
NP Completeness

• Tractability

• Polynomial time

• Computation vs. verification

• Power of non-determinism

• Encodings

• Transformations & reducibilities

• P vs. NP

• “Completeness”

Stephen Cook Leonid Levin Richard Karp

NP Completeness Benefits

1. Saves time & effort of trying to solve intractable

problems efficiently;

2. Saves money by not separately working to

efficiently solve different problems;

3. Helps systematically build on & leverage the

work (or lack of progress) of others;

4. Transformations can be used to solve new

problems by reducing them to known ones;

5. Illuminates the structure & complexity of

seemingly unrelated problems;

NP Completeness Benefits

6. Informs as to when we should use approximate

solutions vs. exact ones;

7. Helps understand the ubiquitous concept of

parallelism (via non-determinism);

8. Enabled vast, deep, and general studies of other

“completeness” theories;

9. Helps explain why verifying proofs seems to be

easier than constructing them;

10. Illuminates the fundamental nature of algorithms

and computation;

NP Completeness Benefits

11. Gave rise to new and novel mathematical

approaches, proofs, and analyses;

12. Helps us to more easily reason about and

manipulate large classes of problems;

13. Robustly decouples / abstracts complexity from

underlying computational models;

14. Gives disciplined techniques for identifying

“hardest” problems / languages;

15. Forged new unifications between computer

science, mathematics, and logic;

16. NP-Completeness is interesting and fun!

Intuitively, A is “no harder” than B (modulo P)

Denotation: A P B

Note: ƒ is a polynomial-time “reduction” of A to B

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA  ƒ(w)B "w

Reducibilities Reloaded

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA ƒ(w)B "w

Note: ƒ is a polynomial-time “reduction” of A to B

Denotation: A P B

 A
ƒ

ƒ(w) w

B





Intuitively, A is “no harder” than B (modulo P)

P

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA  ƒ(w)B "w

Reducibilities Reloaded

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA  ƒ(w)B "w

 A
ƒ

ƒ(w) w

B





P

Theorem: If A P B and B is decidable within polynomial

time then A is decidable within polynomial time.

Theorem: If A P B and A is not decidable within polynomial

time then B is not decidable within polynomial time.

Note: be very

careful about

the reduction

direction!

Problem Transformations
Idea: To solve a problem, efficiently transform to another

problem, and then use a solver for the other problem:

(x+y)(x'+y')

Colorability

solver

SAT solution

x=1, y=0

Satisfiability

Colorability

NP Hardness & Completeness

Def: A problem L’ is NP-hard if:

(1) Every L in NP reduces to L’ in polynomial time.

Def: A problem L’ is NP-complete if:

(1) L is NP-hard; and (2) L is in NP.

One NPC problem is in P P=NP

Open: is P=NP ?

Open: is NP=co-NP ?

Theorem: P = co-P

PNP

NP-complete SAT

co-NP-complete TAUT

co-NP
P-complete LP

Boolean Satisfiability Problem (SAT)

Def: CNF (Conjunctive Normal Form) formula

is in a product-of-sums format.

Ex: (x1+x4+x5+x7+x'8)(x'1+x3+x'4+x'5)

Def: A formula is satisfiable if it can be made true

by some assignment of all of its variables.

Problem (SAT): given an n-variable Boolean

formula (in CNF), is it satisfiable?

Ex: (x+y)(x'+z') is satisfiable (e.g., let x=1 & Z=0)

(x+z)(x')(z') is not satisfiable (why?)

Stephen Cook

Leonid Levin

The Cook/Levin Theorem

Theorem [Cook/Levin, 1971]: SAT is NP-complete.

Proof idea: given a non-deterministic polynomial

time TM M and input w, construct a CNF

formula that is satisfiable iff M accepts w.

