loss of efficiency.

10. True or false: any two-tape Turing machine that uses constant space (aside from the

read-only space occupied by the input string) recognizes a regular language.

11. True or false: if L is Turing recognizable, then there is a Turing machine M that

enumerates L without ever repeating an element of L.

12. Is the set of non-finitely-describable real numbers closed under addition? Squaring?

3

13. Are the decidable languages closed concatenation? Union? Complementation? Kleene closure?

14. Are the recognizable languages closed concatenation? Union? Complementation? Kleene closure?

15. Are the non-recognizable languages closed concatenation? Union? Complementation? Kleene

closure?

16. Are the non-finitely-describable languages closed concatenation? Union? Complementation?

Kleene closure?

17. Is a countably-infinite union of decidable languages necessarily decidable?

Is a countably-infinite intersection of decidable languages necessarily decidable?

18. Is a countably-infinite union of recognizable languages necessarily recognizable?

Is a countably-infinite intersection of recognizable languages necessarily recognizable?

19. Is a countably-infinite union of non-finitely-describable languages necessarily non-finitely-

describable?

Is a countably-infinite intersection of non-finitely-describable languages necessarily non-

finitely-describable?

20. What is the infinite union of all the decidable languages?

What is the infinite intersection of all the decidable languages?

21. What is the infinite union of all the recognizable languages?

What is the infinite intersection of all the recognizable languages?

22. What is the infinite union of all the non-finitely-describable languages?

What is the infinite intersection of all the non-finitely-describable languages?

23. Can a non-computable number be rational? Must an irrational number be non-computable?

24. Let YESNO(L)={xy | xL and yL, x,y*}. Does YESNO preserve decidability?

25. Let PALI(L)={w | wL and wRL}. Does PALI preserve decidability?

4

26. Let F denote some finite language, R denote some regular language, C denote some context-free

language, D denote some decidable language, E denote some recognizable language, and N

denote some non-recognizable language. For each one of the following statements, prove

whether it is always true, sometimes true, or never true:

a) (D  R)* is decidable

b) RD is regular

 c) N – F is decidable

 d) N* E C F is regular

 e) N* is context-free

f) SHUFFLE(D,C) is decidable (where SHUFFLE is defined in problem 19 on Set 5).

g) E is NP-complete

27. Define a deterministic "infinite automata" similarly to a deterministic finite automata, but

where the state set Q is no longer restricted to be finite (i.e. can be countably infinite), and all

other aspects of the infinite automata remain similar to their finite counterparts.

(a) Characterize precisely the class of languages accepted by deterministic infinite automata.

(b) Characterize precisely the class of languages accepted by non-deterministic infinite automata.

(c) Do oracles increase the power of infinite automata?

28. Let L={0k | k is a Fibonacci number}.

(a) Describe a Turing machine that accepts L.

(b) Give a (context-sensitive) grammar that generates L.

5

