I E
decond],dllld:l

INTRODUCTION

MICHAEL SIPSER

We begin with an overview of those areas in the theory of computation that
we present in this course. Following that, you'll have a chance to learn and/or
review some mathematical concepts that you will need later.

O] ZogoRou L om®Eo®om N SN g E Ny OF I oN oMM E RS S B A Y
*

|1:Xru‘1-.mhm| to ‘]l\

COMPUTATION]

AUTOMATA, COMPUTABILITY, AND COMPLEXITY

0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 3

lem of determining whether a mathematical statement is true or false. This task
is the bread and butter of mathematicians. It seems like a natural for solution
by computer because it lies strictly within the realm of mathematics, But no
computer algorithm can perform this task.

Among the consequences of this profound result was the development of ideas
concerning theoretical models of computers that eventually would help lead to
the construction of actual computers.

The theories of computability and complexity are closely related. In com-
plexity theory, the objective is to classify problems as easy ones and hard ones,
whereds in computability theory the classification of problems is by those that
are solvable and those that are not. Computability theory introduces several of
the concepts used in complexity theory.

AUTOMATA THECORY

Auromata theory deals with the definicons and properties of mathematical mod-
els of computation. These models play a role ini several applied areas of computer
science. One model, called the finize auzomaton, is used in text ptocessing, com-
pilets, and hardware design. Another model, called the context-free grammiar, is
used in programming languages and artificial intelligence.

Automata theory is an excellent place to begin the study of the theory of
computation. The theories of computability and complexity require a precise
definition of a comsputer. Automata theory allows practice with formal definitions
of computation as it introduces concepts relevant to other nontheoretical areas
of computer science.

0.2 [0 R S~ B B S S S s ST v - I SRV - O BT

This book focuses on three traditionally central areas of the theory of computa-
tion: automata, computability, and complexity. They are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began
to explore the meaning of computation. Technological advances since that time
have greatly increased our ability to compute and have brought this question out
of the realm of theory into the world of practical concern.

In each of the three areas—automata, computability, and complexicy—this
question is interpreted differently, and the answers vary according to the inter-
pretation. Following this inroductory chapter, we explore each area in a sepa-
rate part of this book. Here, we introduce these parts in reverse order because
starting from the end you can better understand the reason for the beginning.

MATHEMATICAL NOTIONS AND TERMINOQLOGY

As in any mathematical subject, we begin with a discussion of the basic mathe-
matical objects, wools, and notaton that we expect to use.

SETS

A set is 2 group of objects represented as a unit. Sets may contain any type of
object, including numbers, symbols, and even other sets. The objects in a set are
called its elernents or members. Sets may be described formally in several ways.
One way is by listing a set’s elements inside braces. Thus the set

{7,21,57}

contains the elements 7, 21, and 57. The symbols € and ¢ denote set member-
ship and nonmembership. We write 7 € {7,21,57} and 8 ¢ {7, 21,57}. For two
sets A and B, we say that A is a subset of B, written A C B, if every member of

Formal Languages

Alphabet: a finite set of symbols > ={a,b}
String: a finite sequence of symbols ababbaab
Language: a (possibly «) set of strings L={a,aa,aaa,...;
String length: number of symbols in it labal=3
Empty string: e or ™ (|€|=0) VW Wweeg = gw =W
String concatenation: w,w, ab-ba=abba
Language concatenation: {1,2}{a,b,...}
L,L={w,w, |w,eL,, w,eL,} ={1a,2a,1b,2b,...}
String exponentiation: wk = ww...w (k times) a’=aaa

Language exponentiation: Lx=LL...L (k times) {0,1}*
LL=L2 Lk=LLkt LOo={g}

Formal Languages

e String reversal: wR

 Language reversal: LR={wR | wel}

 Language union:

 Language intersection;
L, ~ L,={w|welL,
 Language difference:
L, — L,={w|weL, anc
« Kleene closure: L™ =L°%u
L*=LtU

« All finite strings (over X): ¥~
Theorem: ¥* contains no oo strings.

(aabc)R=cbaa

{ab,cd}*={ba,dc}

—> set union
L, U L={w|wel, orwel,} {alu{baal={ab,aa}
—> set Intersection

wel,} {a,b}{
= Set ¢
wel,} {a,h}—{

0,c}=1b}

Ifference

0,d}={a}

LU L2u . {a} ={ec,a,aa,...}

fulPU.. fa}={aaa,.. .}

L™ VL f:aaa,800,.
only finite strings in X!

Formal Languages
Language complementation: L'=X"-L ‘“negation” w.r.t. ¥~

Theorem: (L") =L~ L"c(L")" & (L") "'cL”
Theorem: L*=LL"

« “Trivial” language: {c} {e}eL=Le{c}=L
« Empty language: @ @={c}
Theorem: X% is countable, |27 = |N| dovetailing

DM : L
Theorem: 2~ Is uncountable. diagonalization

REGULAR LANGUAGES

The theory of computation begins with a question: What is a computer? It is
perhaps a silly question, as everyone knows that this thing I type on is a com-
puter. But these real computers are quite complicated—too much so to allow us
to set up 2 manageable mathematical theory of them directly. Instead we use an
idealized computer called a computational model. As with any model in science,
a computational model may be accurate in some ways but perhaps not in others.
‘Thus we will use several different computational models, depending on the fea-
tures we want to focus on. We begin with the simplest model, called the finite
state machine or finite automaton.

.|‘| 2D BPE XY EBELRCG DD EBH &2 B8 F LS TSEYARTYR
.

FINITE AUTOMATA

Finite automata are good models for computers with an extremely limited
amount of memory. What can a computer do with such a small memory? Many
usefil things! In fact, we interact with such computers all the time, as they lie at
the heart of various electromechanical devices.

The controller for an automatic door is one example of such a device. Often
found at supermarket entrances and exits, automatic doors swing open when
sensing that a person is approaching. An automatic door has a pad in front to

31

lxtm!l\u n to 1'

1.1 FINITE AUTOMATA 35

(@) 0
C MPUTATI N [FORMAL DEFINITION OF A FINITE AUTOMATON]

Second E dition

MICHAEL SIPSER

In the preceding section we used state diagramis to inwoduce finite automata.
Now we define finite automata formally. Although state diagrams are easier to
grasp intuitively, we need the formal definition, too, for two specific reasons.

First, a formal definition is precise. It resolves any uncertainties about what
is allowed in a finite automaton. If you were uncertain about whether finite
automata were allowed to have 0 accept states or whether they must have ex-
actly one transiticn exiting every state for each possible input symbol, you could
consult the formal definition and verify that the answer is yes in both cases. Sec-
ond, a formal definition provides notation. Good notation helps you think and
express your thoughts clearly.

The language of a formal definition is somewhat arcane, having some simi-
larity to the language of a legal document. Both need to be precise, and every
detail must be spelled ouit.

A finite automaton has several parts. It has a set of states and rules for going
from one state to another, depending on the input symbcl. It has an input al-
phabet that indicates the allowed input symbols. It has a start state and a set of
accept states. The formal definition says that a finite automaton is a list of those
five objects: set of states, input alphabet, rules for moving, start state, and accept
states. In mathematical language a list of five elements is often called a 5-tuple.
Hence we define a finite automaton to be 2 5-tuple consisting of these five parts.

We use somethmg called a transition function, frequently denoted 4, to de~
fine the rules for moving. If the finite automaton has an arrow from a state z to
a state y labeled with the input symbol 1, that means that, if the automaton is
in state = when it reads a 1, it then moves to state y. We can indicate the same
thing with the transition function by saying that d{z, 1) = y. This notation is a
kind of mathematical shorthand. Putting it all together we arrive at the formal
definition of finite automsta.

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, L, 6, gg, F'), where

1. Q is a finite set called the szates,

2. T is a finite set called the aiphabet,

3.6: Q xE—Qisthe tmmitionﬂmtion,l
4. gy € @ is the start state, and

5. F C Qs the set of accept states.”

IRefer back to page 7 if you are uncertain about the meaning of §: @ x T— Q.
2Accept states sometimes are called final states.

Finite Automata

Basic idea: a FA is a “machine” that changes states
while processing symbols, one at a time.

Finite set of states: Q =409, 91, U3y ---» Ui}

Transition function: 6: OxX — O
 |nitial state: Jo € Q
- Final states: FcQ

- Finite automaton is M=(Q, £, 5, q,, F)

Ex: an FA that accepts all odd-length strings of zeros:

@ M=({0,,9}, {0}, 1((00,0).94), ((01,0),60)+, 9o £61})

Finite Automata

FA operation: consume a string weX” one symbol at a time
while changing states

Acceptance: end up in a final state
Rejection: anything else (including hang-up / crash)
Ex: FA that accepts all strings of form abababab...= (ab)”

But M “crashes” on input string “abba’!
- Solution: add dead-end state to fully specify M

M=({00.01.0,}, {ab}, { ((00:2).00). (dyb).).
((Q0,b),02), ((G1,2),0,). ((d,,2),0,), ((42,0),0,) ¥, Aoy {0o))

Finite Automata
Transition function 6 extends from symbols to strings:
0:0xE*F—0) 6(Go,Wx) = 6(5(0,W),X)
where 6(0;,€) = 0,
Language of M is L(M)={weZX*| 5(q,,w) €F}
Definition: language Is regular iff it is accepted by some FA.
Theorem: Complementation preserves regularity.

Proof: Invert final and non-final states in fully specified FA.
LI/

L=L(M)=(@b)" <o, %%
=L(1V")=Db(a+b)” + (a+b) e, e
+ (a+b)*(aa+bb)(a+b)” '

“simulates” M and
does the opposite!

Problem: design a DFA that accepts all strings over
{a,b} where any a’s precede any b’s.

ldea: skip over any contiguous a’s, then skip over
any b’s, and then accept 1ff the end 1s reached.

Q: What is the complement of L?

L = a*b*

Problem: what i1s the complement of L = a*b™* ?
. write a regular expression and then simplify.

L’ = (a+b)*b*(a+b)*a*(a+b)*
= (atb)*b(a+b)*a(atb)*
= (atb)*b*a(a+b)*
= (atb)*ba(a+b)*
= a*b*a(a+b)*

a b a,b
o R

2 JFLAP - Mozilla Firefox

Fle Edt View Hstory Bookmarks Tools

Help

=1olx]

- € [htestives fiap.orgf 7 - [* 8 eode J;
[.8] Most Yisited B Gtting Started 5 | Latsst Headinss | | US urges cautionon .. | | CustomizeLinks | | Fres Hatmal | ‘| http:fjwss.scientific- . | | Suagested Sitss | | Weh Slice Gallery | | Windows Marketplace | | Windows Media | | Windaws
Google lﬁ M search - B 50 - [- ¥Y Bookmarkst =0 - % Autolink - | aueoRil - 4 [flap [~ < - @ sabeRo.. -
‘Wolfram % - H L0 g e
RS [~

JFLAP

@ HOME
@ What 15 JFLAP

@ JFLAP Tutorial
(partially updated for
JFLAP 7.0)

@ Instructor Use

@ World Usage to
June 2008

@ World Usage to
June 2006

@ JFLAP book

@ books using JFLAP

@ Sample files
@ JFLAP wiki

@ NEW JFLAP items

@ Get JFLAP
@ Historv of JFLAP
@ Workshops

@ JFLAP papers

JFLAP

JFLAP 1s software for expermmenting with fovg&

automata, multi-tape Turing machix
these, JFLAP allows one to expern
DFA to a regular expression or regu g;ammeu

JFLAP News \O \
e *** September 28, 2009 ***

Note to Mac users. Macs defaul ™ 1
o HF August 28, 2009 F* -

® December 2008 - JFLAP CD by Lz and
info and see the Supplement.