Create boolean variables:

q[i,k]  at step i, M is in state k

h[i,k]  at step i, M’s RW head scans tape cell k

s[i,j,k]  at step i, M’s tape cell j contains symbol Sk

M halts in polynomial time p(n)

 total # of variables is polynomial in p(n)

Qk

Stephen Cook

Leonid Levin

Add clauses to the formula to enforce necessary

restrictions on how M operates / runs:

• At each time i:

M is in exactly 1 state

r/w head scans exactly 1 cell

All cells contain exactly 1 symbol

• At time 0  M is in its initial state

• At time P(n)  M is in a final state

• Transitions from step i to i+1

all obey M's transition function

Resulting formula is satisfiable iff M accepts w!

Qk

The Cook/Levin Theorem

Historical Note
The Cook/Levin theorem was independently proved

by Stephen Cook and Leonid Levin

• Denied tenure at Berkeley (1970)

• Invented NP completeness (1971)

• Won Turing Award (1982)

• Student of Andrei Kolmogorov

• Seminal paper obscured by

Russian, style, and Cold War

“Guess and Verify” Approach
Note: SAT  NP.

Idea: Nondeterministically “guess” each Boolean

variable value, and then verify the guessed solution.

 polynomial-time nondeterministic algorithm  NP

This “guess & verify” approach is general.

Idea: “Guessing” is usually trivially fast ( NP)

 NP can be characterized by the “verify” property:

NP  set of problems for which proposed

solutions can be quickly verified

 set of languages for which string

membership can be quickly tested.

An NP-Complete Encyclopedia

Classic book: Garey & Johnson, 1979

• Definitive guide to NP-completeness

• Lists hundreds of NP-complete problems

• Gives reduction types and refs

Michael Garey David Johnson

Robustness of P and NP

Compositions of polynomials yields polynomials

Computation models’ efficiencies are all polynomially

related (i.e., can efficiently simulate one another).

Defs of P and NP is computation model-independent!

μ
λ

x3 + y3 + z3 = 33

Perelman

2006

??

B

Reduction Types

Many-one reduction: converts an instance of one

problem to a single instance of another problem.

 A
ƒ

ƒ(w) w

B




Turing reduction: solves a problem A by multiple calls

to an “oracle” for problem B.

A M B

A T BA

Stephen Cook

Richard Karp

BA

Polynomial-Time Reduction Types

Polynomial-time many-one reduction: transforms in

polynomial time an instance of problem A to an

instance of problem B.

“Karp” reduction (transformation)

 A
ƒ

ƒ(w) w

B




Polynomial-time Turing reduction: solves problem

A by polynomially-many calls to “oracle” for B.

“Cook” reduction

Open: do polynomial-time-bounded many-one and

Turing reductions yield the same complexity classes?

(NP, co-NP, NP-complete, co-NP-complete, etc.)

Boolean 3-Satisfiability (3-SAT)

Def: 3-CNF: each sum term has exactly 3 literals.

Ex: (x1+x5+x7)(x3+x'4+x'5)

Def: 3-SAT: given an n-variable boolean formula

(in CNF), is it satisfiable?

Theorem: 3-SAT is NP-complete.

Proof: convert each long clause of the given formula

into an equivalent set of 3-CNF clauses:

Ex: (x+y+z+u+v+w)

(x+y+a)(a'+z+b)(b'+u+c)(c'+v+w)

Resulting formula is satisfiable iff original formula is.

1-SAT and 2-SAT

Idea: Determine the “boundary of intractability” by

varying / trivializing some of the parameters.

Q: Is 1-SAT NP-complete?

A: No (look for a variable & its negation)

Q: Is 2-SAT NP-complete?

A: No (cycles in the implication graph)

Richard Karp

Classic NP Complete Problems

Clique: given a graph and integer k, is there a

subgraph that is a complete graph of size k?

Classic NP Complete Problems

Set Cover: given a universe U, a collection of subsets Si

and an integer k, can k of these subsets cover U?

U
S2

S3

S1

S4

S5

Classic NP Complete Problems

Hamiltonian cycle: Given an undirected graph, is there

a closed path that visits every vertex exactly once?

Classic NP Complete Problems

Graph coloring: given an integer k and a graph, is it

k-colorable? (adjacent nodes get different colors)

Classic NP Complete Problems

Partition: Given a set of integers, is there a way to

partition is into two subsets each with the same sum?

