


Formal Languages

• Alphabet: a finite set of symbols

• String: a finite sequence of symbols

• Language: a (possibly ) set of strings

• String length: number of symbols in it

• Empty string: e or ^  (|e|=0)

• String concatenation: w1w2

• Language concatenation:

L1L2={w1w2 | w1L1, w2L2}

• String exponentiation: wk = ww…w  (k times)

• Language exponentiation: Lk = LL…L  (k times)

LL = L2 Lk=LLk-1 L0={e}

S ={a,b}

ababbaab

L={a,aa,aaa,…}

|aba|=3

"w w•e = e•w = w

ab•ba=abba

{1,2}•{a,b,…}

={1a,2a,1b,2b,…}

a3=aaa

{0,1}32



Formal Languages
• String reversal: wR

• Language reversal: LR ={wR | wL}

• Language union:

L1  L2={w | wL1 or wL2}

• Language intersection:

L1  L2={w | wL1 and wL2}

• Language difference:

L1 - L2={w | wL1 and wL2}

• Kleene closure: L* = L0  L1  L2  ...

L+ = L1  L2  L3  ...

• All finite strings (over S): S* LS* "L

Theorem: S* contains no  strings.

(aabc)R=cbaa

{ab,cd}R={ba,dc}

 set union

{a}{b,aa}={a,b,aa}

 set intersection

{a,b}{b,c}={b}

 set difference

{a,b}-{b,d}={a}

{a}*={e,a,aa,…}   

{a}+ ={a,aa,…}   

{e,a,aa,aaa,…}   

only finite strings in Si



Formal Languages
Language complementation: L’ = S* - L

Theorem: (L*)* =L*

Theorem: L+ = LL* 

• “Trivial” language: {e}

• Empty language:  Ø

Theorem: S* is countable,  |S*| = |ℕ|

Theorem: 2S*
is uncountable.

“negation” w.r.t. S*

L*(L*)* & (L*)*L*

{e}•L=L•{e}=L

Ø*={e}

dovetailing

diagonalization





Finite Automata

Basic idea: a FA is a “machine” that changes states 

while processing symbols, one at a time.

• Finite set of states: Q = {q0, q1, q3, ..., qk}

• Transition function: d: QS  Q

• Initial state: q0  Q

• Final states: F  Q

• Finite automaton is M=(Q, S, d, q0, F)

Ex: an FA that accepts all odd-length strings of zeros:

q0 q1

0

0

M=({q0,q1}, {0}, {((q0,0),q1), ((q1,0),q0)}, q0, {q1})

q0

qi qj

q1

qk



Finite Automata

FA operation: consume a string wS* one symbol at a time 

while changing states

Acceptance: end up in a final state

Rejection: anything else (including hang-up / crash)

Ex: FA that accepts all strings of form abababab…= (ab)*

q1

a

b

M=({q0,q1}, {a,b}, {((q0,a),q1), ((q1,b),q0)}, q0, {q0})

But M “crashes” on input string “abba”!

Solution: add dead-end state to fully specify M

M’=({q0,q1,q2}, {a,b}, { ((q0,a),q1), ((q1,b),q0), 

((q0,b),q2), ((q1,a),q2). ((q2,a),q2), ((q2,b),q2) }, q0, {q0})

q0

q2

b a

a,b

M

M’



Finite Automata
Transition function d extends from symbols to strings:

d:QS*Q d(q0,wx) = d(d(q0,w),x)

where d(qi,e) = qi

Language of M is L(M)={wS*| d(q0,w) F}

Definition: language is regular iff it is accepted by some FA.

Theorem: Complementation preserves regularity.

Proof: Invert final and non-final states in fully specified FA.

L=L(M)=(ab)*

L’=L(M’)= b(a+b)* + (a+b)*a 

+ (a+b)*(aa+bb)(a+b)*

M’ “simulates” M and 

does the opposite! 

q1

a

b

q0

q2

b a

a,b

M q1

a

b

q0

q2

b a

a,b

M’



Problem: design a DFA that accepts all strings over 

{a,b} where any a’s precede any b’s.

Idea: skip over any contiguous a’s, then skip over 

any b’s, and then accept iff the end is reached. 

q0

a

q1
b

b

q2
a

a,b

L = a*b*

Q: What is  the complement of L? 



Problem: what is  the complement of L = a*b* ?

Idea: write a regular expression and then simplify.

L’= (a+b)*b+(a+b)*a+(a+b)*

= (a+b)*b(a+b)*a(a+b)*

= (a+b)*b+a(a+b)*

= (a+b)*ba(a+b)*

= a*b+a(a+b)*

q0

a

q1
b

b

q2
a

a,b















Finite Automata
Theorem: Intersection preserves regularity.