Note, we have worked closedly with Linz
a textbook with JFLAP mtegrated m...

JFLAP Version 7.0
RELEASED August 28, 2009

56
S5

1ng nond #tic finite automata, nondgtermimnistic pushdown
es of grar sing, and ems. In addition to constructipg and testing examples for
cons 'LlCtl 5 fromy nother, such as convertin, to a DFA to a minimal state

atlon on what one can do wi

. &‘\‘&Q'

efouv
e

5 and JFLAP now requir
et ls on changes Get JFLAP

7 0 released. See below 01\
Rodgel xercises that goes along with the Linz book 1s now available. Click here for

o&: past several years so JFLAP fits nicely with the Linz book. Eventually we hope to publish

@ JFLAP talks

@ Slides (2006)

o July 2008 - JFLAP now has a wiki where users can discuss the use or modifications of TFLAP, see jflap.wikia.com

e July 2008 - JFLAP now has two listservs. To join, go to lists.duke.edu
You do not need to be a member of Duke to join the listserv.
o iflap-announce@duke edu - for announcements on new releases of JFLLAP or new info on the JFILAP web nage

X Find: | Hext 4 Previous

o Highlight &l [Match case

| Dane:

New Doc. | |l 2 JFLap : (ex1.3a.jfr)

b gl JFLAP : (dfa ToMin DFAf)

= . —_— File Input Test Convert Help
File Help Batch Preferences File Input Test Convert Help m (Editor | Minimizau
Finite Automaton Editor r Nondeterminism |

Sel Terminal | Auto Partition | Complete Subtree | Check Node | Add Child | Remove | Finis|
Mealy Machine Hondeterministic states are highlighted.

Moore Machine

Pushdown Automaton

Turing Machine

Multi-Tape Turing Machine

Grammar
L-System

Regular Expression

Pt
0,1,2,3,4,56
—

Regular Pumping Lemma

Context-Free Pumping Lemma

=

—
P —— @'ﬂ %
File Input Test Convert Help T o e L__
[Editor_| Convert FA to RE From To Label
Remove States g ;] 2
Use the collapse state tool to remove nonfinal, noninitial states. 1 more T 5 e
JFLAP : (ex1.3a.jff) M=1E3 | > ©l-[% 8] [oonfeoon : ! com—|
File Input Test Convert Help X |
Simulate: aaaabb |
Finalize =
4] Dl |

@ ow Y @O i
i

‘ Step “ Reset || Freeze ” Thaw ” Trace H Remove ‘

bl /FLAP @ <untitled2>

b IFLAP : (pdaexamplejff)

File Help

[‘Select a Pumping Lemma | Pumping Lemma |

File Input Test Convert Help

Editor [Simulate: aaaabbbb L = {a""": nn = 0} Context-Free Pumping Lemma

Objective: Find 2 valid partition that can be pumped.

“[Cases:

5

Description

iz a string of "h"s and yis a string of "i0"s
W is & s1ring of "a's and v is a string of "a's
wis a string of "a's and v is a string of "a's followed Dy "h's
wis a string of "a's and v is a string of "b's
wis a string of "a's followed by "R"s and v is a string of "k"s
Wiz & string of "h"s and vwis a string of "b"s followed by"c's
wis a string of "h"s and vwis & string of "c"s
wis a string of "b"s followed by "c"s and wis a string of "c"s
wis & string of "c"s and vwis a string of "c"s

| Clear All | Explain |MyAttempts:

1. Please select a value for m in Box 1 and press "Enter”.
z

a,a,;aa

2. | have selected w such that |w| == m. It is displayed in Box ;
aaahbhcoo

3. Select decomposition of w into uvxyz.

a,Z,al

] u: aaa [ulz 3 O wis an empty string and v is a non-empty string
w [{) 1 |wis & non-empty string and v is an empty string
vih vl 1
. —
xh [xl: 1
- .
.. vib l¥]: 1
e L [}
aaaabhbbb —
7 oo lz|: 2
|2 a la Ja fp o fp Je e Jc |

4. | have selected i to give a contradition. It is displayed in Boxi
[pumped string: aaabhbbbbcoe ;

1]

Step ” Reset u Freeze H Thaw || Trace || Remove ‘ = AIEAT

u vy =z

w = aaa b b b ccc
b IFLAP : (npdaToCfg.jf)

| cases far m = 2 shown

File Input Test Convert Help

= 2,2 _ 3,53 Add Replace Show Delete
(Fiitor | Convert o Gramma | Bt S0 - oo Luaee][revae | shen | pue |
: | Hint || Show AII| |What's Left? H Expurt| again _ ki) ncizten] izl
< Ii [I»
il(glan2) — b - ||| =
iz agzy — |k
2202y — b
Jwzzgn —a
S0z go) — ainglaginoz. ..
Jmozgdy | — ai@lagliglz... |
iigoZo — afglag?)g2z...
2|0 Zo) — aiglag2)ozi...
HigoZgly — alglagMigos...
igoZoly — atglagliglz...
moZgly — aiglag2iiglz... —
Z|igZgl) — aiglag2)oi .
HionZn2) — aiqlagMigos...
i(g0Za2) —3 afglaglifglz..
i) — aiglaglifgli...
Z|igZo2) — ainlagi)oii. .
Z|{gnZgE) — alglagigoZ...
F|ionZgE) — |alglagliigls. ..
§§ (QOZg3E) — a(glag2)(g2Z... | |
li Z|igDZo3) —> aiglag2)nii.. |=
L~

b JFLAP : (turingAnBnCn.jiT)

File Input Test Yiew Convert Help
Editor

bl Accepting configuration found!

| ()] = R o A

®
.

;JUUUUUUUUUUUUUUUI_IUI_I abbccOO0O0l

:]DDDDDDDDDDDDDDDDDD bhocO0O0O0O0

-

FDDDDDDDDDDDDDDDDD}{ oo 0 o o

by

}]DDDDDDDDDDDDDDDDDH& CcOOO0O0O00

s

;JUUUUUUUUUUUUUUUU}{ avhiEc OOOOO0O00

2K

(a2)

<

b d IFLAP : (turing AnBnCnMultijff)
File Input Test Convert Help

| Editor | Simulate: [aabbcg, ,] |

| Keep looking | | I'm done |

a;a,R|DO;a,

cie Rlaia,Lib:ib,L s

e [

T h ia}

s g R i
_h‘———__a(5

EEeeeE-meeeer

Step " Reset " Focus " Defocus " Freeze " Thaw " Trace " Remove|

JFLAP : (anothersimple TM
File Input Test ew Convert Help File Input Help
Editor | Convert to Grammar | [Editor_|"Parser for Converted Grammar from TM
Hint H Show AII| ‘What’s Left? || Expon| Pause| Step |Noninverted Iree ‘-‘
< — V(== B
s — V(==
5 — T
T — TV(hb)
T — ik =
T — T¥(aa)
‘I — V(a0a)
= — A
w0 =)v (k) — Wih=ib2) |
W ibhZ) — b —,,—————————T T
B (L] —= hh — Y(==15 -
vt — b — == B
W0 =3 (ha) — Vib=)V(h2a) p— L
i|vioza) — Y T
v ipab —> bh — b -
v () — bh g
LMo =) (h=) — Vilh=1¥ b2 =) Y
Ivi2 =3 — B —> 3
o=k — bh —y
(=) — bh —a
“[yian =) (k) — Wia=ih2h — =
vinzh) — b j—
|v(akib —> ah —
[mviam — ha J—E
a0 =)v(ba) — Via=)¥(b2a) J—
‘|vioza) — b — ha
viaab — ah — ha
v (ag) — ba — ba
i Wra0=)v(b=) — Via=)¥(b2=) — =
Iwi2 =) — B — h=
ra=ih — ab — b=
Hbvia=) — ba — ah
i=0=pvibim — Wi==)v{D2h) —aa
vinzh) — b — a=
=k — = — - =]
Bl)] —h= Erived A from =. Derivations complete.
—

e Input Help
Editor | Parser for Converted Grammar from TM

Pause Step |Derivation Table ‘v‘ Editor | Convert RE to NFA |

The automaton is complete.
Export” will put it in a new window:.

hlll »> | 3| | Do Step DoAII

File Convert Help

Suring accepted! 21578 nodes generated.

Production

AT Tviom

[T+ ia0m

¥ (a0ay (b~ (aa)v (b 1b)
(b Lo (= =)= (R (= 0=)

W(aalv(bh)=
H Yiaah==
|¥@ah—=ah ab==

A

ahb=
ah

44 CHAPTER 1 / REGULAR LANGUAGES

Introduction to the Theory ol

COMPUTATION

Second Edition

FIGURE 1.22
Accepts strings containing ¢01

THE REGULAR OPERATIONS

MICHAEL SIPSER

In the preceding two sections we introduced and defined finite automata and
regular languages. We now begin to investigate their properties. Doing so will
help develop a toolbox of techniques to use when you design automata to rec-
ognize particalar languages. The toolbox also will include ways of proving that
certain other languages are nonregular (i.e., beyond the capability of finite au-
tomata).

In arithmetic, the basic objects are numbers and the tools are operations for
manipulating them, such as + and x. In the theory of computation the ob-
jects are languages and the tools include operadons specifically designed for
manipulating them. We define three operatiens on languages, called the reg-
wular operations, and use them to study properties of the regular languages.

— DEFINITION 1.23

Let A and B be languages. We define the regular operations union,
concatenation, and star as follows,

* Union: AUB = {z|z € Aorz € B}.
* Concatenation: Ao B = {ay|z € Aandy € B}.
» Star: A* = {z122... 2k k = 0and each z; € A},

You are already familiar with the union operation. It simply takes all the
strings in both A and B and lumps them together into one language.

The concatenation operaton is a little wickier. It attaches a string from A
in front of a string from B in all possible ways to get the strings in the new
language.

The star operation is a bit different from the other two because it applies to
a single language rather than to two different languages. That is, the star oper-
ation is a unary operation instead of a binary operation. It works by attaching
any number of strings in 4 together to get a string in the new language. Because

1.1 FINITE AuTOMATA 45

“any number” includes 0 as a possibility, the empty string £ is always a member
of A*, no matter what A is.

EXAMPLE 1.24

Let the alphabet I be the standard 26 letters {a, b, ..., 2z}, If A = {good, bad}
and B = {boy, girl}, then

AU B = {good, bad, boy, girl},
Ao B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {e, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }.

