Basic Concepts and Notation

Gabriel Robins

"When | use a word," Humpty Dumpty said, in a rather scornful tone,
"it means just what | choose it to mean -- neither more nor less."

A setis formally an undefinedterm, but intuitively it is a (possibly empty) collection of
arbitrary objects. A setis usually denotedby curly bracesand some (optional) restrictions.
Examples of setsare{1,2,3}, { hi, there}, and {k | k is a perfectsquare}. The symbolJ denotes

setmembership while the symbol O denotesset non-membership for example,70{p | p

prime} statesthat 7 is a prime number, while q(1{0,2,4,6,...} statesthat q is not an evennumber.

Somecommon _setsare denoted by special notation:

Thenatural numbers M = {123..}
Theintegers £ = {..-3-2-10123,..}
Therational numbers [131:{% |abOZ, bz0}
Thereal numbers R = {x| x is a real number}
Theempty set g ={}

When only thepositive elements of a numerical set a@ught,a superscript'+" may be usedto

denote this. For exampleZ2* = I denoteshe positiveintegers(i.e., the naturalnumbers) R*

denotes all the positive reals, and more generdlly; &0S | s>0}.

The logical symbol| (pronounced'suchthat”, and sometimesalso denotedas [ denotesa
conditional (which usually followsthis symbol). The logical symbol I (pronouncedfor all")

denotesuniversal _quantification. For example, the formula "OxOR x < x%+1" reads"for all

x a memberof the real numbersx is lessthan or equalto x-squaredplus one” (i.e., no real

number is greater thaome morethanits own square). The logical symbol [I (pronouncedthere



exists") denoteexistential quantification. For example, the formula "X[O& |x2:5x" states

that there exists an integer whose square is equal to 5 times itselfi§.either 5 or 0) . These

connectives may be composed in more complicated formulae, as in the following eXample:

O£ | y>x" which states that there is no largest integer.

The logical connectivé®, (pronounceddnd") is a boolean-valued functichat yields true if
and only if bothof its two argumentsaretrue. The logical connective®’ (pronounced or”) is a
boolean-valued functiothat yields true if andonly if oneor more of its two argumentsaretrue.
The symbol] (pronouncediinplies”) denotes logical implication; that isfAB meansthatB is
true whenever A is true; for example, "1 < x 8lyx® < y". The symbol= (pronouncedif and

only if", and sometimes written as "iff") denofegical equivalence thatis, A = B meansthat

B is trueif andonly if A is true. More formally, A = B means A0 B / BO A; an exampleis
"min(x,y)=max(x,y) = x=y". Itis easily shown thatl/AB implies™B [0 ™A, where™ denotes

logical negation

A set Sis aubsetof a set T (denoted=ST) if every element that is a membes is alsoa
memberof T. More formally, S=T = (xOS O xOT). A setSis aproper subsetof a setT
(denoted &°T) if S is a subset of T, but S and T are not equal. More for8ally, = (S=T
S#T). Clearly everysethasthe empty setandthe setitself assubsetgi.e., 1S @=S /A S=S).
Two sets arequalif and only if each is a subset of the other, i.e., S=T = (T=S /M S=T).

The union of two setsS andT (denotedST) is the (duplicate-free)'merger” of the two
sets. Moreformally, SOT={x |xOS % xOT}. Theintersection of two setsS andT (denoted

SnT) is their greatescommonsubset. More formally, SnT={x | xOS / xOT}. Two setsare

said to belisjoint if their intersection is empty (i.e., S and T are disjeinbn T=Q).



The union and intersectionoperatorsare commutative (SOT=TOS, and SnT=TnS),
associativeSI(TOV) = (SOT)OV, and $h(TnV) = (SnT)nV, anddistribute overeachother
S(TnV)=(SOT)n(SOV), and Sn(TOV) = (SnT)O(SnV). Absorption occursas follows:
SO(SNT)=S, and Sn(ST)=S. Thecomplementof a setS (with respectto someuniverseset)
is thecollectionof all elementdin the universeset)thatarenotin S, andis denotedS ' (or by S

with ahorizontal bar over it). Moreformally, S = {x | x(IS}.

A setissaid to be closedundera given operationif the operationpreservesnembershign
the set. Formally, S is said to be closedunderan operation¢ iff x¢yOS O x,yOS. For
example, the set oftegersZ is closedunderaddition(+), sincethe sumof anytwo integersis

also an integer; on the other haBds not closed under division.