Proof: (“parallel” simulation):

• Construct all super-states, one per each state pair.

• New super-transition function jumps among 
super-states, simulating both old transition functions

• Initial super state contains both old initial states. 

• Final super states contains pairs of old final states.

• Resulting DFA accepts  of languages of original 2
DFAs (but new size can be the product of their sizes).

Given M1=(Q1, S, d1, q’, F1) and M2=(Q2, S, d2 , q”, F2)

construct M=(Q, S, d, q, F)  Q = Q1Q2

F = F1F2 q=(q’,q”)

d :QS  Q d((qi,qj),x) = (d1(qi,x),d2(qj,x))



Finite Automata
Theorem: Union preserves regularity.

Proof: De Morgan's law:  L1  L2 = L1  L2

Or cross-product construction, i.e., 
parallel simulation with F = (F1Q2)  (Q1F2)

Theorem: Set difference preserves regularity.

Proof: Set identity L1 – L2 = L1  L2

Or cross-product construction, i.e., 
parallel simulation with F = (F1(Q2 –F2))

Theorem: XOR preserves regularity.

Proof: Set identity L1  L2 = (L1  L2) – (L1  L2)

Or cross-product construction, i.e., 
parallel simulation with F = (F1(Q2–F2))  ((Q1–F1)F2)

Meta-Theorem: Identity-based proofs are easier!





Finite Automata
Non-determinism: generalizes determinism, where

many “next moves” are allowed at each step:

Old d:QS  Q

New d:2QS  2Q

Computation becomes a “tree”.

Acceptance: $ a path from root (start state) 

to some leaf (a final state)

Ex: non-deterministically accept all strings 

where the 7th symbol before the end is a “b”:

a,b Input: ababbaaa

b a,b a,b a,ba,ba,ba,b

 Accept!

q2q0 q7q3 q4 q5 q6q1



Finite Automata
Theorem: Non-determinism in FAs doesn’t increase power.

Proof: by simulation:

• Construct all super-states,
one per each state subset.

• New super-transition function
jumps among super-states,
simulating old transition function

• Initial super state are those 
containing old initial state. 

• Final super states are those 
containing old final states.

• Resulting DFA accepts the same
language as original NFA, but can 
have exponentially more states. Q: Why doesn’t this 

work for PDAs or TMs?



Finite Automata
Note: Powerset construction generalizes the cross-product 
construction. More general constructions are possible.

EC: Let HALF(L)={v | $ v,w  S* ' |v|=|w| and vw e L}
Show that HALF preserves regularity.

A two way FA can move its head backwards 

on the input: d:QS  Q{left,right}

EC: Show that two-way FA are not 
more powerful than ordinary one-way FA.

e-transitions:

Theorem: e-transitions don’t increase FA recognition power.

Proof: Simulate e-transitions FA without using e-transitions.
i.e., consider e-transitions to be a form of non-determinism.

qi qj
e qi qj

e
One super-state!



The movie “Next” (2007)
Based on the science fiction
story “The Golden Man” 
by Philip Dick

Premise: a man with 
the super power of 
non-determinism!

At any given moment his 
reality branches into multiple 
directions, and he can choose 
the branch that he prefers!

Transition function!



Top-10 Reasons to Study Non-determinism

1. Helps us understand the ubiquitous
concept of parallelism / concurrency;

2. Illuminates the structure of problems;

3. Can help save time & effort by solving 

intractable problems more efficiently;

4. Enables vast, deep, and general studies of

“completeness” theories;

5. Helps explain why verifying proofs & solutions

seems to be easier than constructing them;



Why Study Non-determinism?

6. Gave rise to new and novel mathematical

approaches, proofs, and analyses;

7. Robustly decouples / abstracts complexity from 

underlying computational models;

8. Gives disciplined techniques for identifying

“hardest” problems / languages;

9. Forged new unifications between 

computer science, math & logic;

10. Non-determinism is interesting 

fun, and cool! 



Regular Expressions
Regular expressions are defined recursively as follows:

{e}

trivial language

{x} " xS

singleton language

Ø

empty set

q0

Inductively, if R and S are regular expressions, then so are:

q0 q0 q1
x

(R+S)

union

RS

concatenation

R*

Kleene closure

Examples: aa(a+b)*bb (a+b)*b(a+b)*a(a+b)*

Theorem: Any regular expression is accepted by some FA. 