Classic NP Complete Problems

Knapsack: maximize the total value of a set of items

without exceeding an overall weight constraint.

NP Complete Problems
Bin packing: minimize the number of same-size bins

necessary to hold a set of items of various sizes.

2

Other Classic NP Complete Problems
Steiner Tree: span a given node subset in a weighted

graph using a minimum-cost tree.

Other Classic NP Complete Problems
Traveling salesperson: given a set of points, find the

shortest tour that visits every point exactly once.

Graph Colorability

Problem: given a graph G and an integer k,

is G k-colorable?

Note: adjacent nodes must have different colors



from “Complexity of Computer Computations”, pp. 85–103, 1972.

PSPACE-complete

P [2004]

Problem Transformations
Idea: To solve a problem, efficiently transform to another

problem, and then use a solver for the other problem:

(x+y)(x'+y')

Colorability

solver

SAT solution

x=1, y=0

Satisfiability

Colorability

Decision vs. Optimization Problems

Decision problem: “yes” or “no” membership answer.

Ex: Given a Boolean formula, is it satisfiable?

Ex: Given a graph, is it 3-colorable?

Ex: Given a graph & k, does it contain a k-clique?

Optimization problem: find a (minimal) solution.

Ex: Given a formula, find a satisfying assignment.

Ex: Given a graph, find a 3-coloring.

Ex: Given a graph & k, find a k-qlique.

Theorem: Solving a decision problem is not harder
than solving its optimization version.

Theorem: Solving an optimization problem is not (more than
polynomially) harder than solving its decision version.

(x+y+z)
^(x'+y'+z)
^(x'+y+z')

Decision vs. Optimization Problems
Corollary: A decision problem is in P if and only if its

optimization version is in P.

Corollary: A decision problem is in NP if and only if its
optimization version is in NP.

Building an optimizer from a decider:

Ex: what is a satisfying assignemnt

of P=(x+y+z)(x'+y'+z)(x'+y+z') ?

Idea: Ask the decider 2 related yes/no questions:

P^x

P^x'

Satisfiability
Decider

yes

no

Satisfiability
Decider

yes

no

Satisfiability
Decider

yes

no

x is true

x is “don’t care”

P is not satisfiable

x is false
Iterate!

Satisfiability
Optimizer

P

Graph Cliques
Graph clique problem: given a graph and an integer k, is

there a subgraph in G that is a complete graph of size k?

Theorem: The clique problem is NP-complete.

Proof: Reduction from 3-SAT:
Literals become nodes; k clauses induce node groups;
Connect all inter-group compatible nodes / literals.

Example: (x+y+z)(x'+y'+z)(x'+y+z')

Z

Y

X

Z'

Y

X'

ZY'X'

k-clique corresponds
to 3-SAT solution:
x = true, y = false, z = false

Clique is in NP  clique is NP-complete.

Graph clique
solver

Independent Sets
Independent set problem: given a graph and an integer k,

is there a pairwise non-adjacent node subset of size k?

Theorem: The independent set problem is NP-complete.

Proof: Reduction from graph clique:
Idea: independent set is an “anti-clique” (i.e., negated clique)
finding a clique reduces to finding an independent set

in the complement graph:

Graph clique
solver

Independent
set solverIndependent set NP

 NP-complete.

Graph Colorability

Problem: is a given graph G 3-colorable?

Theorem: Graph 3-colorability is NP-complete.

Proof: Reduction from 3-SAT.

Idea: construct a colorability “OR gate” “gadget”:



F

T

(x+y+z)

Property: gadget is 3-colorable iff
(x+y+z) is true

x'

x

"x
x

y T

z

Example: (x+y+z)(x'+y'+z)(x'+y+z')

F

x'

y'
T

x

z

y

z'

F

T

x'

x

"x

x

y T

z

x+y+z x'+y'+z x'+y+z'

F

Example: (x+y+z)(x'+y'+z)(x'+y+z')

F

x'

y'
T

x

z

y

z'

3-satisfiability

Solution:

x = true

y = false

z = false

3-colorability

Solution:

What Makes Colorability Difficult?

Q: Are high node degrees the reason that graph
colorability is computationally difficult?

