Tractability N

o g
POIynomlaI tlme lStepr:;n Cﬁ Leo%Le\;i'n Richard Karp
Computation vs. verification)

O O Q
Power of non-determinism 55588
Encodings TTT79Y
. -y =g, = O O O O O O
Transformations & reducibilities Loa ik
P vs. NP s g 5 55853
“Completeness” .. | ISR
NP-Complete OO0 O O O
Me

NP Completeness Benefits
Saves time & effort of trying to solve intractable
problems efficiently;

Saves money by not separately working to
efficiently solve different problems;

Helps systematically build on & leverage the
work (or lack of progress) of others;

. Transformations can be used to solve new

problems by reducing them to known ones;

[lluminates the structure & complexity of
seemingly unrelated problems;

0.

10.

NP Completeness Benefits
Informs as to when we should use approximate
solutions vs. exact ones;

Helps understand the ubiquitous concept of
parallelism (via non-determinism);

Enabled vast, deep, and general studies of other
“completeness” theories;

Helps explain why verifying proofs seems to be
easler than constructing them;

[lluminates the fundamental nature of algorithms
and computation;

11.

12.

13.

14,

15.

16.

NP Completeness Benefits

Gave rise to new and novel mathematical
approaches, proofs, and analyses;

Helps us to more easily reason about and
manipulate large classes of problems;

Robustly decouples / abstracts complexity from
underlying computational models;

Gives disciplined technigues for identifying
“hardest” problems / languages;

Forged new unifications between computer
science, mathematics, and logic;

NP-Completeness is interesting and fun!

Reducibilities Reloaded

Def: A language A is polynomial-time reducible to a
language B If 3 polynomial-time computable
function f:2.*—> * where we A & f(w)eB Yw

feP

Note: f 1s a polynomial-time “reduction” of A to B
Denotation: A <, B
Intuitively, A 1s “no harder” than B (modulo P)

Reducibilities Reloaded

Def: A language A is polynomial-time reducible to a
language B If 3 polynomial-time computable
function f:2.*—> * where we A & f(w)eB Yw

Note: be very
feP careful about

the reduction

direction!

Theorem: If A<, B and B is decidable within polynomial

time then A is decidable within polynomial time.

Theorem: If A<, B and A is not decidable within polynomial
time then B 1s not decidable within polynomial time.

Problem Transformations

Idea: To solve a problem, efficiently transform to another
problem, and then use a solver for the other problem:

Satisfiability SAT solution

(x+y)(X'+y) x=1,y=0 \
R T

Colorability

Ze> A
\
— = ._,";l::w

As LucANiks, A GIANT Bk, AWoe ONE
MORNING, TROM UNEASY DREMMS, KE UND
PNSELE TRANSIORMED /ANTO FRANZ KAFKA .

NP Hardness & Completeness

Def: A problem L’ is NP-hard If:
(1) Every L in NP reduces to L’ in polynomial time.

Def: A problem L’ is NP-complete If:
(1) Lis NP-hard; and (2) L is in NP.

One NPC problemisinP :> P=NP

Open: is P=NP ? NPf = e
open: is NP=co-NP 7 P-complete LP

Theorem: P = co-P ‘co-NP-complete TAUT!

Boolean Satisfiability Problem (SAT)

Def: CNF (Conjunctive Normal Form) formula
IS In a product-of-sums format.
EX: (XX tXg Xy +X g) (X' HXg Xy +X5)

Def: A formula is satisfiable if it can be made true
by some assignment of all of its variables.

Problem (SAT): given an n-variable Boolean
formula (in CNF), is it satisfiable?

Ex: (x+y)(x'+z') Is satisfiable (e.g., let x=1 & Z=0)
(x+2)(x")(z") 1s not satisfiable (why?)

The Cook/Levin Theorem

Theorem [Cook/Levin, 1971]: SAT is NP-complete.

Proof idea: given a non-deterministic polynomial
time TM M and input w, construct a CNF
formula that is satisfiable iff M accepts w.