M2

M1

e

e M2
e

M1 M

Compositions!

e

e

e





Regular Expressions
A FA for a regular expressions can be built by composition:

Ex: all strings over S={a,b} where $ a “b” preceding an “a”

(a+b)*b(a+b)*a(a+b)*

= (a+b)*ba(a+b)*

b a

b

a

e

e
e

e

e

b

a

e

ee

Why?

e

e

e

e

e

ee b a

b

a

e

e
e

e

e

b

a

e

eee

e

e

e

e

ee

b a

b

a

e

e
e

e

e

b

a

e

eee

e

e

e

e

ee b a

b

a

e

e
e

e

e

b

a

e

eee

e

e

e

e

ee

Remove previous start/final states



FA Minimization
Idea: “Equivalent” states can be merged:

b aa,b a,b

b a

b

a

e

e
e

e

e

b

a

e

eee

e

e

e

e

ee

b a

b

a

e

e
e

e b

a

e

e
e

e

e

e

e

ee

e

b aa,be e a,be
ee

e

b a
a,b

e a,b
e

e



FA Minimization
Theorem [Hopcroft 1971]: the number N of states in a FA 

can be minimized within time O(N log N).

Based on earlier work [Huffman 1954] & [Moore 1956].

Conjecture: Minimizing the number of states in a 

nondeterministic FA can not be done in polynomial time.

Theorem: Minimizing the number of states in a pushdown 

automaton (or TM) is undecidable.

Idea: implement a finite automaton minimization tool

• Try to design it to run reasonably efficiently

• Consider also including:

• A regular-expression-to-FA transformer

• A non-deterministic-to-deterministic FA converter



M

FAs and Regular Expressions
Theorem: Any FA accepts a language denoted by some RE.

Proof: Use “generalized finite automata” where a transition 
can be a regular expression (not just a symbol), and:

Only 1 super start state and 1 (separate) super final state.

Each state has transitions to all other states (including itself),

except the super start state, with no incoming transitions, 

and the super final state, which has no outgoing transitions.

Original FA M

M

e

e

e
e

e e

e

e

Ø
Ø

Ø
Ø

Ø

Ø

Ø

Ø

Ø e

Generalized FA (GFA) M’

M’



FAs and Regular Expressions
Now reduce the size of the GFA by one state at each step.
A transformation step is as follows:

qi qj

q’R

S

T

P qi qj
P

RS*T

qi qj
P + RS*T

Such a transformation step is always possible, until the GFA
has only two states, the super-start and super-final states:

Label of last remaining transition is
the regular expression corresponding 
to the language of the original FA!

M’
E

Corollary: FAs and REs denote the same class of languages.





Regular Expressions Identities

• R+S = S+R

• R(ST) = (RS)T

• R(S+T) = RS+RT

• (R+S)T = RT+ST

• Ø* = e* = e

• R+Ø = Ø+R = R 

• Re = eR = R

• (R*)* = R*

• (e + R)* = R*

• (R*S*)* = (R+S)*

R+e ≠ R

RØ ≠ R



Decidable Finite Automata Problems
Def: A problem is decidable if $ an algorithm which can 

determine (in finite time) the correct answer for any instance.

Given a finite automata M1 and M2:

Q1: Is L(M1) = Ø ?

Hint: graph reachability

Q2: Is L(M2) infinite ?

Hint: cycle detection

Q3: Is L(M1) = L(M2) ?

Hint: consider L1-L2 and L2-L1

M’

$ ?

M’

$?
S*-{e}

Ø Ø



Regular Experssion Minimization

Problem: find smallest equivalent regular expression

• Decidable (why?)

• Hard: PSPACE-complete

Turing Machine Minimization

Problem: find smallest equivalent Turing machine

• Not decidable (why?) 

• Not even recognizable (why?)





Context-Free Grammars

Basic idea: set of production rules induces a language

• Finite set of variables: V = {V1, V2, ..., Vk}

• Finite set of terminals: T = {t1, t2, ..., tj}

• Finite set of productions: P

• Start symbol: S

• Productions: Vi  D where ViV and D (VT)*

Applying Vi D to aVib

yields: a Db

Note: productions do not depend on “context”

- hence the name “context free”!



Context-Free Grammars
Example: G: S  Sa

S  Sb

S  e

G can be denoted more succinctly as:

G: S  Sa | Sb | e

Def: A derivation in a grammar G is a sequence of 

productions applied to the start symbol, ending

with a final derived string (of terminals).

Ex: S  Sa  a

S  Sa  Sba  Saba  Saaba  aaba

S  Sa  Saa  Saaa  Sbaaa  Sbbaaa  bbaaa

S  e

strings in 

the language



Context-Free Grammars
Def: A string w is generated by a grammar G 

if some derivation in G yields w.

Example: S  Sa  Sba  Saba  Saaba  aaba

Def: The language L(G) generated by a context-free 

grammar G is the set of all strings that G generates.