A: No!

Graph colorability is easy for max-degree-0 graphs

Graph colorability is easy for max-degree-1 graphs

Graph colorability is easy for max-degree-2 graphs

Theorem: Graph colorability is NP-complete for
max-degree-4 graphs.

Gadget properties:

a) Gadget has max-degree of 4

b) Gadget is 3-colorable but not 2-colorable

c) In any 3-coloring all corners get the same color

Restricted Graph Colorability

Theorem: Graph 3-colorability is NP-complete for
max-degree-4 graphs.

Proof: Use “degree reduction” gadgets:
3-colorability

constraint propagation:

Restricted Graph Colorability

Idea: combine gadgets into “super nodes”!

Properties (inherited from simple gadget):

a) Super-node has max-degree of 4

b) Super-node is 3-colorable but not 2-colorable

c) In any 3-coloring all “corners” get the same color

Idea: Use “super nodes” as “fan out” components
to reduce all node degrees to 4 or less

Local node

replacement:

High
degree

Max
degree 4

Restricted Graph Colorability

Example: convert high-degree to max-degree-4 graph

Conclusion: Solving max-degree-4 graph colorability
is as difficult as solving general graph colorability!

Max degree 4Max degree 6
Max-degree-4

colorability
solver

Gadget properties:

a) Gadget is planar and 3-colorable

b) In any 3-coloring opposite corners get same color

c) Pairs of opposite corners are “independent”

Restricted Graph Colorability

Theorem: Planar graph 3-colorability is NP-complete.
Proof: Use “planarity preserving” gadgets:

3-colorability
constraint propagation

Restricted Graph Colorability

Idea: use gadgets to eliminate edge intersections!

Local replacement:

Conclusion: Solving planar graph colorability
is as difficult as solving general graph colorability!

Planar graph is 3-colorable
IFF original graph was

Planar graph
colorability

solver

Restricted Graph Colorability

Theorem: Graph colorability is NP-complete for
planar graphs with max degree 4.

Proof: Compose max-degree-4 transformation with
planarity preserving transformation:

Local

intersection

replacement

Resulting planar max-deg-4 graph is 3-colorable IFF original graph is!

Degree

reduction

replacement

More degree reduction

replacements needed here

Planar Graph Colorability
Theorem: Planar graph 1-colorability is trivial. DTIME(n)

Theorem: Planar graph 2-colorability is easy. DTIME(n)

Theorem: Planar graph 3-colorability is NP-complete.

Theorem: Planar graph 4-colorability is trivial. DTIME(1)

Theorem: All planar graphs have 4-colorings.
Open since 1852; solved by Appel & Haken in 1976 using

long computer-assisted proof based on 1936 special cases!

Planar Graph Colorability

Theorem: Finding planar graph 4-coloring is in DTIME(n2).

Theorem: Finding planar graph 5-coloring is in DTIME(n).

Theorem: Graph planarity testing is in DTIME(n).

Theorem: 4-coloring a 3-colorable graph is NP-hard.

Theorem: 7 colors are necessary and sufficient on a torus.

Theorem: For a surface of genus G, the number of colors
that are both necessary and sufficient is 







 

2

4817 G

Genus: 0 1 2 3 4 5 6 7 8

colors: 4 7 8 9 10 11 12 12 13

Time 1

Time 2

Time 3

Applications of Graph Coloring

Job scheduling:

• Need to assign jobs to time slots;

• Some jobs conflict (e.g., use shared resource);

• Model jobs as nodes and conflicts as edges;

• Chromatic number is “minimum makespan”

(optimal time to finish all jobs without conflict)

1 2

5

3

4

1 2

5

3

4

1

25

3

4

Jobs & conflicts Coloring Schedule

Applications of Graph Coloring

CPU Register allocation:

• Compiler optimizes assignment of variables to registers;

• Interference graph: model registers as nodes, and edges

represent variables needed simultaneously;

• Chromatic number corresponds to minimum # of CPU

registers needed to accommodate all the variables.