Let A" = {1,2.3, ... } be the set of natural numbers. When we say that A/
is closed under multiplication we mean. that, for any = and y in A, the product
z x y also is in . In contrast AV is not closed under division, as I and 2 are
in V but 1/2 is not. Generally speaking, a collection of objects is closed under
some operation if applying that operation to members of the collection returns
an object still in the collection. We show that the collection of regular languages
is closed under all three of the regular operations. In Section 1.3 we show that
these are useful rools for manipulating regular languages and understanding the
power of finite automata. We begin with the union operaton.

THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A; and A are regular languages, so is A; U As.

PROOF IDEA We have regular languages A; and A and want to show that
Aj U Ag also is regular. Beeause A1 and A are regular, we know that some finite
automaton M; recognizes A; and some finite automaton M, recognizes Az, To
prove that A1 U Ay is regular we demonstrate a finite automaton, call it M, that
recognizes A, U Aj.

This is a proof by construction. We construct M from M, and M. Machine
M must accept its input exactly when either M, or M, would accept it in order
to recognize the union language. It works by simulating both M and Mj and
accepting if either of the simulations accept.

How can we make machine M simulate M; and M>? Perhaps it first simulates
M on the input and then simulates M> on the input. But we must be careful
here! Once the symbols of the input have heen read and used to simulate A1,
we can’t “rewind the input tape” to try the simulation on M. We need another
approach,

Finite Automata
Theorem: Intersection preserves regularity.

Proof: (“parallel” simulation):
« Construct all super-states, one per each state pair.

N o "
New super-transition function jumps amon 3&(‘)’
super-states, simulating both old transj&tigﬂ nctions

* |Initial super state contains both @mti states.
 Final super states contairgcﬁaﬂs of old final states.

of original 2 (|
pf their sizes)/

2,0,,97, F)

* Resulting DFA acceb"tg’% of languages
DFAS (but new size can be the product
GivenM=(Q,, Z, 6, q’°, F;) and M,=(Q
construct M=(Q, 2, 0,0, F) Q=
F=FxF, 0=(q’,9")
0:0xX — Q 6((a,0;),%) = (61(7;,%),06,(7;X))

Finite Automata
Theorem: Union preserves regularity.
Proof: De Morgan's law: L, uL,=L; "L,
Or cross-product construction, I.e.,
parallel simulation with F = (F,xQ,) U (Q,xF,)

Theorem: Set difference preserves regularity.
Proof: Set identity L,— L,=L; " L,

Or cross-product construction, i.e.,

parallel simulation with F = (F,x(Q,-F,))

Theorem: XOR preserves regularity.
Proof: Setidentity L;® L, = (L, w L,) - (L L))

Or cross-product construction, i.e.,
parallel simulation with F = (F,x(Q—F,)) u ((Q,—F,)xF,)

Meta-Theorem: ldentity-based proofs are easier!

1.2 NONDETERMINISM 47

This concludes the construction of the finite automaton M that recognizes
the union of A; and A». This construction is fairly simple, and thus its correct-
ness is evident from the strategy described in the proof idea, More complicated
construetions require additional discussion to prove correctness. A formal cor-
rectness proof for a construction of this type usually proceeds by induction. For
an example of a construction proved correct, see the proof of Theorem 1.54.
Most of the constructions that you will encounter in this course are fairly simple
and so do not require a formal correctness proof.

We have just shown that the union of two regular languages is regular, thereby
proving that the class of regular languages is closed under the union operation.
We now turn to the concatenation operation and attempt to show that the class
of regular languages is closed under that operation, too.

THEOREM 1,26

The class of regular languages is closed under the concatenation operation.
In other words, if A; and A; are regular languages then sois Ay o Ag.

To prove this theorem let’s try something along the lines of the proof of the
union case. As before, we can start with finite automata M; and M, recognizing
the regular langnages A; and As. But now, instead of constructing automaton
M to accept its input if either M; or My accept, it must accept if its input can
be broken into two pieces, where M, accepts the first piece and Mj accepts the
second piece. The problem is that M doesn’t know where to break its input
(i.e., where the first part ends and the second begins). To solve this problem we
introduce a new technique called nondeterminism.

]‘2 £ @ o3 ¥ © =@ /8 &80 B 8 2 2 8 B @6 ¥ 8 2 8 2 82 @ N B YO2EDD

NONDETERMINISM

Nondeterminism is a useful concept that has had great impact on the theory of
computation. So far in our discussion, every step of a computation follows in a
unique way from the preceding step. When the machine is in 2 given state and
reads the next input symbol, we know what the next state will be—it is deter-
mined. We call this deterministic computation, In a nondeterministic machine,
several choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every deterministic
finire automaton is automatically a nondeterministic finite automaton. As Fig-
ure 1.27 shows, nondeterministic finite automata may have additional features.

COMPUTATION Deterministic

MICHAEL SIPSER

1.2 NONDETERMINISM 49

uction to ‘1 “I‘

Nondeterministic
computation computation

: [l\.\'\y

' £y
{

I
Second Edition

}

= accept or reject * accept

re] ect

FIGURE 1.28
Deterministic and nondeterministic computaticns with an accepting

branch

Let’s consider some sample runs of the NFA N; shown in Figure 1.27. The
computation of N on input 010110 is depicted in the following figure.

Symbol read

FIGURE 1.29
The computation of N7 on input 010110

Finite Automata

Non-determinism: generalizes determinism, where
many “next moves” are allowed at each step:

Old 0:0xX — O
New 0:29%x> — 29

Computation becomes a “iree”. O
Acceptance: 3 a path from root (start state) O
to some leaf (a final state) oo

Ex: non-deterministically accept all strings
where the 7t symbol before the end is a “b””:

@ o= @@ @@
a,b Input: 2babbaaa — Accept!

Finite Automata

Theorem: Non-determinism In FAs doesn’t Increase powetr.
Proof: by simulation:

Construct all super-states,
one per each state subset.

New super-transition function

Jjumps among super-states,
simulating old transition function

Initial super state are those "“QO
containing old initial state.

Final super states are those
containing old final states.

Resulting DFA accepts the same

language as original NFA, but can
have exponentially more states.

@

]

Q: Why doesn’t thfs

"9

work for PDAS or TMs?

Finite Automata

Note: Powerset construction generalizes the cross-product
construction. More general constructions are possible.

EC: Let HALF(L)={v|d vw € X" 5> |v|=|w| and vw ¢ L}

Show that HALF preserves regularity.

N—

N—

A two way FA can move Iits head backwards

on the input: 8:QxX — Qx{left,right}

EC: Show that two-way FA are not

more powerful than ordinary one-way FA.

<+—O O O O O

g-transitions: [1 ---------- One super-state!

Theorem: e-transitions don’t increase FA recognition power.

Proof: Simulate e-transitions FA without using e-transitions.
l.e., consider e-transitions to be a form of non-determinism.

NICOLAS CAGE JULIANNE MOORE JESSICA BIEL The movie “Next” (2007)

| Based on the science fiction
story “The Golden Man”
by Philip Dick

> Premise: a man with
the super power of
non-determinism!

At any given moment his
R \ reality branches into multiple
B . Ty directions, and he can choose
R ’ the branch that he prefers!

———Transition function!

Top-10 Reasons to Study Non-determinism

1. Helps us understand the ubiquitous
concept of parallelism / concurrency;

2. llluminates the structure of problems;

3. Can help save time & effort by solving
Intractable problems more efficiently;

4. Enables vast, deep, and general studies of
“completeness” theories;

5. Helps explain why verifying proofs & solutions
seems to be easier than constructing them;

10.

Why Study Non-determinism?

Gave rise to new and novel mathematical
approaches, proofs, and analyses;

Robustly decouples / abstracts complexity from
underlying computational models;

Gives disciplined technigues for identifying
“hardest” problems / languages;

Forged new unifications between
computer science, math & logic;

OO0 ¢0¢0¢O

Non-determinism Is Interesting
fun, and cool!

Regular Expressions
Regular expressions are defined recursively as follows:

%) {c} X}V XeX
empty set trivial language singleton language

(%) (%)@

Inductively, If R and S are regular expressions, then so are:

(R+S) R*
union concatenatlon Kleene closure

@% W® i

Compositions! & 37
Examples: aa(a+b) bb (a+b)"b(atb) a(a+b)”
Theorem: Any regular expression Is accepted by some FA.

1.2 NONDETERMINISM 59

First, let’s consider again closure under union, Earlier we proved closure
under union by simulating deterministically both machines simultaneously via
a Cartesian product construction. We now give a new proof to illustrate the
technique of nondeterminism. Reviewing the first proof, appearing on page 45,
may be worthwhile to see how much easier and more intuitive the new proof is.

THEOREM 1.45

[The class of regular languages is closed under the union operar.ion.]

PROOF IDEA We have regular languages A; and A, and want to prove that
Ay U Az is regular. The idea is to take two NFAs, Ny and N; for A; and Aj, and
combine them into one new NFA, N,

Machine N must accept its input if either Ny or N accepts this input. The
new machine has a new start state that branches to the start states of the old ma-
chines with & arrows. In this way the new machine nondeterministically guesses
which of the two machines accepts the input. If one of them accepts the input,
N will accept it, too.

We represent this construction in the following figure. On the left, we in-
dicate the start and accept states of machines Ny and Ny with large circles and
some additional states with small circles. On the right, we show how to combine
N and N; into N by adding additional transition arrows.

(

N

)

N/

|

O
00

@)
Q0O

I

o é
000

_

FicURE 1.46 ‘
Constraction of an NFA N to recognize 4; U A2

Introduction to tl

COMPUTATION]

MICHAEL SIPSER

62 CHAPTER 1 / REGULAR LANGUAGES

THEOREM 1,49

The class of regular languages is closed under the star operation.

PROOF IDEA Wk have a regular language A; and want to prove that Af also
is regular. We take an NFA Ny for A; and modify it to recognize A%, as shown in
the following figure. The resulting NFA IV will accept its input whenever it can
be broken into several pieces and N; accepts each piece.

We can construct N like Ny with additional € arrows returning to the start
state from the accept states. This way, when processing gets to the end of a piece
that Ny accepts, the machine N has the option of jumping back to the start state
to try to read in another piece that Ny accepts. In addition we must modify N
so that it accepts £, which always is a member of A}, One (slightly bad) idea is
simply to add the start state to the set of accept states. This approach certainly
adds e to the recognized language, but it may also add other, undesired strings.
Exercise 1.15 asks for an example of the failure of this idea. The way to fix it is
to add a new start state, which also is an accept state, and which has an e arrow
to the old start state. This solution has the desired effect of adding e to the
language without adding anything else.

\ J

FIGURE 1.50
Construction of NV to recognize A*

PROOF Let N1 = (Q1, %, 81, q1, F1) recognize A;.
Construct N = ((), Z, §, qv, F') to recognize Aj.

L. Q={g}tui.

The states of N are the states of N7 plus 2 new start state.
2. The state qp is the new start state.
3. F= {QQ} UFl.
The accept states are the old accept states plus the new start state.