Example: G:  S  Sa | Sb | e

{e, a, aaba, bbaaa, … }  L(G)

moreover {a,b}*  L(G)   L(G)={a,b}* 

i.e., L(G)=S* where S={a,b}

Def: A language is context-free if there exists a 

context-free grammar that generates it.

Example: L={a,b}* is context-free (and it is also regular).



Def: a palindrome reads the same forwards and backwards.

e.g., “noon”, “civic”, “level”, “rotor”, “madam”, “kayak”,

“radar”, “reviver”, “racecar”, “step on no pets”, etc.

Example: design a context-free grammar that generates 

all palindromic strings over S={a,b}

i.e., L = {w | wS* and w = wR }

Idea: generate both ends of w simultaneously, from middle.

G: S  aSa | bSb | a | b | e

Derivations:

S  aSa  abSba  abba

S  bSb S  baSab  baaSaab  baabaab

L(G) = {w | wS* and w = wR}

Context-Free Grammars



Example: design a context-free grammar for strings

representing all well-balanced parenthesis.

Idea: create rules for generating nesting & juxtaposition. 

G1: S  SS | (S) | e

Ex: S  SS  (S)(S)  (e)(e)  ( )( )

S  (S)  ((S))  ((e))  (( ))

S  (S)  (SS)  ...  (( )((( ))( )))

Another grammar:

G2: S  (S)S | e

Q: Is L(G1) = L(G2) ?  

Context-Free Grammars



Example: design a context-free grammar that generates 

all valid regular expressions.

Idea: embed the regular expression rules in a grammar.

G: S  xi for each xiSL

S  (S) | SS | S* | S+S

Let S={a,b}* 

Derivations:

S  S*  (S)*  (S+S)*  (a+b)*

S  SS  SSSS  abS*b  aba*a

Theorem: The set of regular expressions is context-free.

Context-Free Grammars



Ambiguity

Def: A statement /sentence is ambiguous if it has 

multiple syntactic / semantic interpretations.

Example: “I like dominating people”

Example: a-b+c (a-b)+c    a-(b+c)

Example: if p then if q then S else T

if p then (if q then S else T)

or:

if p then (if q then S) else T

Ambiguity in programs should be avoided!

verb or adjective?



Ambiguity in Language

“I'm glad I'm a man, and so is Lola.” - Last line of song “Lola” by The Kinks



Ambiguity in Art



Ambiguity in Art



Ambiguity

Def: A grammar is ambiguous if some string in its 

language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Example: L = {e}

G1: S  SS | e

Derivation 1: S  e

Derivation 2: S  SS  SSS  eee = e

G1 is ambiguous!

G2: S  e

L(G1) = L(G2) = {e}

G2 is not ambiguous!



Ambiguity

Def: A grammar is ambiguous if some string in its 

language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Example: L = a*

G3: S  SS | a | e

Derivation 1: S  SS  aa

Derivation 2: S  SS  SSS  aae = aa

G3 is ambiguous!

G4: S  Sa | e

L(G3) = L(G4) = a*

G4 is not ambiguous!



Ambiguity

Def: A grammar is ambiguous if some string in its 

language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Example: well-balanced parenthesis:

G5: S  SS | (S) | e

Derivation 1: S  (S)  (e)  ( )

Derivation 2: S  SS  (S)S  (e)e  ( )

G5 is ambiguous!

G6: S  (S)S | e

L(G5) = L(G6)

G6 is not ambiguous!



Ambiguity

Def: A grammar is ambiguous if some string in its 

language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous. 

(but non-ambiguous grammars can be found)

Def: A context-free language is inherently ambiguous if

every context-free grammar for it is ambiguous.

Theorem: Some context-free languages are inherently

ambiguous (i.e., no non-ambiguous CFG exists).

Ex: {anbn cmdm | m>0, n>0}  {an bmcm dn | m>0, n>0}

is an inherently ambiguous CF language, and so is

{anbmck | n=m or m=k}





Pushdown Automata

Basic idea: a pushdown automaton is a finite automaton

that can optionally write to an unbounded stack.

• Finite set of states: Q = {q0, q1, q3, ..., qk}

• Input alphabet: S

• Stack alphabet: G

• Transition function: d: Q(S{e})G  2QG*

• Initial state: q0  Q

• Final states: F  Q

Pushdown automaton is M=(Q, S, G, d, q0, F)

Note: pushdown automata are non-deterministic!

q0

qi qj

q1

qk



Pushdown Automata

A pushdown automaton can use its stack as an unbounded

but access-controlled (last-in/first-out or LIFO) storage.

• A PDA accesses its stack using “push” and “pop”

• Stack & input alphabets may differ.

• Input read head only goes 1-way.