Register 1
Register 2

Register 3

1 2

5

3

4

1 2

5

3

4

1 2

5

3

4

Variables
& simultaneity

Graph
coloring

Register
allocation

…
………
…

…
………
…

P
S

P
A

C
E

-c
o
m

p
le

te
 Q

B
F

The Extended Chomsky Hierarchy Reloaded

Context-free wwR

P anbncn

NP

R
ec

o
g
n
iz

ab
le

N
o

t
R

ec
o

g
n

iz
ab

le

HH

Decidable Presburger arithmetic

N
P

-c
o
m

p
le

te
S

A
T

N
o

t
fi

n
it

el
y

 d
es

cr
ib

ab
le

 ?

2S*

EXPTIME

E
X

P
T

IM
E

-c
o
m

p
le

te

G

o

E
X

P
S

P
A

C
E

-c
o
m

p
le

te

=
R

E
Context sensitive LBA

EXPSPACE

PSPACE

Dense infinite time & space complexity hierarchies
…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…Regular a*

…… … ……

…… … ……
…
………
…

Turing
degrees

Other infinite complexity & descriptive hierarchies

…
………
…Det. CF anbn

…
………
…Finite {a,b}

…

………

…PH BPP

Solution

exact approximate

fa
st

sl
o

w

S
p
ee

d “Short & sweet” “Quick & dirty”

“Slowly but surely” “Too little, too late”

Algorithms

Tradeoff: Execution speed vs. solution quality

Computational Complexity

Problem: Avoid getting trapped in local minima

Global optimum

Approximation Algorithms

Idea: Some intractable problems can be efficiently

approximated within close to optimal!

Fast:

• Simple heuristics (e.g., greed)

• Provably-good approximations

Slower:

• Branch-and-bound approaches

• Integer Linear Programming relaxation

Approximation Algorithms

Wishful:

• Simulated annealing

• Genetic algorithms

Minimum Vertex Cover

Minimum vertex cover problem: Given a graph, find

a minimum set of vertices such that each edge is

incident to at least one of these vertices.

Example:

Applications: bioinformtics, communications,
civil engineering, electrical engineering, etc.

• One of Karp’s original NP-complete problems

Input graph Heuristic solution Optimal solution

Richard Karp

Minimum Vertex Cover Examples

Approximate Vertex Cover

Theorem: The minimum vertex cover problem is NP-

complete (even in planar graphs of max degree 3).

Theorem: The minimum vertex cover problem can be

solved exactly within exponential time nO(1)2O(n).

Theorem: The minimum vertex cover problem can not

be approximated within  1.36*OPT unless P=NP.

Theorem: The minimum vertex cover problem can be

approximated (in linear time) within 2*OPT.

Idea: pick an edge, add its endpoints, and repeat.

Approximate Vertex Cover

Algorithm [Gavril, 1974]: Linear time 2*OPT

approximation for minimum vertex cover:

– Pick random edge (x,y)

– Add {x,y} to the heuristic solution

– Eliminate x and y from graph

– Repeat until graph is empty

Idea: one of {x,y} must be in any optimal solution.

 Heuristic solution is no worse than 2*OPT.

x

y

Maximum Cut

Maximum cut problem: Given a graph, find a partition
of the vertices maximizing the # of crossing edges.

Example:

Applications: VLSI circuit design, statistical
physics, communication networks.

• One of Karp’s original NP-complete problems.

A B

CD

E

A B

C
D

E

Input graph Heuristic solution Optimal solution

A B

CD

E

cut size = 2 cut size = 4 cut size = 5

Richard Karp

Maximum Cut

Theorem [Karp, 1972]: The minimum vertex cover
problem is NP-complete.

Theorem: The maximum cut problem can be solved
in polynomial time for planar graphs.

Theorem: The maximum cut problem can not
be approximated within  17/16*OPT unless P=NP.

Theorem: The maximum cut problem can be
approximated in polynomial time within 2*OPT.

Theorem: The maximum cut problem can be
approximated in polynomial time within 1.14*OPT.