A relation over a domain D is a set ofderedpairs, or more generally,a setof orderedk-
tuples. For example, therelation v defined as{(a, 1), (b,2), (b,3)} meansthat"a" is relatedto 1,
and"b" is relatedto both 2 and 3; this may also be written asav 1, by 2, andbv 3. A more
familiar relation (oveR) is the "less than€lation, often denotedas <, which actually consistsof

aninfinite setof orderedpairs suchthat the first elementis lessthan the second;that is, the <

relation is formally defined to be the set {(x,y) |X&/, y>X}.

A relationis saidto bereflexive if everyelementin the relationdomainis also relatedto
itself; i.e.,v is reflexive iff ¢ x Ox[ID. A relation is saido be symmetric if it commutesj.e.,
v is symmetric iffxey O yvx. A relationis transitive if xey / yvz 0 xvz. Forexample,

the subsetoperatoris reflexive (S=S), and transitive (=T M T=V O S=V), but not

symmetric. Theransitive closureof a relationis the extensionof that relationto all pairsthat

are related by transitivity; i.e., the transitive closure aontains all pairs o¢, as well as alpairs
(x,y) suchthat for somefinite setof elementsd;, d,, ds, ..., dg in ¥'s domain,all of xvd,

divdy, thvds, ..., d v dy, divy hold. Put another way, the transitive closairef a relation



is the smallest relation containimgbut which is still closed under transitivify.e., satisfyingxe y

M ya z[ x4 Zz). For example, the predecessor relation ¥ may be dedsa, x-1) | xOZ2}, and

the transitive closure of f is the > relation. Similarly,ymametric _closure of a relationis the

smallest containing relation that is closed under symmetry, etc.

"I don't understand you," said Alice. "lts dreadfully confusing!"

A relation that is reflexive, symmetric, and transitisealled an equivalence relation; an

exampleof this is the familiar equalityrelation=. It is easyto showthat an equivalenceelation

partitions its domain into mutually disjoint subsedalled equivalence classes A specialkind

of relation is called graph, where the domain elements are calledie sand the relation pairs are

referredto asedges For example,one simple graphmay be {(a,b), (a,c),(b,d)}. Graphsare
often drawn using ovals to represent the nodes and arcs to repinessaiges. A graphis saidto
be undirected whenthe relationthat it representss symmetric,and directed otherwise. The
transitiveclosureof an undirectedgraphis an equivalencaelation wherethe equivalenceclasses

correspond to the connected components of the graph.

"You'll get used to it in time," said the Caterpillar;

An importantpropertyof setoperationss the analogueof DeMorgan's Law: (SOT)' =

SnT" and (SnT) =SOT'. These equalitiesfollow from DeMorgan'daw for classicallogic:
if X and Y are boolean variables, then (XAY)'=X"%Y" and (X% Y)'=X' /Y"' alwayshold. This
is an artifact of the elegant duality betweendperators®™ and* in the prepositionalcalculus:if
one startswith a true theorem(logical preposition)and simultaneouslyeplacesall the /'s with

%'s, and al the %'swith /\'s, the result is aso a true theorem.

Thedifference between two sets S and T is the@mitainingall elementghatarein S but

notin T. Moreformally, ST ={s|sOS / sOT} = SNnT'. Thesymmetric difference between

two sets S and T is defined dSB- SnT. Thecross-productof two setsS and T, denotedby

SXT, isthe set of all orderedpairswhosefirst elementcomesfrom S andwhosesecondelement
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comesfrom T. More formally, ST = {(s,t) | sLUS, tOT}. Forexample{1, 2, 3} x {a,b} =

{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}A setmay be crossedwith itself a numberof times: s =
sxsl wheres! = s.

Thecardinality (or size) of a finite set is defingd be the numberof elementsan it, andis
denoted by vertical bars placed around the set. For exag@lec}|=3,|{p | p a prime lessthan
20}|=8, and|d|=0. The powersetof a setS (denotedzs) is the collectionof all subsetsof S;
more formally, §:{T | T=S}. If Sis finite, the cardinality of its powersepigcisely2 raisedto
the cardinality of S (i.e.|23|:2|Sb; this is true becausesachsubsetof S canbe representedby a
unique sequence of |S| binary digits (where 1 represents membmreorrespondingelement
in the subsetandO represent$1on-membership).Sincethereare2ISI suchsequencesand each

corresponds to a unique subset of S, there mudthsei®sets of S.