• Acceptance can be by final state

or by empty-stack.

Note: a PDA can be made deterministic by restricting 

its transition function to unique next moves:

d: Q(S{e})G  QG*

M

1 0 1 0 01 1
Input

a
b
a

stack



Pushdown Automata

Theorem: If a language is accepted by some context-free 

grammar, then it is also accepted by some PDA.

Theorem: If a language is accepted by some PDA, then it is 

also accepted by some context-free grammar.

Corrolary: A language is context-free iff it is also accepted by 

some pushdown automaton.

I.E., context-free grammars and PDAs have equivalent 

“computation power” or “expressiveness” capability.

≡



Closure Properties of CFLs

Theorem: The context-free languages are closed under union.

Hint: Derive a new grammar for the union.

Theorem: The CFLs are closed under Kleene closure.

Hint: Derive a new grammar for the Kleene closure.

Theorem: The CFLs are closed under  with regular langs.

Hint: Simulate PDA and FA in parallel.

Theorem: The CFLs are not closed under intersection.

Hint: Find a counter example.

Theorem: The CFLs are not closed under complementation.

Hint: Use De Morgan’s law.



Decidable PDA / CFG Problems
Given an arbitrary pushdown automata M

the following problems are decidable (i.e., have algorithms):

Q1: Is L(M) = Ø ?

Q5: Is L(G) = Ø ?

Q2: Is L(M) finite ?

Q6: Is L(G) finite ?

Q3: Is L(M) infinite ?

Q7: Is L(G) infinite ?

Q4: Is w  L(M) ?

Q8: Is w  L(G) ?

≡

(or CFG G)



Theorem: the following are undecidable (i.e., there 

exist no algorithms to answer these questions):

Q: Is PDA M minimal ?

Q: Are PDAs M1 and M2 equivalent ?

Q: Is CFG G minimal ?

Q: Is CFG G ambiguous ?

Q: Is L(G1) = L(G2) ?

Q: Is L(G1)  L(G2) = Ø ?

Q: Is CFL L inherently ambiguous ? 

Undecidable PDA / CFG Problems

≡



PDA Enhancements

Theorem: 2-way PDAs are more powerful than 1-way PDAs.

Hint: Find an example non-CFL accepted by a 2-way PDA.

Theorem: 2-stack PDAs are more powerful than 1-stack PDAs.

Hint: Find an example non-CFL accepted by a 2-stack PDA.

Theorem: 1-queue PDAs are more powerful than 1-stack PDAs.

Hint: Find an example non-CFL accepted by a 1-queue PDA.

Theorem: 2-head PDAs are more powerful than 1-head PDAs.

Hint: Find an example non-CFL accepted by a 2-head PDA.

Theorem: Non-determinism increases the power of PDAs.

Hint: Find a CFL not accepted by any deterministic PDA.





Context-Free Grammars

Def: A language is context-free if it is generated

by some context-free grammar.

Theorem: All regular languages are context-free.

Proof idea: construct a grammar that “simulates”

a DFA, where  variables correspond to states, etc.

Theorem: Some context-free languages are not regular.

Ex: {0n1n | n > 0}

Proof by “pumping” argument: long strings in a 

regular language contain a pumpable substring.

$ ℕ ' "zL, |z| $ u,v,wS* ' z=uvw,

|uv|, |v|1, uviwL " i 



Context-Free Grammars

Def: A language is context-free if it is generated

by some context-free grammar.

Theorem: Some languages are not context-free .

Ex: {0n1n 2n | n > 0}

Proof by “pumping” argument for CFL’s.



Turing Machines

Basic idea: a Turing machine is a finite automaton

that can optionally write to an unbounded tape.

• Finite set of states: Q = {q0, q1, q3, ..., qk}

• Tape alphabet: G

• Blank symbol: b  G

• Input alphabet: S  G–{b}

• Transition function: d: (Q–F)G  QG{L,R}

• Initial state: q0  Q

• Final states: F  Q

Turing machine is M=(Q, G, b, S, d, q0, F)

q0

qi qj

q1

qk



A Turing machine can use its tape as an unbounded

storage but reads / writes only at head position.

• Initially the entire tape is blank, except the input portion

• Read / write head goes left / right with each transition

• Input string acceptance is by final state(s)

• A Turing machine is usually deterministic

M

1 0 1 0 01 1
Input

b b

Turing Machines





Larger alphabet:

old: Σ={0,1} new: Σ’ ={a,b,c,d}

Idea: Encode larger alphabet using smaller one.