Regular Expressior
A FA for a regular expressions can be built

Ex: all strings over S={a,b} where 4 a “b”

(a+b)"b(a+b) a(a+b)”
WNY?——. = (a+b) ba(a+b)"

S
0y composition:

preceding an “a”

FA Minimization
ldea: “Equivalent™ states can be merged:

FA Minimization

Theorem [Hopcroft 1971]: the number N of states in a FA
can be minimized within time O(N log N).

Based on earlier work [Huffman 1954] & [Moore 1956].

Conjecture: Minimizing the number of states in a
nondeterministic FA can not be done in polynomial time.

Theorem: Minimizing the number of states in a pushdown
automaton (or TM) Is undecidable.

ldea: Implement a finite automaton minimization tool
« Try to design it to run reasonably efficiently
e Consider also including:
» Aregular-expression-to-FA transformer
« Anon-deterministic-to-deterministic FA converter

FAs and Regular Expressions

Theorem: Any FA accepts a language denoted by some RE.

Proof: Use “generalized finite automata” where a transition
can be a regular expression (not just a symbol), and:

Only 1 super start state and 1 (separate) super final state.

Each state has transitions to all other states (including itself),
except the super start state, with no incoming transitions,
and the super final state, which has no outgoing transitions.

Original FA M Generalized FA (GFA) M”

FAs and Regular Expressions

Now reduce the size of the GFA by one state at each step.
A transformation step is as follows:
(0,)P+RST (q))

Such a transformatlon step Is always possible, until the GFA
has only two states, the super-start and super-final states:

the regular expression corresponding
to the language of the original FA!

Corollary: FAs and REs denote the same class of languages.

70 CHAPTER 1/ REGULAR LANGUAGES

We break this procedure into two parts, using a new type of finite automaton
called a generalized nondeterministic finite automaton, GNFA. First we show
how to convert DFAs into GNFAs, and then GNFAs into regular expressions.

Generalized nondeterministic finite automata are simply nondeterministic fi-
nite automata wherein the transition arrews may have any regular expressions as
labels, instead of only members of the alphabet or . The GNFA reads blocks of
symbols from the input, not necessarily just one symbol at a time as in an ordi-
nary NFA. The GNFA moves along a transition arrow connecting two states by
reading 2 block of symbols from the input, which themselves constitute a string
described by the regular expression on that arrow. A GNFA is nondeterministic
and so may have several different ways to process the same input string. It ac-
cepts its input if its processing can cause the GNFA to be in an accept state at the
end of the input. The following figure presents an example of a GNFA.

FIGURE _1.61
l A generalized nondeterministic finite automaton]

For convenience we require that GNFAs always have a special form that meets
the following conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every
other state but no arrows going to any other state, Furthermore, the accept
state is not the same as the start state.

* Except for the start and accept states, one arrow goes from every state to
every other state and also from each state 1o itself.

IY:UQ“HJIO!Y to l‘l\ "“\\"v \‘l
COMPUTATION]

Second Edition

MICHAEL SIPSER

72 CHAPTER I / REGULAR LANGUAGES

take the machine from g; to g; either directly or via ¢y, We illustrate this
approach in Figure 1.63,

(m h
R *(R) U(R,
@ (Ry) (Ro)* (H3) U (Ry) @
R1 @ R3
) Ry

- J

FIGURE 1,63

before after

|Constructing an equivalent GNFA with one fewer state |

In the old machine if g; goes to guip with an arrow labeled Ry, g, goes to
itself with an arrow labeled Rj, gy, goes to g; with an arrow labeled Ry, and g;
goes to g; with an arrow labeled Ry, then in the new machine the arrow from g;
to g; gets the label

(R1)(Rz)*(Rs) U (Ra).

We make this change for each arrow going from any state g; to any state g;,
including the case where ¢; = g;. The new machine recognizes the original

language.

PROOF Let’s now carry out this idea formally. First, to facilitate the proof,
we formally define the new type of automaton introduced. A GNFA is similar
to a nondeterministic finite automaton except for the transition function, which
has the form

§: (Q - {Qaccept}) X (Q - {QSml‘t})_’R'

The symbol R is the collection of all regular expressions over the alphabet T,
and geeare and Qaccepe are the start and accept states. If §(q;,q;) = R, the arrow
from state ¢; to state ¢, has the regular expression R as its label. The domain
of the transition function is (Q — {accepe}) % (@ — {Guarc}) because an arrow
connects every state to every other state, except that no arrows are coming from
Gaccept OF going £o Gspr.

Regular Expressions ldentities

« R+S =S+R

« R(ST)=(RS)T

+ R(S+T) = RS+RT

+ (R+S)T = RT+ST

e =g =¢

c Rt@ =0P+R =R

e Re=eR=R R+¢#R
« (R =R" RO #R
¢« (e+R)"=R"

¢« (R'S")" = (R+S)”

OH NO! THE KILLER
MUST HAVE FOLLOWED
HER ON VACATION !

%

BUT TD FIND THEM WED HAVE T0 SEARCH
THROUGH 200 MB (F EMAILS LOOKING FOR
SOMETHING FORMATTED LIKE AN ADDRESS!

I
_ i&-—-— 75 HOPELESS!

oo
K

7

LRl o

Decidable Finite Automata Problems

Def: A problem is decidable if 3 an algorithm which can
determine (in finite time) the correct answer for any instance.

Given a finite automata M, and M,

Qu: IsL(M)=@7?
Hint: graph reachability

Q,: Is L(M,) infinite ?
Hint: cycle detection

Qs IsL(My) =L(M,)?

Hint: consider L,-L, and L,-L,
L Q L,
2 0

Regular Experssion Minimization

Problem: find smallest equivalent regular expression
 Decidable (why?)
« Hard: PSPACE-complete

Turing Machine Minimization

Problem: find smallest equivalent Turing machine
* Not decidable (why?)
* Not even recognizable (why?)

[nl g lHJ\\.‘H to \!I&

I

o

COMPUTATION]

Second Edition

MICHAEL SIPSER

CONTEXT-FREE
LANGUAGES

In Chapter 1 we introduced two different, though equivalent, methods of de-
scribing languages: finite sutomata and regular expressions. We showed that many
latiguages can be described in this way but that some simple languages, such as
{0™1"| n Z 0}, cannot.

In this chapter we present context-free grammars, 2 more powerful method
of describing languages. Such grammars can describe certain features that have
a recursive structure, which makes them useful in a variety of applications.

Context-free grammars were first used in the study of human languages. One
way of understanding the relationship of terms such as zoun, verd, and preposition
and their respective phrases leads to a natural recursion because noun phrases
may appear inside verb phrases and vice versa. Context-free grammars can cap-
ture important aspects of these reladonships.

An important application of context-free grammars occurs in the specification
and compilation of programming languages. A grammar for a programming lan-
guage often appears as a reference for people trying to learn the language syntax.
Designers of compilers and interpreters for programming languages often start
by obtaining a grammar for the language. Most compilers and interpreters con-
tain a component called a parser that extracts the meaning of a program prior to
generating the compiled cade or performing the interpreted execntion. A num-
ber of methodologies facilitate the construcdon of a parser once a context-free
grammar is available. Some tools even automatically generate the parser from
the grammar,

99

100 CHAPTER 2 / CONTEXT-FREE LANGUAGES

The collecton of languages associated with context-free grammars are called
the contexi-fiee languages. They include all the regular languages and many
additonal languages. In this chapter, we give a formal definition of context-free
grammars and study the properties of context-free languages. We also introduce
pushdown automata, a class of machines recognizing the context-free languages.
Pushdown automata are useful because they allow us to gain additional insight
into the power of context-free grammars.

CONTEXT-FREE GRAMMARS

The following is an example of a context-free grammar, which we call G,

A— 041
A— B
B —#

A grammar consists of a collection of substirution rules, also called produc-
tions. Each rule appears as a line in the grammar, comprising a symbol and
a string separated by an arrow. The symbol is called a variable. The suring
consists of variables and other symbols called termeinals. The variable symbols
often are represented by capital letters. The terminals are analogous to the in-
put alphabet and often are represented by lowercase letters, numbers, or special

bols. One variable is designated as the start variable. It usually occurs on
the left-hand side of the topmost rule. For example, grammar G contains three
rules. G'1%s variables are A and B, where A is the start variable, Its terminals are
0,1, and #.

You use a grammar to describe a language by generating each string of that
language in the following manner.

1. Write down the start variable. It is the variable on the left-hand side of the
top rule, unless specified otherwise.

2. Find a variable that is written down and a rule that starts with that variable.
Replace the written down variable with the right-hand side of that rule.

3. Repeat step 2 until no variables remain.

For example, grammar G, generates the string 000#111. The sequence of
substitutions to obtain a string is called a derivation. A derivation of string
000#111 in grammar G is

A= 041 = 00A11 = 0004111 = 0008111 = 000#111

You may also represent the same information pictorially with a parse tree. An
example of a parse tree is shown in Figure 2.1.

Context-Free Grammars

Basic Idea: set of production rules induces a language
» Finite set of variables: V ={V,, V,, ..., V. }
» Finite set of terminals: T ={t,, t,, ..., t.}

 Finite set of productions: P
- Start symbol: S

 Productions: V,—> A where V,eVV and A e(VUT)*
Applying V,— A to aVPp
yields: o AP
Note: productions do not depend on “context”
- hence the name “context free”!

Context-Free Grammars

Example: G: S — Sa
S—Sh
S—¢

G can be denoted more succinctly as:
G. S—>SalSh|e
Def: A derivation in a grammar G Is a sequence of

productions applied to the start symbol, ending
with a final derived string (of terminals). T
strings In

he |
Ex: S—»Sa—@le——— ___—thelanguage

-
S —» Sa — Sha —» Saba —» a —|aaba \

S > Sa — Saa aa — Shaaa — Sbbhaaa —|bbaaa

S >fe

Context-Free Grammars

Def: Astring w Is generated by a grammar G
If some derivation in G yields w.

Example: S — Sa — Sba —» Saba — Saaba — aaba

Def: The language L(G) generated by a context-free
grammar G Is the set of all strings that G generates.

Example: G: S—»>Sa|Sh|e
{¢, a, aaba, bbaaa, ... } < L(G)
moreover {a,b} < L(G) = L(G)={a,b}"
l.e., L(G)=X" where ={a,b}

Def: A language Is context-free if there exists a
context-free grammar that generates it.

Example: L={a,b}" is context-free (and it is also regular).

Context-Free Grammars
Def: a palindrome reads the same forwards and backwards.

2% ¢¢ 9% ¢¢

e.g., “noon”, “civic”, “level”, “rotor”, “madam”, “kayak”,
“radar”, “reviver”, “racecar’”’, “step on no pets”, etc.

Example: design a context-free grammar that generates
all palindromic strings over 2={a,b}
e, L={w]|weX and w=wR}

|dea: generate both ends of w simultaneously, from middle.
G: S—aSa|bSh|a|b|e

Derivations:
S — aSa — abSha — abba
S - bSh S — baSab — baaSaab — baabaab

L(G) ={w |weX" and w = wR}

Context-Free Grammars

Example: design a context-free grammar for strings
representing all well-balanced parenthesis.
|dea: create rules for generating nesting & juxtaposition.