A function f whichmapsa setS to a setT (denotedf:S-T) is saidto be one-to-one(or

injective) if any two distinct elements in S are mappedilistinct elementan T. More formally,
f is injectiveiff a,bdS / azb O f(a)tf(b). In this contextS is saidto be the domain of f,

while T is said to be the range of f. Intuitively, a function is one-to-oneif no two distinct

elements in its domain are mapped to the same element in its rangexafmle,f £ - £ defined

as f(x)=2x is one-to-one, while g(x)%js not, since g maps both -2 and 2 to 4.

The rate of growth of numericalfunctionsis often describedasymptotically. This is

especiallyusefulwhendiscussinghe time or spacecomplexitiesof algorithms,sinceit enables
implementation- / hardware-independent comparisdrike relative merits of specificalgorithms.
A function f(x) is said to b®(g(x)) (pronouncedbig-oh of g(x)") if for some positive constant
c we havec « f(x) < g(x) for all but a finite numberof valuesof x. If otherwords, g(x) is an

upper_bound for f(x) in the limit, modulaa multiplicative constant.More formally, this may be
expresseds f (x) = O(g(x)) = OcOR* Ox'OFR" Of(x)< c-g(x) Ox > x'. Similarly, a



function f(x) is said to b@(g(x)) (pronounceddmegaof g(x)") if for somepositive constantc
we have @ f(x) > g(x) for all but a finite number of valuesxf If otherwords,g(x) is alower

bound for f(x) in the limit, modulo a multiplicative constant. More formally, this may be
expressed as f(x) = Q(g(x)) = OcOR* OxOR" Of(x) > c-g(x) O x> X.

Finally, a function f(x) is said to be ©(g(x)) (pronounced'theta of g(x)") if both the
relationsf (x) = Q(g(x)) and f (x) = O(g(x)) hold; in other words, f(x) and g(x) have the same
asymptoticgrowth rate, moduloa multiplicative constant,so that eachof f(x) and g(x) givesa
tight bound (or exact bound) for thether. For example,f (n) = n is both O(n) andalso O(n3).
Similarly, g(n) = 8 n log n isQ(n) and O(r]r5), but not Q(nz). Finally, the constant function h(n)
= 1001%s 0O(1), asis any constant,no matter how large. Note that care must be takenwhen
consideringasymptoticnotation; for example, h(x) = O(1) doesnot imply that h is a constant
function, sincenon-constaniyet boundedfunctions such as h(x) = sin(x) are also O(1) by the
abovedefinitions. Both O and Q arereflexive andtransitiverelations,but are not commutative.

On the other hand, ® is commutative as well.

f:S-Tis said to b@nto (or surjective) if for any element t in Tthereexistsan elements

in Ssuch that f(s)=t. Moreformally, f isontoiff O0tOT OsOSOf(s)=t. Intuitively, a function
is onto if its entire range is "coverely its domain. For example,f & - & definedasf(x)=13-x
is onto (and coincidentallgne-to-oneaswell), while g(x):x2 IS not, sincesomeelementf g's

rangedo not havea correspondingelementx in g'sdomain(i.e., thereis no integerk suchthat

9(k)=3).

A function thatis both injective and surjectiveis calledbijective, andis said to be (or to

constitute) a one-to-one-correspondencebetweenits domain and range. Intuitively, a

bijection (denoted- ) is a perfecpairwise matchingbetweentwo sets,with eachelementin each

setparticipatingin exactlyone matchwith an elementof the otherset. For example the identity



function on an arbitrary domain D is always a bijection (i.e. £:D [Of(x)=x). Anotherexample

of a bijectionis h:M . Z definedash(x):%l if x is odd, % if x is even. The last example

illustratesthe fact that an infinite set can be put into one-to-onecorrespondencith a proper

subset of itself! (which is of courseeverpossible for a finite set).

The cardinality of a set S is said todideast as large as the cardinality of setT, if there

exists an onto function from S to T. More formallyz|$] = [ f:S-T, fis onto. Notenow this

definition generalizes the notion of cardinality comparisonsfinite sets. For example the onto

functionr:R - & definedas"r(x)=integerclosestto x" is witnessto the fact that the realshavea

cardinality at least as large as the integers.