Encoding example: a=00, b=01, c=10, d=11

Turing Machine “Enhancements”

b a d c a old: δ b

0 1new: δ'0 1 0 0 1 1 1 0 0 0



Double-sided infinite tape:

Turing Machine “Enhancements”

Idea: Fold into a normal single-sided infinite tape

0 0 11 0 1 1

1 0 1 0 0 11

0 0 1

101

1

old: δ L/R L/R L/Rnew: δ'
L/R R/L R/L



b

Multiple heads:

Turing Machine “Enhancements”

Idea: Mark heads locations on tape and simulate

Modified δ' processes each “virtual” head independently:

• Each move of δ is simulated by a long scan & update

• δ' updates & marks all “virtual” head positions

b b b a aab a

b b b a aab a bba BBAAbBB Ab



Multiple tapes:

Turing Machine “Enhancements”

Idea: Interlace multiple tapes into a single tape

1 0 1 10

0 1 0

1

1

1 1 1 001

0

1 0 1 10

0 1 0

1

1

1 1 1 001

0

Modified δ' processes each “virtual” tape independently:

• Each move of δ is simulated by a long scan & update

• δ' updates R/W head positions on all “virtual tapes”



Two-dimensional tape:

Turing Machine “Enhancements”

Idea: Flatten 2-D tape into a 1-D tape

1 0 1 101

1 0 1 001
0 1 11 0

Modified 1-D δ' simulates the original 2-D δ:

• Left/right δ moves: δ' moves horizontally

• Up/down δ moves: δ' jumps between tape sections

$ $ $

1 0 1 101

1 0 1 001
0 1 11 0

This is how 

compilers 

implement 

2D arrays!



Non-determinism:

Turing Machine “Enhancements”

Idea: Parallel-simulate non-deterministic threads

Modified deterministic δ' simulates the original ND δ:

• Each ND move by δ spawns another independent “thread”

• All current threads are simulated “in parallel”

1 1 1 101

$ $ $

1 1 00 1 1
1 0 1 101 1 0 1 101 1

1 1 00 1 11

1 1 1 101



Turing Machine “Enhancements”

Theorem: Combinations of “enhancements” do not increase 

the power of Turing machines.

Combinations:

Idea: “Enhancements” are independent (and commutative 

with respect to preserving the language recognized).

9. 1 4 513

W o l !dr
H e ol l

Π α ω νλ τ

3ND



Turing -Recognizable vs. -Decidable

Def: A language is Turing-decidable iff it is exactly the 

set of strings accepted by some always-halting TM.

wΣ* = a b aa ab ba bb aaa aab aba abb baa bab bba bbbaaaa …

M(w) √  √    √        √ …

L(M) = { a, aa, aaa, aaaa …}

w→

Input

√
Accept

& halt


Reject

& halt

Never 

runs 

forever

Note: M must always halt on every input.



Turing -Recognizable vs. -Decidable

Def: A language is Turing-recognizable iff it is exactly 

the set of strings accepted by some Turing machine.

wΣ* = a b aa ab ba bb aaa aab aba abb baa bab bba bbbaaaa …

M(w) √  √ ∞  ∞ √ ∞ ∞    ∞  √ …

L(M) = { a, aa, aaa, aaaa …}

≡w→

Input

√
Accept

& halt


Reject

& halt

∞
Run 

forever

Note: M can run forever on an input, which is implicitly 

a reject (since it is not an accept).



Recognition vs. Enumeration

Theorem: Every decidable language is also recognizable.

Theorem: Some recognizable languages are not decidable.

Def: “Decidable” means “Turing-decidable”

“Recognizable” means “Turing-recognizable”

Note: Decidability is a special case of recognizability.

Ex: The halting problem is recognizable but not decidable.

Note: It is easier to recognize than to decide.



Famous Deciders

“I'm the decider, and 

I decide what is best.”

“A wrong decision is

better than indecision.” 



Famous Deciders



Recognition and Enumeration

Theorem: If a language is decidable, it can be enumerated 

in lexicographic order by some Turing machine.

Def: An “enumerator” Turing machine for a language L 

prints out precisely all strings of L on its output tape.

Theorem: If a language can be enumerated in 

lexicographic order by some TM, it is decidable.

Note: The order of enumeration may be arbitrary.

b$ b b a $$a a



Recognition and Enumeration

Theorem: If a language is recognizable, then it can be 

enumerated by some Turing machine.

Def: An “enumerator” Turing machine for a language L 

prints out precisely all strings of L on its output tape.

Theorem: If a language can be enumerated by some TM, 

then it is recognizable.

Note: The order of enumeration may be arbitrary.

b$ b b a $$a a









Decidability

Def: A language is Turing-decidable iff it is exactly the 

set of strings accepted by some always-halting TM.

w→

Input

√
Accept

& halt


Reject

& halt

Never 

runs 

forever

Theorem: The regular languages are decidable.