G,:S—SS|(S)]e

Ex: S — SS — (5)(S) — (e)(e) > ()()
S —(5) = ((5) = ((g)) = (())
S—(5) = (85) = .. > (OHU(N()))

Another grammar:
G,:S—>(S)S|¢

Q: 1s L(G,) = L(G,) ?

Context-Free Grammars

Example: design a context-free grammar that generates
all valid regular expressions.
. embed the regular expression rules in a grammat.

G: S - x foreach x,eX,
S—>(S)|SS|S*|S+S
Let X={a,b}"
Derivations:
S—>S* > (9* > (S+9)* > (at+h)*
S —> SS — SSSS — ahS*h — aba*a

Theorem: The set of regular expressions Is context-free.

Ambiguity

Def: A statement /sentence iIs ambiguous If It has
multiple syntactic / semantic interpretations.

Example: “I like{dominating|people”
v\verb or adjective?

Example: a-b+c (a-b)+c # a-(b+c)

Example: ifpthenifgthenSelse T
If p then (if g tt\en S el§e T)
Y -
if p then (if q then S) else T ﬁmfnqulﬁ”
Y

Ambiguity in programs should be avoided!

Or.

Ambiguity In Language

:’ No 5
'pARKING
VIOLATORS
wWiLL
TOWED

— IR ' cab.

“I'm glad I'm a man, and so is Lola.” - Last line of song “Lola” by The Kinks

Art

IN

ty

igui

Amb

Ambiguity In Art

tk ‘1' "'." .

Ambiguity

Def: A grammar Is ambiguous If some string in its
language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.
Example: L={¢c}
G;: S—>SS|e
Derivation 1: S —» ¢

Derivation 2: S — SS — SSS — gee =¢
G, Is ambiguous!

G, S—¢

L(G,) = L(G) = {e}
G, Is not ambiguous!

Ambiguity

Def: A grammar Is ambiguous If some string in its
language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Example: L=a"
Gy S—>SS|ale
Derivation 1: S — SS — aa
Derivation 2: S — SS — SSS — aag = aa
G, Is ambiguous!

G, S—>Sale
L(G;) = L(G,y) =2
G, Is not ambiguous!

Ambiguity

Def: A grammar Is ambiguous If some string in its
language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Example: well-balanced parenthesis:
G:: S—>SS|(S)]e
Derivation 1: S — (S) = (&) = ()
Derivation 2: S — SS — (S)S - (g)e — ()
G. IS ambiguous!

Gs: S—(S)S|e

L(Gs) = L(Ge)
G, IS not ambiguous!

Ambiguity

Def: A grammar Is ambiguous If some string in its
language has two non-isomorphic derivations.

g]‘a
Theorem: Some context-free grammars are g?ﬁkziggous.
(but non-ambiguous grammars can be found)?u/
a

Def: A context-free language Is inherenﬁ‘;glé@@iégzgous If
every context-free grammar for it is ambig (&

Theorem: Some context-free languages are inherently
ambiguous (i.e., no non-ambiguous CFG exists).

Ex: {a"b" cd™ | m>0, n>0} w {a"b™"c™d" | m>0, n>0}
IS an Inherently ambiguous CF language, and so Is
{a"b™c | n=m or m=k}

2.2 PUSHDOWN AUTOMATA 109

Introduction to the T}
4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsky normal form is equivalent to G,
which follows, (Actually the procedure given in Theorem 2.9 produces several
variables U; along with several rules I; — a. We simplified the resulting gram-
mar by using a single variable U and rule U — a.)

S — AA, |UB|a|5A| AS
A —b|AA |UB|a|SA|AS
Al—PSA

U—a

B—>b MICHAEL SIPSER

2.2 =

PUSHDOWN AUTOMATA

HORRE ¥R E S BB SR SN ¥Ry RNRY SRR

In this section we introduce a new type of computational model called pushdown
automata. These automata are like nondeterministic finite automata but have an
extra component called a stack. The stack provides additional memory beyond
the finite amount available in the control. The stack allows pushdown automata
to recognize some nonregular languages.

Pushdown automata are equivalent in power to context-free grammars. This
equivalence is useful because it gives us two options for proving that a language is
context free. We can give either a context-free grammar generating it or a push-
down automaton recognizing it. Certain languages are more easily described in
terms of generators, whereas others are more easily described in terms of recog-
nizers.

The following figure is a schematic representation of a finite automaton. The
control represents the states and transition function, the tape contains the in-
put string, and the arrow represents the input head, pointing at the next input
symbol to be read.

state
control

EH“E input

FIGURE 2.11
Schematic of a finite automaton

COMPUTATION]

Second Edition

2.2 PUSHDOWN AUTOMATA 111

Nondeterministic pushdown automata recognize certain languages which no de-
terministic pushdown automata can recognize, though we will not prove this
fact. We give languages requiring nondeterminism in Examples 2.16 and 2.18.
Recall that deterministic and nondeterministic finite automata do recognize the
same class of languages, so the pushdown automata situation is different. We fo-
cus on nondeterministic pushdown automata because these automata are equiv-
alent in power to context-free grammars.

|FORMAL DEFINITION OF A PUSHDOWN AUTOMATON I

The formal definition of a pushdown automaton is similar to that of a finite
automaton, except for the stack. The stack is a device containing symbols drawn
from some alphabet. The machine may use different alphabets for its input and
its stack, so now we specify both an input alphabet and a stack alphabet T'.

At the heart of any formal definition of an automaton is the transition func-
tion, which describes its behavior. Recall that £, = S U {e} and I. = T'U {e}.
The domain of the transition function is @ x 3, x T.. Thus the current state,
next input symbol read, and top symbol of the stack derermine the next move of
a pushdown automaton. Either symbol may be &, causing the machine to move
withourt reading a symbol from the input or without reading a symbol from the
stack.

For the range of the transition function we need to consider what to allow
the automaton to do when it is in a particular situation. It may enter some
new state and possibly write a symbol on the top of the stack. The function §
can indicate this action by returning a member of @ together with a member
of ., that is, a member of @ x I.. Because we allow nondeterminism in this
model, 2 situation may have several legal next moves. The transition function
incorporates nondeterminism in the usual way, by returning a set of members of
@ x I, that is, a member of P(Q x I;). Putting it all together, our transition
function § takes the form §: @ x T x .—P(Q x I;).

T DEFINITION 2.13

A pushdown automaton is a 6-tuple (@, Z,T, 8, go, F), where @, Z,
T, and F are all finite sets, and

1. @ is the set of states,

2. T is the input alphabet,

3. I' is the stack alphabet,

4, 8: Q x B, x T.—P(Q x I..) is the transition function,

5. go € Q is the start state, and

6. F' C () is the set of accept states,

Pushdown Automata

Basic idea: a pushdown automaton is a finite automaton
that can optionally write to an unbounded stack.

Finite set of states: Q =4y, 9y, U3y ---» i}
Input alphabet: >

Stack alphabet: I
Transition function: 5: Qx(SU{e})xI" — 291"

Initial state: Jo € Q
Final states: FcOQ

Pushdown automaton is M=(Q, £, T, 8, qq, F)
Note: pushdown automata are non-deterministic!

Pushdown Automata

A pushdown automaton can use Its stack as an unbounded
but access-controlled (last-in/first-out or LIFO) storage.

* A PDA accesses its stack using “push” and “pop”

Stack & input alphabets may differ.

Input read head only goes 1-way.

Acceptance can be by final state
or by empty-stack.

Input

1101111101110

Note: a PDA can be made deterministic by restricting
Its transition function to unique next moves:

5: Ox(ZU{ePxI —OxI™*

-

Pushdown Automata

Theorem: If a language Is accepted by some context-free
grammar, then it is also accepted by some PDA.

Theorem: If a language Is accepted by some PDA, then it is
also accepted by some context-free grammar.

Corrolary: A language is context-free Iff it i1s also accepted by
some pushdown automaton.

|.E., context-free grammars and PDAs have equivalent
“computation power” or “expressiveness’’ capability.

Finite set of variables: V= {V,, V5, ..., Vi } A

Finite set of terminals: T= {t,. t;. ... §;}

Finite set of productions: P

Start symbol: S
Productions: V;— A where V.eV and A e(VUT)* Input

Applying Vi> A to gmy,iﬁ
yields: a AP l 0 l l 0 1 0

o oo |-

w
2}
f=*]
o
s

Closure Properties of CFLS

Theorem: The context-free languages are closed under union.
Hint: Derive a new grammar for the union.

Theorem: The CFLs are closed under Kleene closure.
Hint: Derive a new grammar for the Kleene closure.

Theorem: The CFLs are closed under m with regular langs.
Hint: Simulate PDA and FA in parallel.

Theorem: The CFLs are not closed under intersection.

Hint: Find a counter example.
Theorem: The CFLs are not closed under complementation.

Hint: Use De Morgan’s law.

Decidable PDA / CFG Problems

Given an arbitrary pushdown automata M (or CFG G)
the following problems are decidable (i.e., have algorithms):

A

Q: IsL(M)=07? é\
Qs IsL(G)=@7? %&
<.

LJOJTT{O]1)0] smek

Q,: IsL(M) finite ? \C}.
Qs s L(G) finite ? S,
Z2ull
Qs Is L(M) infinite ? e
Qs Is L(G) infinite ? o 2N

Productions: V;,— A WE & and A e(VUT)*
¥ o

ere
Applymp Vi> A to
teld:

Qu IswelL(M)? é&z
Qg IswelL(G)? /

Undecidable PDA / CFG Problems

Theorem: the following are undecidable (i.e., there
exist no algorithms to answer these questions):

Q: Is PDA M minimal ? Q[»/
Q: Are PDAs M, and M equﬁr;\’rglent’?
Q: Is CFG G minimal ?

Q: Is CFG G ambiguous ?
Q:IsL(G,) =L(G,) ?
Q:IsL(G) NnL(G,)=07?

V/
Q: Is CFL L inherently ambiguous ?

PDA Enhancements

Theorem: 2-way PDAs are more powerful than 1-way PDAs.
Hint: Find an exampl%non-CFL accepted by a 2-way PDA.

Theorem: 2-stack PDASs a@ore powerful than 1-stack PDAs.
Hint: Find an example non- CE}‘ accepted by a 2-stack PDA.

Theorem: 1-queue PDAS are more @erful than 1-stack PDAs.
Hint: Find an example non-CFL acce@‘d by a 1-queue PDA.

Theorem: 2-head PDASs are more powerfuIL@an 1-head PDAs.
Hint: Find an example non-CFL accepted b%oz head PDA.

Theorem: Non-determinism increases the power g‘éﬁDAs
Hint: Find a CFL not accepted by any deterministic PDA.