If |SE|T| and a bijection between S anekists,the cardinalityof S is saidto be the same
asthe cardinalityof T. If |Sk|T| but no bijection betweenS andT exists,the cardinalityof S is

said to bestrictly larger than the cardinality of T, denoted |S|>|T|. The bijectidefinedearlier

provesthat the natural numbershave the samecardinality as do the integers,even though the

former is a proper subset of the latter!

It turns out that the cardinalityf the realsis strictly largerthanthe cardinality of the natural

numbers (formallylfi|>[]). This carbe provedusinga diagonalization argumentwe already

know that |F|=|M|, sincey:[F - M definedas"y(x)=abs(truncate(x))is onto. Now assumethat
there exists amrbitrary bijection f:IM ~ [F. Now considerthe real numberQ definedsothatQ's
kth digit (to the right of the decimal point) is equalto [f(k)'s kth digit] + 1 (modulo 10), for
k=1,2,3,... Clearly Q isawell-defined real number,but is notin the rangeof f by construction.
It follows that fthereforecannotbe a bijection as claimed,and sincef wasarbitrary,no bijection

betweerlR andlM can possiblyexist. Diagonalizationis a powerful proof methodwhich is often

employed to establish non-existence results.



Bijections may be composed to form new bijections, so that if we have two bijegt®n3

and b:T- V, then we can form a new bijection ¢:;¥, defined as c(x)=b(a(x)). As axampleof

an applicationof this composition _principle, we notethat no bijection betweenR andZ can
possibly exist: h (as defined earlier) is a bijection betviléemd £ , andwe alreadyknow that no
bijection betweel? andl canpossiblyexist (by our earlier diagonalizatiorproof). Thereforea
bijection betweelR and? would automatically yield (usimmmir compositionprinciple) a bijection
betweerlH andlM, a contradiction.

"Oh!" said Alice. She was too much puzzled to make any other remark.

An infinite setis a set than can be put into one-to-one correspondence prithest subset
of itself (or intuitively, a set with a cardinality greater than any intege)k Any set that ifinite,
or else that can be put into one-to-one correspondence with the integers is sawiuntbé®le (or

countablyinfinite). Any infinite setthat can not be put into one-to-onecorrespondencwith the

integers is said to hencountable (or uncountably infinite). For example, M, £x£, T, and{p |

p prime} are all countable sets, while [R, {x | xOF, O<x<1}, and 2M are all uncountable sets.

An alphabetisafinite set of symbols (e.g., ~ ={ab,c}). A string is a finite sequencef
symbolschosenfrom a particularalphabet(e.g.,w = abcaabbcc).The length of a string is the
numbers of symbolsit is composed of (e.g., |ocal = 3). A languageis asetof stringsover some
alphabet. For example, for the alphabefa,b}, aaabbbabab is a string lehgth 10 over >, and
{a"b" | n>0} is an infinitelanguageover =. The uniquestring of length0 is the empty_string,

and is denoted by or ». Theconcatenationof two stringsx andy (denotedxy) is obtainedby

following the symbols of x with the symbols of y, in ordévlore formally, if X=x1XoX3...%, and
Y=Y1Y2Y3. - Ym, Where (X for 1<isnand y;X for 1<j=m, then Xy=X;XoX3...X\y1Y2Y3.- - ¥m- It
follows that for all stringsw over some alphabet,we=ew=w. For example,the string "hi"

concatenated to the string "there" yields the string "hithere".



The concatenation operator may be extended to languageslil, asfollows: L1L, ={xy |

xOLq andyOL,}. LL may be denotedby L2 more generally,Lk:LLk'l, whereLO:{e}. The

Kleene closure of a languagelL (denoted by L*) is defined as the infinite union

LODL1DL2DL3D..., while L* is defined as the infinite union L10L20L30... It follows that

L*+=LL" (note that this "superscript plus" notation is distinguished from the "superscript plus" used

earlierto denotethe positive elementsof a numericalset,e.g.,#* = M, andusuallythe context

may be consulted to avoid confusion).