Theorem: The context-free languages are decidable.

Theorem: The finite languages are decidable.



A “Simple” Example
Let S = {x3 + y3 + z3 | x, y, z  ℤ }

Q: Is S infinite?
A: Yes, since S contains all cubes.

Q: Is S Turing-recognizable?
A: Yes, since dovetailing TM can enumerate S.

Q: Is S Turing-decidable?
A: Unknown!

Q: Is 29S?
A: Yes, since 33+13+13=29

Q: Is 30S?
A: Yes, since (2220422932)3+(-2218888517)3+(-283059965)3=30

Q: Is 33S?
A: Unknown!

Theorem [Matiyasevich, 1970]: Hilbert’s 10th problem (1900), namely 
of determining whether a given Diophantine (i.e., multi-variable 
polynomial) equation has any integer solutions, is not decidable.



Closure Properties of Decidable Languages

Theorem: The decidable languages are closed under union.

Hint: use simulation.

Theorem: The decidable languages are closed under .

Hint: use simulation.

Theorem: The decidable langs are closed under complement.

Hint: simulate and negate.

Theorem: The decidable langs are closed under concatenation.

Hint: guess-factor string and simulate.

Theorem: The decidable langs are closed under Kleene star.

Hint: guess-factor string and simulate.



Closure Properties of Recognizable Languages

Theorem: The recognizable languages are closed under union.

Hint: use simulation.

Theorem: The recognizable languages are closed under .

Hint: use simulation.

Theorem: The recognizable langs are not closed under compl.

Hint: reduction from halting problem.

Theorem: The recognizable langs are closed under concat.

Hint: guess-factor string and simulate.

Theorem: The recognizable langs are closed under Kleene star.

Hint: guess-factor string and simulate.





Reducibilities

Def: A language A is reducible to a language B if  

$ computable function/map ƒ:** where 

"w wA  ƒ(w)B

Note: ƒ is called a “reduction” of A to B 

Denotation: A   B 

A
ƒ

ƒ(w)w

B





Intuitively, A is “no harder” than B 



Reducibilities

Def: A language A is reducible to a language B if  

$ computable function/map ƒ:** where 

"w wA  ƒ(w)B

A
ƒ

ƒ(w)w

B





Theorem: If A  B and B is decidable then A is decidable. 

Theorem: If A  B and A is undecidable then B is undecidable. 

Note: be very careful about the mapping direction! 



Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’

that if it ran on input x, it would:

1. Overwrite x with the fixed w on tape;

2. Simulate M on the fixed input w;

3. Accept  M accepts w.

Note: M’ halts on e (and on any x*)  M halts on w.

A decider (oracle) for He can thus be used to decide H!

Since H is undecidable, He must be undecidable also.

Reduction Example 1
Def: Let He be the halting problem for TMs running on w=e

“Does TM M halt on e?”  He = { <M>*| M(e) halts }

Theorem: He is not decidable.

x M’• Ignore x

• Simulate M on w

If M(w) halts then halt

Note: M’ is not run!



Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’

that if it ran on input x, it would:

1. Overwrite x with the fixed w on tape;

2. Simulate M on the fixed input w;

3. Accept  M accepts w.

Note: M’ halts on every x*  M halts on w.

A decider (oracle) for LØ can thus be used to decide H!

Since H is undecidable, LØ must be undecidable also.

Reduction Example 2
Def: Let LØ be the emptyness problem for TMs

“Is L(M) empty?”  LØ = { <M>*| L(M) = Ø }
Theorem: LØ is not decidable.

x M’• Ignore x

• Simulate M on w

If M(w) halts then halt

Note: M’ is not run!



Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’

that if it ran on input x, it would:

1. Accept if x0n1n

2. Overwrite x with the fixed w on tape;

3. Simulate M on the fixed input w;

4. Accept  M accepts w.

Note: L(M’)=*  M halts on w

L(M’)=0n1n  M does not halt on w

A decider (oracle) for Lreg can thus be used to decide H!

Reduction Example 3
Def: Let Lreg be the regularity problem for TMs

“Is L(M) regular?”  Lreg = { <M>*| L(M) is regular }

Theorem: Lreg is not decidable.

x
M’

• Accept if x0n1n

• Ignore x

• Simulate M on w

If M(w) halts then halt

Note: M’ is not run!



Def: Let a “property” P be a set of recognizable languages

Ex: P1={L | L is a decidable language}

P2={L | L is a context-free language}

P3={L | L = L*}

P4={{e}}

P5= Ø

P6={L | L is a recognizable language}

L is said to “have property P” iff LP

Ex: (a+b)* has property P1, P2, P3 & P6 but not P4 or P5 

{wwR} has property P1, P2, & P6 but not P3, P4 or P5 

Def: A property is “trivial” iff it is empty or

it contains all recognizable languages.