Create boolean variables:

qli,k] = atstep I, M iIs In state k

h[i,k] = at step I, M’s RW head scans tape cell k
s[i,],k] = at step 1, M’s tape cell J contains symbol Sy

Stephen Cook

Leoni‘\d Levin

M halts in polynomial time p(n) 4 _5%:}@
—> total # of variables Is polynomial in p(n)

The Cook/Levin Theorem

Add clauses to the formula to enforce necessary | &
restrictions on how M operates / runs: ' A

- At each time i: —
M is in exactly 1 state
r/'w head scans exactly 1 cell
All cells contain exactly 1 symbol
o Attime 0 = M is In its initial state
« Attime P(n) = M s in a final state

 Transitions from step i1 to 1+1
all obey M's transition function

Resulting formula is satisfiable iff M accepts w!

\ v

Leonfd Levin

Historical Note

The Cook/Levin theorem was independently proved
by Stephen Cook and Leonid Levin

* Denied tenure at Berkeley (1970) -+ Student of Andrei Kolmogorov
« Invented NP completeness (1971) <« Seminal paper obscured by
« Won Turing Award (1982) Russian, style, and Cold War

“Guess and Verity” Approach
Note: SAT € NP.

Idea: Nondeterministically “guess” each Boolean
variable value, and then verify the guessed solution.

= polynomial-time nondeterministic algorithm € NP
This “guess & verify” approach 1s general.

ldea: “Guessing” is usually trivially fast (e NP)

—> NP can be characterized by the “verity” property:

NP = set of problems for which proposed
solutions can be quickly verified

set of languages for which string
membership can be quickly tested.

#'H'“L'-‘T S A

o~

'F",-- g e # A il “‘\.a]_: v ’.T !" o Ci r&\ Lk Hd.'.{

i
AC A oy pet o The Complexity of Theorem-Proving Procedures
at IIIl Ay . < L
Tiheni v of iﬂbﬂﬁfu'khﬁs Stephen A. Cook
tﬂde 14 | University of Toronto
Summary certain recursive set of stringé on

It is shown that any recognition
problem solved by a pelynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
hlem of determining whether a given
propositional formula is a tautology.

Here ''reduced’ means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for sclving the second.
From this notion of reducible,
polvnomial degrees of difficulty are
defined, and 1t is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two giver graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some %ixed, large, finite alphabet E.
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-

ministic recognition devices, unless
the contrary is explicitly stated.

1. Tautologies and Polynomial Re-
Reducibility.

this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bhound here, but theorem 1 will
give evidence that {tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logvhood could be decided instantly
(by an "oracle") then these problens
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [1].

A query machine 1s a multitape
Turing machine with a distinguished
tape called the Euerv tape, and
three distinguished states called
the querv state, ves state, and no
state, respectively. If M is a
query machine and T 1is a set of
strings, then a T-computation of M
is a computatien of M in which
initially M 1is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes 1is the
ves state if ueT and the no state
if wfT. We think of an "oracle",
which knows T, placing M 1in the

IMMIPOBJJEMLBI HEPERXAYHN UHOPOPMAIIHNHA
Tom IX 1973

0\‘}(6 Q

VIK 51914

RPATRHAE COOBITEH H A

YHHBEPCAJIBHBIE 3ATIAYH NEPEBOPA
J. A, desun

B crarne paccMaTpHBacTCA ICCKOJLRO M3BeCTHRIX MaccOBBIX 3ajad
GHE}JE‘C’FU})HUFO THOHA» H JA0OKA3BIBAETCH, YT0 9TH 3a1a4H MOMKHO pellaTh JHIIb
34 Taroe BpeMd, 3a KOTOpOe MOMHO peliaTh Boobme nw0dLe 3agadn YKasas-
HOI0 THIA.