For example, the language {a, b} concatenated to the landtady 3} yields the language
{al, a2, a3, bl, b2, b3}, while {a,b}* denotes theetof all finite stringsover the two symbolsa
and b; more generallf,” denotes the set of all finite stringser the alphabets . It turnsout that

(L*)*=L", and that unless L is theivial language(i.e., {€}) or theempty language(i.e., @)

thenL” is countablyinfinite. Note that the trivial language{ ¢} is not the sameas the empty

languaged: the former containsone exactly string (i.e., the empty string) but the latter contains

none.

Any languagel. over a finite alphabetZ is composedof somecollection of finite strings.
More formally, L=5". Clearly =* is countable(simply arrangethe finite stringsin =* by
increasinglength,andwithin length by lexicographicdictionary order). Similarly, the set of all

finite descriptions is countable(simply arrangethe descriptionby increasinglengths and

lexicographicallywithin the samelength). On the other hand, the set of all Ianguageszz*is
uncountable. This immediatelyimplies that somelanguagesare not finitely describable! Put
differently, the setof all possiblefinite algorithms (or descriptions)is countable(sort the finite
computer programsby size and lexicographically), while the set of problems (languages)is
uncountablethis meansthat any way of matchingsolutionsto problemsmust leave out some
problems unmatched (i.e., unsolved), and thereforesomeproblemshaveabsolutelyno solutions,
even in theory! Exhibiting an actual "finitely undescribaldetrequiresa little more work, but is

not altogether difficult; this is what Alan Turing did in his 1936 dissertation.
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"Curiouser and curiouser!" cried Alice.

The infinity correspondingto the cardinality of the integers is denoted by O

(pronounced'aleph null*).  The infinity correspondingto the cardinality of the reals is

denotedas[]4. Our previousdiscussiorestablishedhat 0y < 041, andformally we havell, =

250, For many years mathematicians have tried to find some infrstych thatly < Q <4, or

prove that none exists. This question of whethereexistssomeinfinity strictly largerthanthat
of the integers,yet strictly smallerthanthat of the reals,cameto be known as the "continuum
hypothesis" and was finally settled by Cohen in 1966, who showed that itodependent o f
the axioms of settheory. Thatis, the consistencyof set theory would not be changedif one
chooses to assume as axiom eitherthis hypothesisor its negation! Severalotherwell-known
mathematicaktatement®njoy this uniquestatusof being independenbf the axioms, and these

includethe parallel _postulate aswell asthe axiom of choice(shownto be independenof

the other axioms by Godel in 1938).

More generally,we canobtaina whole hierarchy of infinities, eachonestrictly greater

than its predecessor; in particular, we havg = i, where 0j <0j+1. But whenthe indexes

of the alephskeepgrowing, nothing preventsthemfrom soon becomingalephsthemselves! In

other words, our "number-line" now looks like:

0, 1, 2y K, k#1y O O, O ey Ok Okt v O O Doy Oy ypoe-

where the subscripts soon acquire subscripts which are themselves alephs, giving i@tz an
hierarchy of infinities! Does there exist any infinity "biggémen any of theseunimaginablylarge

cardinalities? It turns out that there is! The next "jump" in this sequencds denotedby w

(pronounceddmegd) and is bigger than any of the alephs "below" it. It is sometimes refierred

as the first _inaccessible infinity " becausehereis no way to "reach"it via any composition,
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exponentiationpr subscript-nestingf alephs,etc., very muchlike thereis no way to reachthe

first aleph via any finite sequence of arithmetic operations on the ordinary integers.

The Red Queen shook her head. "you may call it 'nonsense’ if you
like," she said, "but I've heard nonsense, compared with which that
would be as sensible as a dictionary!"

Interestingly,this fascinatingprogressiorof ever-increasingnfinities doesnot stop; using
certain logical constructs it possibleto exhibit a vasthierarchyof inaccessiblenfinities pastw!
Logicians have even "found" infinities "larger” than any ofitteeccessiblenes,by stretchingthe
power of their axiomatic proof systertesthe limit. Note that finding a new families of infinities
requires new and novel proof techniques, since the "jump” from one "level" of infinitiesriexhe
"level" is as fundamental and conceptually difficultiesinitial jump from the integersto the first
level atl(, or the jump from the alephsda Currently only about six more fundamentgimps"
in conceptualizatiorare known to logicians,enjoying namessuch as the hyper-Mahlo cardinals,
the weakly compactcardinals,and the ineffable cardinals. It is not clear (evenin theory) what

exotic mathematical constructs, if any, lay beyond that.
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