Rice’s Theorem



Theorem: The two trivial properties are decidable.

Proof:

Pnone = Ø

Pall={L | L is a recognizable language}

Q: What other properties (other than Pnone and Pall) 

are decidable?

A: None!

Rice’s Theorem

x

Mnone

• Ignore x

• Say “no” 

• Stop no

x

Mall

• Ignore x

• Say “yes” 

• Stop yes

Mnone decides Pnone

Mall decides Pall



Theorem [Rice, 1951]: All non-trivial properties of the 

Turing-recognizable languages are not decidable.

Proof: Let P be a non-trivial property.

Without loss of generality assume ØP, otherwise substitute

P’s complement for P in the remainder of this proof.

Select LP (note that L  Ø since ØP), 

and let ML recognize L (i.e., L(ML)=L  Ø ).

Assume (towards contradiction) that $ some TM MP

which decides property P:

Rice’s Theorem

x

MP

Does the language

denoted by <x> 

have property P? no

yes

Note: x can be e.g., 
a TM description.



What is the language of M’?

L(M’) is either Ø or L(ML)=L

If M halts on w then L(M’)=L(ML)= L

If M does not halt on w then L(M’)= Ø since ML never starts

=> M halts on w iff L(M’) has property P

“Oracle” MP can determine if L(M’) has property P,

and thereby “solve” the halting problem, a contradiction!

Reduction strategy: use Mp to “solve” the halting problem.

Recall that LP, and let ML recognize L (i.e., L(ML)=L  Ø).

Given an arbitrary TM M & string w, construct M’:

Rice’s Theorem

w

ML yes
yes

M
halt

start

x

M’

MP

Does the language

denoted by <x> 

have property P? no

yes



Rice’s Theorem

• Empty?

• Finite?

• Infinite?

• Co-finite?

• Regular?

• Context-free?

• Inherently ambiguous?

• Decidable?

• L= * ?

• L contains an odd string?

• L contains a palindrome?

• L = {Hello, World} ?

• L is NP-complete?

• L is in PSPACE?

Corollary: The following questions are not decidable:

given a TM, is its language L:

Warning: Rice’s theorem applies to properties (i.e., sets of

languages), not (directly to) TM’s or other object types!





P
S

P
A

C
E

-c
o
m

p
le

te
 Q

B
F

The Extended Chomsky Hierarchy

Finite {a,b}

Regular a*
Det. CF anbn

Context-free wwR

P anbncn

NP   

PSPACE

EXPSPACE

R
ec

o
g

n
iz

ab
le

  
 

N
o
t 

R
ec

o
g

n
iz

ab
le

  
 

HH

Decidable Presburger arithmetic

N
P

-c
o
m

p
le

te
S

A
T

N
o

t 
fi

n
it

el
y

 d
es

cr
ib

ab
le

  
 ?

2S*

EXPTIME

E
X

P
T

IM
E

-c
o
m

p
le

te
  
G

o

E
X

P
S

P
A

C
E

-c
o
m

p
le

te
  

=
R

ETuring
Context sensitive  LBAdegrees



Problem: design a context-sensitive grammar to

generate the (non-context-free) language {1n$12n
| n≥1}

Idea: generate n 1’s to the left & to the right of $; 

then double n times the # of 1’s on the right.

S → 1ND1E /* Base case; E marks end-of-string */

N → 1ND | $ /* Loop: n 1’s and n D’s; end with $ */

D1 → 11D /* Each D doubles the 1’s on right */

DE → E /* The E “cancels” out the D’s */

E → ε /* Process ends when the E vanishes */

Context-Sensitive Grammars



S → 1ND1E

→ 11NDD1E

→ 11ND11DE

→ 111NDD11DE

→ 111ND11D1DE

→ 111N11D1D1DE

→ 111N11D1D1E

→ 111$11D1D1E

→ 111$1111DD1E

→ 111$1111D11DE

→ 111$111111D1DE

→ 111$11111111DDE

→ 111$11111111DE

→ 111$11111111E

→ 111$11111111ε

= 13$18 = 13$123

Example: Generating strings in {1n$12n
| n≥1}

S → 1ND1E D1 → 11D E → ε
N → 1ND | $ DE → E

Context-Sensitive Grammars



Context-Sensitive Grammars

Theorem: Context-free grammars are equivalent

to arbitrary Turing machines.

Idea: a context-free grammar can “simulate”

an arbitrary Turing machine / algorithm.

Details: grammar rules can implement the Turing

machine’s read/write head & transition function.