Tlocie YTOYHEHHS LOHATHA AAropHTMa OHJA [0KA38HA AJArOPHTMHYCCKAA Hepaspe-
AMUMOCTL PAJA KIACCHYECKHX MAcCOBEIX npobiem (Hanpumep, IpobieM TOMRAECTBA die-
MEHTOB IpYII, FoMeoMOphHOCTH MEOTO0Opasuil, pasperuuMocTy AH0(PaHTOBHY YpaBHeHn
i apyrux). TeMm caMeiM ObIJI CHAT BONPOC 0 HAXOHICHHH IPaKTHYECKOID cHOCO0A MX pe-
wenns. OJHAKO CyLIecTBOBAHME ANrOPMTMOB JWIA PeUIeHHA JPYIHX 3aJad He CHHMaer
AMA HUX @HAJOTMYHOIO BOIpOCcA M3-3a (aHTacTHYecku Gonnuioro ofkema paboTh, mpegmi-
‘CEIBAEMOTO STHMH anropuTMamMu. TaxkoBa cHTyanua ¢ Tak HasuBaeMBIMH HepebOPHBIMHA 3a-
Jladani: MEHAMH3ANHA OyJaeBLIX (YHKUMI, MOMCKA J0KA3aTeNLCTR OTPAHWYEHHOE [IHHEL,
BRUICHEHHNA H3oMophHoeTy rpadoB u gpyrumu, Bee pTH 3aaui PEMIANTCA TPHBHAALHBEIMU
aNrQpPHTMaMy, COCTOALMMY B Nepebope BeeX BOZMOKHOCTEH, OQHAKO 9TH AJFOPHTMBL TPe-
GyI0T SKCOOHEHIMAJBEHOTO BpeMeHH pafoThi H ¥ MaTeMaTHROB CIOMRIIOCH yOe:KaeHue, 4to
Goliee LpoCThe ANCOPHTMBL [J3 HMX HeBO3MOKHBL BEII HOJy4YeH PAJ CePLE3HBIX apryMeH-
TOB B I0IL3Y €ro copaBefauBocTH (cM.[% 2]), OZHAKO JOKABATH 9T0 YTBeP:H[EHHE He yja-
Jock HEKoMY, (Hampusep, fo cux nop He JIoKas3aHo, YTO /A HAXOMIEHHA MATeMaTHYecKax
JIOKA3aTeNbCTB HYKHO 50Jble BpeMeHH, YeM A MX IPOBEPKH.)

OIHARO el MPeII0d0KNTE, YT0 BOODIE cyIEcTBYET KAaRaA-HUOY B (XOTA OB HCKYC-
CTBCHIO [TOCTPOCHIAST) MACCOBAA 3ajaia mepeOOpLOre THUA, HEPA3PeUIMMas NPOCTRIMU
(B cMelcde 00beMa BEIMUCICHMIT) aJropuTMaMH, TO MOJKIO HOKA3aTh, YTO ITHM e CBOM-
CTBOM 0DJaJAl0T H MHOTHE ¢RJAcCHUecKHe» mepefopHLie 3afaim (B TOM YMCIC 3aQada Mil-
HAMH3AIHHA, 3878494 DOMCKA [IOKA3ATeNbLCTB M AD.). B 5TOM M COCTOMT OCHOBHEIE De3yJb-
TATHI CTATHH.

Oyurunn f(r) u g(r) OymeM HaszwBaTh CPABHUMEIMH, €CJUE LIPH HEKOTOpoM &

f(r) = (g(n) +2)* m g(n) = (f(n) +2)"
AHANOrHTHO GyIeM IHOHHMATL TEPMUIL ¢MEHLIIC HIH CPABHIIMO).

Oupepgenenune 3agadeir nepedopuoro tuna (minm npocro mepe0opHoil 3ajgadeii)
OyAeM HasbLIBaThH 3aJa9y BH/JAA 40 AHHOMY ¥ HAlTH Kakoe-HUGYNb J AJMHEL, CPABHIMOW
¢ mumHoll z, Takoe, ¥ro BemoasseTes A(z, y)», e A(z, y) — Kakoe-HHOYIb CROMCTRO,
IIpoBepaeMOe AJrOPUTMOM, BpeMd pafoThl KOTOPOre cpasHEMo ¢ juaHoil z. ([Toj anre-
PUTMOM 37ech MOMKHO IMONNMATh, HAUpHMep, anropuTMul KomMoroposa — Venenckoro mag
Mannasl TeOpHHPA, MIH HOPMAJLHEIE AJFOPHTMEBI, z, ¥ — JiBOMYHLIe cloBa). Kpasume-
pebopHoil sagadeil OyAeM HABLIBATE 3a71aUy BLIACHOHHA, CYIIECTBYOT JII Takoe J.

Mul paccMOTpHM HIeCThL 3ajiau 3THX THHOB, Paccmarpupaemibie B HHX 00BOKTE Kogm-
PYIOTCA €CTECTREHHHWM 00pasoM B BHJE JIBONYHEIX cnoB. Lipu sroM BHIGOD ecTecTReHHOH
KOJUPOBKE He CYIIECTBEH, Tak KAk BCe OHHM JIAKT CPARHMMEIE JIHHEL KOJIOB.