=1.0625*OPT

Maximum Cut
Algorithm: 2*OPT approximation for maximum cut:

Start with an arbitrary node partition

– If moving an arbitrary node across the partition
will improve the cut, then do so

– Repeat until no further improvement is possible

Idea: final cut must contain at least half of all edges.
 Heuristic solution is no worse than 2*OPT.

A B

C
D

E

Input graph Heuristic solution Optimal solution

cut size = 2 cut size = 3

A B

C
D

E

A B

CD

E

cut size = 5

Approximate Traveling Salesperson

Analysis:

Traveling salesperson problem: given a pointset, find

shortest tour that visits every point exactly once.

2*OPT metric TSP heuristic:

– Compute MST

– T = Traverse MST

– S = shortcut tour

– Output S

triangle
inequality!

TSP minus an edge is
a spanning tree

S < T = MST < OPT TSP2*2*

T covers minimum
spanning tree twice

Non-Approximability

• NP transformations typically do not preserve the
approximability of the problem!

• Some NP-complete problems can be approximated
arbitrarily close to optimal in polynomial time.

Theorem [Arora, 1996] Geometric TSP approximation

in polynomial time within (1+e)*OPT for any e>0.

• Other NP-complete problems can not be approximated

within any constant in polynomial time (unless P=NP).

Theorem: General graph TSP can not be approximated

efficiently within K*OPT for any K>0 (unless P=NP).

Graph Isomorphism
Definition: two graphs G1=(V1,E1) and G2=(V2,E2) are

isomorphic iff $ bijection ƒ:V1V2 such that

"vi,vjV1 (vi,vj)E1  (ƒ(vi),ƒ(vj))E2

Isomorphism  edge-preserving vertex permutation

Problem: are two given graphs isomorphic?

≈

Note: Graph isomorphism NP, but not known to be in P

≈

Graph Isomorphism

≈ ≈

≈ ≈

≈ ≈

Zero-Knowledge Proofs
Idea: proving graph isomorphism without disclosing it!

Premise: Everyone knows G1 and G2 but not ≈

≈ must remain secret!

Create random G ≈ G1

Note: ≈ is ≈(≈)

Broadcast G

Verifier asks for ≈ or ≈

Broadcast ≈ or ≈

Verifier checks G≈G1 or G≈G2

Repeat k times

 Probability of cheating: 2-k

G1
G2≈

G

≈

Zero-Knowledge Proofs
Idea: prove graph 3-colorable without disclosing how!

Premise: Everyone knows G1 but not its 3-coloring χ
which must remain secret!

Create random G2 ≈ G1

Note: 3-coloring χ'(G2) is ≈(χ(G1))

Broadcast G2

Verifier asks for ≈ or χ'

Broadcast ≈ or χ'

Verifier checks G1≈G2 or χ'(G2)

Repeat k times

 Probability of cheating: 2-k

G1

G2χ

χ

χ'

Zero-Knowledge Caveats
• Requires a good random number generator

• Should not use the same graph twice

• Graphs must be large and complex enough

χ

Applications:

• Identification friend-or-foe (IFF)

• Cryptography

• Business transactions

Zero-Knowledge Proofs

Idea: prove that a Boolean formula P is satisfiable

without disclosing a satisfying assignment!

Premise: Everyone knows P but not its secret

satisfying assignment V !

Convert P into a graph 3-colorability

instance G =ƒ(P)

Publically broadcast ƒ and G

Use zero-knowledge protocol
to show that G is 3-colorable

 P is satisfiable iff G is 3-colorable

 P is satisfiable with probability 1-2-k

P = (x+y+z)(x'+y'+z)(x'+y+z')

ƒ

G =

Interactive Proof Systems
• Prover has unbounded power and may be malicious

• Verifier is honest and has limited power

Completeness: If a statement is true, an honest verifier will
be convinced (with high probability) by an honest prover.

Soundness: If a statement is false, even an omnipotent
malicious prover can not convince an honest verifier that
the statement is true (except with a very low probability).

• The induced complexity class depends on the verifier’s
abilities and computational resources:

Theorem: For a deterministic P-time verifier, class is NP.

Def: For a probabilistic P-time verifier, induced class is IP.

Theorem [Shamir, 1992]: IP = PSPACE