1.4 NONREGULAR LANGUAGES 77

Hom R HY R R ENE NS EEEE RS ESEEREEEMR

1.4

NONREGULAR LANGUAGES

"To understand the power of finite automata you must also understand their lim-
itations. In this section we show how to prove that certain languages cannot be
recognized by any finite automaton,

Let’s take the language B = {¢"1%| n > 0}. If we attempt to find a DFA
that recognizes B, we discover that the machine seems to need to remember
how many 0s have been seen so far as it reads the input. Because the number of
0s isn’t limited, the machine will have to keep track of an unlimited number of
possibilities. But it cannot do so with any finite number of states.

Next, we present a method for proving that languages such as B are not regu-
lar. Doesn’t the argument already given prove nonregularity because the number
of 0s is unlimited? It does not. Just because the language appears to require un-
bounded memory doesn’t mean that it is necessarily so. It does happen to be true
for the language B, but other languages seem to require an unlimited number of
possibilities, yet actually they are regular. For example, consider two languages
over the alphabet £ = {0,1}:

C = {w|w has an equal number of 0s and 1s}, and

D = {w} w has an equal number of occurrences of 01 and 10 as substrings}.

At first glance a recognizing machine appears to need to count in each case,
and therefore neither language appears to be regular. As expected, C' is not
regular, but surprisingly D is regular!® Thus our intuition can sometimes lead
us astray, which is why we need mathematical proofs for certainty. In this section
we show how to prove that certain languages are not regular.

[THE PUMPING LEMMA FOR REGULAR LANGUAGES]

Our technique for proving nonregularity stems from a theorem about regular
languages, traditionally called the pumping lemma. This theorem states that all
regular languages have a special property. If we can show that a language does
not have this property, we are guaranteed that it is not regular. The property
states that all strings in the language can be “pumped” if they are at least as
long as a certain special value, called the pumping length. That means each
such string contains a section that can be repeated any number of times with the
resulting string remaining in the language.

6See Problem 1.48.

|

Introduction to the Theory of
COMPUTATION

Second Edition

MICHAEL SIPSER

1.4 NONREGULAR LANGUAGES 79

appearing before gy, piece y is the part between the two appearances of g, and
piece z is the remaining part of 5, coming after the second vccurrence of gs. So
% takes M from the state g1 to go, ¥ takes M from gg back to gg and 2 takes M
from gy to the accept state gy3, as shown in the following figure.

M~ a
A A

FIGURE 1.72
Example showing how the strings =, y, and 2 affect M

Let’s see why this division of s satisfies the three conditions. Suppose that we
run M on input zyyz. We know that z takes M from ¢ to gp, and then the first
y takes it from gg back to gy, as does the second y, and then = takes it to ¢i3.
With q;3 being an accept state, M accepts input zyyz. Similarly, it will accept
xy'z for any i > 0. For the case i = 0, zy’z = rz, which is accepted for similar
reasons. That establishes condition 1.

Checking condition 2, we see that |y| > 0, as it was the part of s that occurred
between two different occurrences of state gg.

In order to get condition 3, we make sure that g is the first repetition in the
sequence. By the pigeonhole principle, the first p+ 1 states in the sequence must
contain a repetition. Therefore |zy| < p.

PROOF Let M = (Q,%,6,q:, F) be a DFA recognizing A and p be the number
of states of M.

Lets = 182 - - - 8, be a string in A of length n, where n > p. Letri, ..., Tap1
be the sequence of states that M enters while processing s, so 7i41 = 8(ri, 8)
for 1 < ¢ < n. This sequence has length n + 1, which is at least p + 1. Among
the first p + 1 elements in the sequence, two must be the same state, by the
pigeonhole principle. We call the first of these r; and the second ry. Because ry
occurs among the first p+ 1 places in a sequence starting at 1, we have | < p+1.
Nowletz=8;---8j_1,y =85 Si—1,and z = 8- - 5n.

As z takes M from 7 to 4, y takes M from r; to r;, and z takes M from r;
to a1, which is an accept state, M must accept zy'z for i > 0. We know that
sl soly > 0;andl < pt1,s0 |zy| < p. Thus we have satisfied all conditions
of the pumping lemma.

Context-Free Grammars

Def: A language Is context-free If it Is generated
by some context-free grammar.
Theorem: All regular languages are context-free.
Proof 1dea: construct a grammar that “simulates”
a DFA, where variables correspond to states, etc.
Theorem: Some context-free languages are not regular.
Ex: {0"1"|n> 0}
Proof by “pumping” argument: long strings in a
regular language contain a pumpable substring.
dNeN>Vzel, [zZ>N 3 u,vweX* 3 Z=uvw,
luv|<N, |v|>1, uv'wel V i>0.

Context-Free Grammars

Def: A language Is context-free If it Is generated
by some context-free grammar.

Theorem: Some languages are not context-free .
Ex: {0""2"| n>0}
Proof by “pumping” argument for CFL’s.

Turing Machines

Basic idea: a Turing machine Is a finite automaton
that can optionally write to an unbounded tape.

» Finite set of states: Q =409, 91, U3y ---» Ui}

* Tape alphabet: I
« Blank symbol: Bel
« Input alphabet: > c I'{B}

 Transition function: o: (O-F)xI" > QXFX{L,R}

« Initial state: p € Q
* Final states: FcO

Turing machine is M=(Q, T, B, Z, &, 0, F)

Turing Machines

A Turing machine can use Its tape as an unbounded
storage but reads / writes only at head position.

« [Initially the entire tape Is blank, except the input portion

« Read / write head goes left / right with each transition
* Input string acceptance Is by final state(s)
* A Turing machine is usually deterministic

148 CHAPTER 3/ THE CHURCH—TURING THESIS

32 s oo o om oo

VARIANTS OF TURING MACHINES

Alternative definitions of Turing machines abound, including versions with mul-
tiple tapes or with nondeterminism. They are called variants of the Turing
machine model. The original model and its reasonable variants all have the
same power—they recognize the same class of languages. In this section we de-
scribe some of these variants and the proofs of equivalence in power. We call this
invariance to certain changes in the definition rebustress. Both finite automata
and pushdown automata are somewhat robust models, but Turing machines have
an astonishing degree of robustness.

To illustrate the robustness of the Turing machine model let’s vary the type
of transition function permitted. In our definition, the transition function forces
the head to move to the left or right after each step; the head may not simply
stay put. Suppose that we had allowed the Turing machine the ability to stay put.
"The transition function would then have the form §: @xI'— @ xI'x {L, R, 8}.
Might this feature allow Turing machines to recognize additional languages, thus
adding to the power of the model? Of course not, because we can eonvert any
TM with the “stay put” feature to one that does not have it. We do so by replacing
each stay put transition with two transitions, one that moves to the right and the
second back to the left.

This small example contains the key to showing the equivalence of TM vari-
ants. ‘1o show that two models are equivalent we simply need to show that we
can simulate one by the other.

[MULTITAPE TURING MACHINES |

A multitape Turing machine is like an ordinary Turing machine with several
tapes. Each tape has its own head for reading and writing. Initially the input
appears on tape 1, and the others start out blank. The transition function is
changed to allow for reading, writing, and moving the heads on some or all of
the tapes simultaneously. Formally, it is

§: @ xTF—@Q x I'* x {L,R, S}*,
where % is the number of tapes, The expression

(5((]1',(1,1, e ,ak) = (qj‘,bl, s ,bk,L, R, . ,L)

means that, if the machine is in state g; and heads 1 through k are reading sym-

bols a; through oy, the machine goes to state g;, writes symbols b, through by,

and directs each head to move left or right, or to stay put, as specified.
Multitape Turing machines appear to be more powerful than ordinary Turing

machines, but we can show that they are equivalent in power. Recall that two

machines are equivalent if they recognize the same language.

COMPUTATION]

| |
decond :_«!M ion

MICHAEL SIPSER

3.2 VARIANTS OF TURING MACHINES 151

PROOF The simuladng deterministic TM 12 has three tapes. By Theo-
rem 3.13 this arrangement is equivalent to having a single tape. The machine D
uses its three tapes in a particular way, as illustrated in the following figure. Tape
1 always contains the input string and is never altered. Tape 2 maintains a copy
of N’s tape on some branch of its nondeterministic computation. Tape 3 keeps
track of D’s location in N’s nondeterministic computation tree.

\
_... input tape
PR [x[x[#[0o]1][x]u]... simulation tape
MT2[8[3]2[3]1] 21113 u]... addresstape
FIGURE 3.17
| Deterministic TM D simulating nondeterministic TM ¥)

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N's transition function. To every node in the tree we assign an
address that is a string over the alphabet Ty = {1,2, ..., b}. We assign the ad-
dress 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that nod(?’s Ist f:hild. Each
symbol in the string tells us which choice to make next when simulating a step in
one branch in N’s nondeterministic computation. Sometimes a symbol may 1ot
correspond to any choice if too few choices are available for a configuration. In
that case the address is invalid and doesn’t correspond to any node. Tape 3 con-
tains a string over £y It represents the branch of N’s computation from the root
to the node addressed by that string, unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2.

3, Use tape 2 to simulate N with input w on one branch of its nondetermin-
istic computation. Before each step of V consult the next symbol on tape 3
to determine which choice to make among those allowed by N's transition
function. If no more symbals remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the lexicographically next string. Simu-
late the next branch of N’s computation by going to stage 2.

Turing Machine “Enhancements”

Larger alphabet:

old: 2={0,1}

new: X’ ={a,b,c,d}

Idea: Encode larger alphabet using smaller one.
Encoding example: a=00, b=01, ¢c=10, d=11

d

C

d

A4

Y "4 M

b
A\
0

a
110

0

1

1

1

0

0

0

old: o QLQ
new: &' (2L

Turing Machine “Enhancements”

Double-sided infinite tape:

€ 1

0

1

1

0

0

1

Idea: Fold Into a normal single-sided infinite tape

\
€ennnne . é@ 1111010111 | = .
e
© 1T000TL] || - -
old: o QL/—R»Q new: &' (R LR
OHRO ORS00

Turing Machine “Enhancements”

Multiple heads:

v

v

b

b

d

b

d

}
blb|a

d

ldea: Mark heads locations on tape and simulate

¥

v

v

B

A

b|b

A

Modified o' processes each “virtual” head independently:
« Each move of o 1s simulated by a long scan & update

* O'updates & marks all “virtual” head positions

Turing Machine “Enhancements”

Multiple tapes:

‘1‘10101 >
011‘0‘0 >
11111111010 | | | = >

ldea: Interlace multi

nle tapes into a single tape

Modified o' processes each “virtual” tape independently:
« Each move of o 1s simulated by a long scan & update

* 0' updates R/W head positions on all “virtual tapes”

Turing Machine “Enhancements”

Two-dimensional tape:

C r a s aaa This Is how
PLELE BB compilers
11110111011 | e > Implement
ol111lol1l | |- > 2D arrays!
1 O 1 1 O O >
|dea: Flatten 2-D tape into a 1-D tape
$ $ | e

Modified 1-D &' simulates the original 2-D o:
 Left/right 6 moves: ' moves horizontally
« Up/down 6 moves: &' jJumps between tape sections

Turing Machine “Enhancements”
Non-determinism:

¥
/ 1:1_0‘1‘01 >
\ 1‘1‘1101 >

ldea: Parallel-simulate non-deterministic threads
$ $ $ >

Modified deterministic o' simulates the original ND o:

v
1/111111]0]1

« Each ND move by o spawns another independent “thread”

* All current threads are simulated “in parallel”

Turing Machine “Enhancements”
Combinations:

I S ST L
%5 2| E
EingD 31 . 111411/5/9] - >
E-g-‘-!. ; :: I:IO >
= Ol‘|d' >

PR]7”‘0(1'

1R I

ldea: “Enhancements” are independent (and commutative
with respect to preserving the language recognized).