Jadava 1. 3agaHsl COHCKOM KOHEYIOe MHOGKECTBO H HOKpHTHE ero SO-aieMeRTHBIME
MoAMHOMecTBaME, HaillTy DOJOOKPLITHC 3afaNHOil MOMIHOCTH (COOTBETCTBEHHO BEIFACHUTE
CYIIECTRYET JH OHO).

3adauwa 2. Tabauumo sagama wacTnuman Gymesa gymxuma. Halfite sajarmoro pasmepa
JHIBIOHKTURHYI) HOPMalbLuyl QopMy, peaiusymmylo sty (QyHKIMKQ B ofjacti onpefe-
JeHHA (COOTBETCTBEHHO BEIACHUTE CYU[ECTBYET I OHA),

dadava 3. BeAcHUTL, BEIBOJUIMA MM ONMPOBEPHAMA HanHas (OPMyNa HCUHCIEHHA BEI-
crasuiannii. (Mam, 9To To sKe caMoe, paBHA JH KoHcTaHTe JaHHaa Oyiesa Qopayna.)

Jadaua 4. [lans mpa rpada. Haiiru romomopguam omuoro ma gpyroit (BRACHHTSL €r0
CYIIeCTBOBAHNE) .

3adawa 5. Jamer gea rpada. Haittn mzomopdmaM opmoro B ppyroit (ma ero wacrs).

Badaua 6. PaccMaTPHBAIOTCS MATPUIEL M3 Ieabix gncen or 1 go 100 m Heroropoe ycio-
BHE O TOM, KAKHE WHeJa B HEX MOTYT COCEJICTROBATH 110 BEPTHRANH M KaKHe 1O TOPU30H-
Tanu, 3ajiaHel YACJA Ha IpaHmiue ¥ Tpefyerca NPONOIKHTL HX Ha BCH MATPHIY ¢ CO-
DIIEHTEM VCI0BHA,

116 \ Kparkue coobuyyenun

Teopema 1. Ecau soobige cywyecrsyer karaa-nubyds maccosas zadauag nepebopno-
20 (weasunepefopro20) Tuna, Hepaspewumas 3¢ epema, Menvutee f(r) mpu daune apey-
MEHT@, CPARBHUMOLL C N, TO ITuM e ceolicTéon ofiadanT aadawu I—6.

Wnen HOKa3aTedbCTBA COCTOHT B TOM, 9T0 3agaum {—6 ABAAOTCA ¢YHEBEPCAALHEIMH
safgagaMu mepebopay.

Onpepenenme, Ilyete A(z, y) m B(r. y) oupefeldioT COOTBETCTBEHHO Mepe-
Gopuele 3aadn A u B. Mur rosopus, uto 3ajada A eomures Kk B, ecam ects Tpum amro--
putsma r(z), p(y) m s(y), paboTainme 3a BpeMs, CPAaBHHMOe ¢ JJHHOH apryMeHnTa, Ta-
rne, 9ro Az, p(y))y =B(r(z), y) u A(z, y) = B(r(z), s(y)) (r. e. mo A — zagaue =z
Jerko HOCTPOMTEH SKBHBAJNeHTHYH B sagawy r(z)). 3anaga, K Koropoil cRoguTcH Jofas
3afiada nepebopa, HA3BIBAETCS «YHHBEPCATLHOM,

Tarum obpazoM, ¢yTh AOKAZATEIBCTEA TEOPeME 1 cOCTOHT B CASAYIOTHEd JeMMe,

Jlemyma 1. Jadawu 1—6 aeariovea yuusepcaavitvinu nepebopiuinu sadavanrii.