Theorem: Combinations of “enhancements” do not increase
the power of Turing machines.

Turmg -Recognizable vs. -Decidable

W— - ﬁ —> \/ X Never
Input Accept Reject runs
& halt & halt forever

Def: A language Is Turing-decidable Iff it is exactly the
set of strings accepted by some always-halting TM.

WeZ*_§ a - b aa ab ba bb aaa aab aba abb baa bab bbabbbaaaa

...

..

Note: M must always halt on every Input.

Turing -Recognizable vs. -Decidable

%"%=’\/ X =@

Accept Reject Run
& halt & halt forever

Def: A language Is Turing-recognizable Iff it is exactly
the set of strings accepted by some Turing machine.

WeZ*—§ a - b aa ab ba bb aaa aab aba abb baa bab bbabbbaaaa

...

..

Note: M can run forever on an input, which is implicitly
a reject (since It Is not an accept).

Recognition vs. Enumeration

Def. “Decidable” means “Turing-decidable”
“Recognizable” means “Turing-recognizable”

Theorem: Every decidable language Is also recognizable.
Theorem: Some recognizable languages are not decidable.

Ex: The halting problem is recognizable but not decidable.

Note: Decidability Is a special case of recognizability.

Note: It Is easler to recognize than to decide.

: DICK
Famous Deciders FRANCIS
g@ Decider

' w
The Decider . »!

\ e TS
LN‘-)

“A wrong decision 1s “B\ “I'm the decider, and
better than indecision.” I decide what is best.”

. 4 o D e
] 0L o e i M R B v e
F i AR BnE o
- A S8 VY B s B kial o ni od ¢ P
e ‘ B 2 Wl n o8 5 s
v AR 3 e £ B0 SE A R S 20 o
£ SV Yaen 4 # P TN N R TR iy T
LU, St 5 TAENS, TR SR et

The decider's decider.

Famous Deciders

i S .

THE DECIDER

. {

y No, George,
I'm the Decider.
™ Pro-Choic

Pro (hql(e
e~ America
»N

Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L
prints out precisely all strings of L on its output tape.

’5_5<ﬁ=> a|$lalb/$iblbla|$| - g

Note: The order of enumeration may be arbitrary.

Theorem: If a language Is decidable, 1t can be enumerated
In lexicographic order by some Turing machine.

Theorem: If a language can be enumerated In
lexicographic order by some TM, it Is decidable.

Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L
prints out precisely all strings of L on its output tape

,,%=> $

alb|$|blbla|$

Note: The order of enumeration may be arbitrary

Theorem: If a language Is recognizable, then it can be
enumerated by some Turing machine

Theorem: If a language can be enumerated by some TM
then it is recognizable.

THe ALPHABET

IN ALPHABETICAL ORDER
Aillch Ex
Ace Eﬁe
Ay (ree
Pee Ja‘j |
Cue Kay
Vee Ol
Doube U fBa
Ee See
= Tee
El \ee
En Wy
En Yu %
Fss Zee %-

4 O
@ PEACHES
g Crares Smﬂq.’.ﬁsmafs @
&% Grafe
o BLUEBERRIES
S 4,
& e O
APPLES
DIFFICULT <— LTERreLs >EASY
J v
@ 2
POMEGRANATES BANANAS
s
®
ToratoeE S
GRAPEPRUIT J
LEMONS Ll
UNTASTY

B384

READY?

J RerDy.
5? pe2aaad %ii

— —.

ROPR!

Boo*
Iy Si

/ﬁﬁ\
\té}ﬁi’

OFERATION: DUucKLING Lore

[ntroduction to the

COMPUTATION]

DECIDABILITY

In Chapter 3 we introduced the Turing machine as a model of a general purpose
computer and defined the notion of algorithm in terms of Turing machines by
means of the Church-Turing thesis.

In this chapter we begin to investigate the power of algorithms to solve prob-
lems. We demonstrate certain problems that can be solved algorithmically and
others that cannot. Our objective is to explore the limits of algorithmic solv-
ability. You are probably familiar with solvability by algorithms because much of
computer science is devoted to solving problems. The unsolvability of certain
problems may come as a surprise.

‘Why should you study unsolvability? After all, showing that a problem is
unsolvable doesn’t appear to be of any use if you have to solve it. You need
to study this phenocmenon for two reasons. First, knowing when a problem is
algorithmically unsolvable #s useful because then you realize that the problem
must be simplified or altered before you can find an algorithmic solution. Like
any tool, computers have capabilities and limitations that must be appreciated if
they are to be used well. The second reason is cultural. Even if you deal with
problems that clearly are solvable, a glimpse of the unsolvable can stimulate your
imagination and help you gain an important perspective on computation.

165

MICHAEL SIPSER

152 CHAPTER 3 / THE CHURCH—TURING THESIS

COROLLARY 3.18

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this theorem follows immediately. The other direction follows
from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all
branches of its computation, D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proofin this way to obtain the following corollary to Theorem 3.16.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine
decides it.

| ENUMERATORS |

As we mentioned earlier, some people use the term recursively enumerable lan-
guage for Turing-recognizable language, That term originates from a type of
Turing machine variant called an enumerator. Loosely defined, an enumera-
tor is a "Turing machine with an attached printer. The Turing machine can use
that printer as an output device to print strings. Every time the Turing machine
wants to add a string to the [ist, it sends the string to the printer. Exercise 3.4 asks
you to give a formal definition of an enumerator. The following figure depicts a
schematic of this model,

é)

2a
baba
abba

control printer

¢ nun ... work tape y

FIGURE 3.20
Schematic of an enumerator

Decidability

@ —> \/ X Never

Accept Reject runs
& halt & halt forever

Def: A language Is Turing-decidable Iff it is exactly the
set of strings accepted by some always-halting TM.

Theorem: The finite languages are decidable.
Theorem: The regular languages are decidable.

Theorem: The context-free languages are decidable.

A “Simple” Example
LetS={x3+y3+23|X,y,zeZ}

Q: Is S Infinite?
A: Yes, since S contains all cubes.

- Is S Turing-recognizable? |
Q J J 10101010110 1

A: Yes, since dovetailing TM can enumerate S. |

Hilbert’s

Q: Is S Turing-decidable?
A: Unknown! |

Q: 1s29e5?
A Yes, since 3°+1°+1°=29

Q:1s30€5?
A: Yes, since (2220422932)3+(-2218888517)3+(-283059965)3=30

Q: 15 33e5?
A: Unknown!

Theorem [Matiyasevich, 1970]: Hilbert’s 10" problem (1900), namely
of determining whether a given Diophantine (i.e., multi-variable
polynomial) equation has any integer solutions, is not decidable.

Closure Properties of Decidable Languages

Theorem: The decidable languages are closed under union.
Hint: use simulation.

Theorem: The decidable languages are closed under .
Hint: use simulation.

Theorem: The decidable langs are closed under complement.
Hint: simulate and negate.

Theorem: The decidable langs are closed under concatenation.
Hint: guess-factor string and simulate.

Theorem: The decidable langs are closed under Kleene star.
Hint: guess-factor string and simulate.

Closure Properties of Recognizable Languages

Theorem: The recognizable languages are closed under union.
Hint: use simulation.

Theorem: The recognizable languages are closed under M.
Hint: use simulation.

Theorem: The recognizable langs are not closed under compl.
Hint: reduction from halting problem.

Theorem: The recognizable langs are closed under concat.
Hint: guess-factor string and simulate.

Theorem: The recognizable langs are closed under Kleene star.
Hint: guess-factor string and simulate.

206 CcHAPTER 5/ REDUCIBILITY

5 3 e B FRE B GBS 8 S D0 G0l 0 s 8T L8 Ranga ol on
.

MAPPING|REDUCIBILITY |

We have shown how to use the reducibility technique to prove that various prob-
lems are undecidable. In this section we formalize the notion of reducibility.
Doing so allows us to use redncibility in more refined ways, such as for prov-
ing that certain languages are not Turing-recognizable and for applications in
complexity theory.

The notion of reducing one problem to another may be defined formally in
one of several ways. The choice of which one to use depends on the apghcauon
Qur choice is a simple type of reducibility called mapping reducibility.

Roughly speaking, being able to reduce problem A to problem B by using
a mapping reducibility means that a computable function exists that converts
instances of problem A to instances of problem B. [f we have such a conversion
function, called a reduction, we can solve A with a solver for B. The reason is
that any instance of A can be solved by first using the reduction to convert it
to an instance of B and then applying the solver for B. A precise definition of
mapping reducibility follows shortly.

COMPUTABLE FUNCTIONS

A Turing machine computes a function by starting with the input to the function
on the tape and halting with the output of the function on the tape.

[DEFINITION 5,17

A function f: ©*—X* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

EXAMFLE 5.18

All usnal arithmetic operations on integers are computable functions. For exam-
ple, we can make a maching that takes input {m, n} and returns m + n, the sum
of m and n. We don’t give any details here, leaving them as exercises.

EXAMPLE 5.19

Computable functions may be transformations of machine deseriptions. For
example, one computable function f takes input w and returns the description
of a Taring machine (M} if w = {M) is an encoding of a Turing machine M.

21t is called smany—one reducibility in some other textbooks.

|
Second Edition

MICHAEL SIPSER

5.3 MAPPING REDUCIBILITY 207

The machine M’ is a machine that recognizes the same language as M, but
never attempts to move its head off the left-hand end of its tape. The function
f accomplishes this task by adding several states to the description of M. The
function returns ¢ if w is not a legal encoding of a Taring machine. =

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational prob-
lems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: X*— X*, where for every w,

we A+ flw)e B.
The function f is called the reduction of A to B.

The following figure illustrates mapping reducibility.

4)
f
!
/’_————\‘\.
\. y,

FIGURE 35.21
Function f reducing A to B

A mapping reduction of A to B provides a way to convert questions about
membership testing in A to membership testing in B. To test whether w € A,
we use the reduction f to map w to f{w) and test whether f(w) € B. The term
mapping reduction comes from the function or mapping that provides the means
of doing the reduction.

If one problem is mapping reducible to a second, previously solved problem,
we can thereby obtain a solution to the original problem. We capture this idea
in the following theorem.

Reducibilities

Def: A language A Is reducible to a language B if
3 computable function/map f:2.*—>.* where
Vw weA< f(w)eB

Note: f 1s called a “reduction” of A to B
Denotation: A < B
Intuitively, A 1s “no harder” than B

Reducibilities

Def: A language A is reducible to a language B If
3 computable function/map f:2.*—>.* where
Vw weA< f(w)eB

Theorem: If A < B and B is decidable then A is decidable.

Theorem: If A< B and A i1s undecidable then B 1s undecidable.

Note: be very careful about the mapping direction!

Reduction Example 1
Def: Let H_be the halting problem for TMs running on w=e.
“Does TM M halt on €?” H, = { <M>e2.*| M(¢) halts }
Theorem: H_ Is not decidable.
Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’
that If It ran on input x, itwould: x—.[. ghorex M’

1. Overwrite x with the fixed w on tape; | >'mulate Monw

_ _ _ If M(w) halts then——halt
2. Simulate M on the fixed input w;
3. Accept < M accepts w. Note: M’ 1s not run!

Note: M’ halts on € (and on any xe2>.*) << M halts on w.
A decider (oracle) for H_ can thus be used to decide H!
Since H is undecidable, H_ must be undecidable also. |l

Reduction Example 2
Def: Let L, be the emptyness problem for TMs.
“Is L(M) empty?” L,={ <M>eX*| L(M)=@ }
Theorem: L, IS not decidable.
Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’
that If It ran on input x, itwould: x—.[. ghorex M’

1. Overwrite x with the fixed w on tape; | >'mulate Monw

_ _ _ If M(w) halts then——halt
2. Simulate M on the fixed input w;
3. Accept < M accepts w. Note: M’ 1s not run!

Note: M’ halts on every xe2>.* < M halts on w.
A decider (oracle) for L, can thus be used to decide H!
Since H is undecidable, L, must be undecidable also. B

Reduction Example 3
Def: Let L, be the regularity problem for TMs.
“Is L(M) regular?” L, ={ <M>e2.*| L(M) is regular }
Theorem: L, IS not decidable.
Proof: Reduction from the Halting Problem H:
Given an arbitrary TM M and input w, construct new TM M’

that IT It ran on input x, it would: x .\ co; it xcomr

1. Acceptif xeQnl1n »Ignorex M’
2. Overwrite x with the fixed w on tape; ‘fS'mU'aLe :V' Or? Y1 hatt
3. Simulate M on the fixed input w; [T M(w) halts then

4. Accept < M accepts w. Note: M’ is not run!
Note: L(M")=2* < M halts on w

L(M*)=0"1" < M does not halt on w
A decider (oracle) for L, can thus be used to decide H!

Rice’s Theorem
Def: Let a “property” P be a set of recognizable languages.

Ex: P,={L | L is a decidable language}
P,={L | L is a context-free language}
P={L[L=L"}
—{{8}}

o .
P.=0 THe 3 f“eé
bl

Pe={L | Lisa @@@}gﬁ le language}
L is said to “have property P 1ff LeP
Ex: (atb)” has property Py, P,, P; & P but not P, or P
{ww~R} has property Py, P,, & Pg but not P4, P, or P
Def: A property is “trivial” iff it is empty or
It contains all recognizable languages.

Rice’s Theorem
Theorem: The two trivial properties are decidable.

Proof:

Pnone - @ X—

e lgnore X
e Say “no”

«Stop M

none

— NO

M, ... decides P .

P.,={L | L Is a recognizable language}

X—>

 lgnore X
° Say “yeS”
« Stop

M

all

— V€S

M., decides P,

Q: What other properties (other than P, and P_;)

are decidable?
A: Nonel

Rice’s Theorem

Theorem [Rice, 1951]: All non-trivial properties of the
Turing-recognizable languages are not decidable.

Proof: Let P be a non-trivial property.

Without loss of generality assume @ ¢ P, otherwise substitute
P’s complement for P in the remainder of this proof.

Select LeP (note that L # @ since @¢P),
and let M, recognize L (i.e., L(M,)=L = Q).

Assume (towards contradiction) that 3 some TM M,
which decides property P:

X—| Does the language |— yes

Note: X can be e.g.,/ denoted by <x> Y
a TM description. have property P? IVlp = N0

Rice’s Theorem

Reduction strategy: use M, to “solve” the halting problem.
Recall that LeP, and let M, recognize L (i.e., L(M,)=L = @).
Given an arbitrary TM M & string w, construct M’:

f Ma }V*Ote.]\|1, . \
W—| M start_ IS npt Funt
halt M. |ves n.
X— | M - Y€S
_\ Y
What is the language of M’? \
Does the language —YES

L(M’) is either @ or L(M,)=L denoted by <x>

If M halts on w then L(M*)=L(M,)= L | have property P2 Mp[—no

If VI does not halt on w then L(M’)= @ since M, never starts
=> M halts on w iff L(M’) has property P

“Oracle” M; can determine if L(M’) has property P,

and thereby “solve” the halting problem, a contradiction! M

given a TM, Is Its language L.

Rice’s Theorem
Corollary: The following questions are not decidable:

Empty?

Finite?

Infinite?

Co-finite?

Regular?
Context-free?
Inherently ambiguous?

Declidable?

| =2 %7

| contains an odd string?
| contains a palindrome?
_ = {Hello, World} ?

_ IS NP-complete?

_ 1S In PSPACE?

Warning: Rice’s theorem applies to properties (i.e., sets of
languages), not (directly to) TM’s or other object types!

\

proBLEMs 213

5.27 A two-dimensional finite automaton (2DIM-DFA) is defined as follows. The input

is an m X n rectangle, for any m,n > 2. The squares along the boundary of the
rectangle contain the symbol # and the internal squares contain symbols aver the
input alphabet . The transition functien is 2 mapping @ x T — @ x {L,R, U, D}
to indicate the next state and the new head position (Left, Right, Up, Down). The
machine accepts when it enters one of the designated accept states. It rejects if it
tries to move off the input rectangle or if it never halts. Two such machines are
equivalent if they accept the same rectangles. Consider the problem of determin-
ing whether two of these machines are equivalent. Formulate this problem as a
language. and show that it is undecidable.

A+5.28 Rice's theorem. Let P be any nontrivial property of the language of a Turing1

machine. Prove that the problem of determining whether a given Turing machine’s
language has property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descrip-
tions where P fulfills two conditions. First, P is nontrivial-—it contains some, but
not all, TM descriptions. Second, P is a property of the TM’s language—whenever
L{M;) = L(M>), we have {M1) € P iff (M) ¢ P. Here, My and My are any
TMs. Prove that P is an undecidable language.

5.29 Show that both condirions in Problem 5.28 are necessary for proving that P is

undecidable.

5.30 Use Rice’s theorem, which appears in Problem 5.28, to prove the undecidability of

each of the following languages.
Aa. INFINITEru = {{M}| M is a TM and L{}) is an infinite language}.
b. {{M)| Misa TMand 1011 € L(AM)}.
c. ALLtw = {(M)| MisaTMand L(M)=X"}.

5.31 Let

) = {33: +1 foroddzx

/2 for evenx

for any natural number 2. If you start with an integer x and iterate f, you obtain a
sequence, z, f{z), F(f(2)),... Stopifyou ever hit 1. For example, if z = 17, you
get the sequence 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive computer
tests have shown that every starting point between 1 and a large positive integer
gives a sequence that ends in 1. Bur, the question of whether all positive starting
points end up at 1 is unsolved; it is called the 3z + 1 problem.

Suppose that Ay were decidable by a TM H. Use H to describe a TM that is
guaranteed to state the answer to the 3x -~ 1 problem.

5.32 Prove that the following two languages are undecidable.

a. OVERLAPcre = {{G, H)| G and H are CFGs where L(G) N L(H) # 0}
(Hint: Adapt the hint in Problem 5.21.)

b. PREFIX-FREEcr = {G| G is a CFG where L(G) is prefix-free}.

5.33 Let S = {(M)| M is a TM and L{M} = {(M}} }. Show that neither § nor 5 is

‘Turing-recognizable.

5.34 Consider the problem of determining whether a PDA accepts some string of the

form {ww|w € {0,1}"} . Use the computation history method to show that this
problem is undecidable.

wrodustion to the Theory ol
COMPUTATION]

Second Edition

MICHAEL SIPSER

4.2 THE HALTING PROBLEM 173

~

Taring-recognizable
decidable

conrext-free

regular

_

FIGURE 4.10
"The relationship among classes of languages

42 BoEoE o o8 B OE W NN EOEETEE RN RS SRR A
.

THE HALTING PROBLEM

In this section we prove one of the most philosophically important theorems of
the theory of computation: There is a specific problem that is algorithmically
unsolvable. Computers appear to be so powerful that you may believe that afl
problems will eventually vield to them. The theorem presented here demon-
strates that computers are limited in a fundamental way.

What sort of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary prob-
lems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list
of numbers). You need to verify that the program performs as specified (i.e.,
that it is correct). Because both the program and the specification are mathe-
matically precise objects, you hope to automate the process of verification by
feeding these objects into a suitably programmed computer. However, you will
be disappointed. The general problem of software verification is not solvable by
compurer,

In this section and Chapter § you will encounter several computationally un-
solvable problems. Our objectives are to help you develop a feel for the types of
problems that are unsolvable and to learn technigues for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of determining whether a Turing machine accepts a
given input string. We call it Ay by analogy with Apra and Acre. But, whereas

The Extended Chomsky Hierarchy

o .)
. " (Decidable Presburger arithmetic)
) |[EXPSPACE A
' @ - \IKEXPTII\/IE)
% Turin%I> w [PSPACE \
G [Tlio]ii (Context sensitive |LBA)
o Egree BN HOMMHE ~
Sl |2l | NP
23| |2[22]|gP anbrc”
O|l2 |2 5 E| 2| | Context-free ww™
22 L o8| 2] [DetCFab™
£/ g|2 %; WilE Regular a*
= 95 8’&)55{) g [Flnlte{ab]ﬁ
58| 8(x| 52 ES
=Pl Z

Context-Sensitive Grammars

Problem: design a context-sensitive grammar to
generate the (non-context-free) language {1"$12" | n>1}

ldea: generate n 1’s to the left & to the right of $;
then double n times the # of 1’s on the right.

S — IND1E /* Base case; E marks end-of-string */
N—1IND|$ /*Loop:n1’sandnD’s; end with $ */
D1 — 11D /[* Each D doubles the 1’s on right */
DE —- E [* The E “cancels” out the D’s */

E—=¢ [* Process ends when the E vanishes */

Context-Sensitive Grammars
Example: Generating strings in {1"$12" | n>1}

S — INDI1E D1 — 11D E—¢
N—1IND|$ DE - E

S — INDI1E — 111$1111DD1E
— 11INDD1E — 111$1111D11DE
— 11ND11DE — 111$111111D1DE
— 11INDD11DE — 111$11111111DDE
— 111IND11D1DE — 1113$11111111DE
— 111IN11D1D1DE — 111911111111E
— 111IN11D1D1E — 1113$11111111¢

—, 111$11D1D1E = 13¢18 = 13¢12°

Context-Sensitive Grammars

Theorem: Context-free grammars are equivalent
to arbitrary Turing machines.

. a context-free grammar can “simulate”
an arbitrary Turing machine / algorithm.

Details: grammar rules can implement the Turing
machine’s read/write head & transition function.

“But this is the simplified version for the general public.”