OmncanHbIl MCTOX, TO-BAANMOMY, [O3BOJACT JCIKO MONYYHTL PedyALTATHL THL
TeopeMul 1 i semMer 1 mis GonnImMICTBA HETEPECHLIX mepefopuLix 2amat. QnmaKo octaet-
cs mpofieMa OKA3aTh YCTOBHE, HMEIOIIeecss B 9T0i Teopeme. B 3TOM HampaBIeHHH JaBHO
ViKe J1enaloTcs MHOTOYHCAEHHBIe NOUBITHKH M IIOJYYeH DAL WHTEPECHHIX PesyiabTaToB (CM.,
nampaMep, [* *]). BopoueM, yHHBepcadbHOCTL pPasqiTYHBIX MACCOBBIX 3amatd mepedopa
MO/KHO yCTaHaBiHBATh U Gea peuwreHua aroil mpobGmeMer. B cuereme anroputmos Homro-
TopoBa — YeOeHCKOro MOMeT OBITH IOKAZRAHA TaKHe clelyonan

Teopema 2, Jas npoussoashoil maccosoii nepeboproi aadavu A(x, y) cywecrayer
atZopUTM, pemamuqm‘: ee 3 apemi, ONTUMAALHOE € TOYUHOCTLIO do YMHOFCEHUR HA ROH-
eranTy u npudagieniun detuwiukisy, cpaernusod ¢ daunol x.

ApTop BeIpakaeT HckpeHHow Gunaromapmoctn A, H. Kommoropomy, B. A, Tpaxren-
Gpory, fl. M. Bapammmio, [0. W. Annbpromy m M. H. JlerTapio 3a memHEoe ofcy:RIennme.

‘&6 Iycrts f(n) — MonoTonHam PyHKIMA,

JIMTEPATYPA

. AGnouckui C B. 00 anropwrmMudeckux TPYAHOCTAX CHHTE3a MHHHMAJLHLIX KOH-
TakTHEIX cxeM. CO. «IIpoGuemsr xubepmerusms, 2, M., ®mamarrmz, 1959, 75—121.

2. lypapaesn I0. H Teopermro-mHOKecTEenHBle MeToqH B anredpe mormkm. C6. «IIpof-
neMsl kubepaetarnn, 8. M., Ouamarrua, 1962, 5—44.

3. TpaxrembOpor B. A, OnTHManLEble BEMTHCICTHA ¥ JacroTHoe ABienme fGmomcro-
ro. Cemunap. HosocnOupek, «Haykas, CO, 1965, 4, 5, 79—93.

4 ODerraps M. M. O HeBO3MOMKHOCTH 2JIHMMMHAIMH TI0JHOTO IepeGopa IpPH BEITHCIEHHN
dyuromit orHocHTensHo ux rpaduron. Mlowm. AH CCCP, 1969, 189, 4, 748—751.

IocTynmrna B pefaknume
7 mons 1972 r.

An NP-Complete Encyclopedia K% & %
- - H \ »)

Classic book: Garey & Johnson, 1979 i

 Definitive guide to NP-completeness

il 4

Michael Garey David Johnson

 Gives reduction types and refs
L LL L L

“I can’t find an efficient algorithm, but neither can all these famous people.”’

Robustness of P and NP

Compositions of polynomials yields polynomials

Computation models’ efficiencies are all polynomially
related (1.e., can efficiently simulate one another).

Defs of P and NP Is computation model-independent!

¥) Clay Mathematics Institute - Mozilla Firefox

Fle Edt Wew Hstory Bookmarks Tools Help

=101 x|

= € 00 o | BT e, claymath.orgimilenniumP_vs_Pf

- I"Gnng\a

P

@ Most Yisited ’ Getting Started . Latest Headlines |j Customize Links |j Free Hotmail _L] Suggested Sikes |j ‘\Web Slice Gallery _L] Windows Marketplace _L] WWindows Media _L] Windows

Coogle | np wiki

| G search n\-@ o - [- §% Bookmarkse T28ERE0R -y antolink) auroril e Ssndter A0 [EL np (Gl wiki

@~ Clay Mathematics Institute

A

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS

P vs NP Problem

Suppose that you are organizing housing accommodations for a group of four
hundred university students. Space is limited and only one hundred of the
students will receive places in the dormitory. To complicate matters, the Dean has
provided you with a list of pairs of incompatible students, and requested that no
pair from this list appear in your final choice. This is an example of what computer
scientists call an NP-problem, since it is easy to check if a given choice of one
hundred students proposed by a coworker is satisfactory (i.e., no pair taken from
your coworker's list also appears on the list from the Dean's office), however the
task of generating such a list from scratch seems to be so hard as to be
completely impractical. Indeed, the total number of ways of choosing one hundred
students from the four hundred applicants is greater than the number of atoms in
the known universe! Thus no future civilization could ever hope to build a
supercomputer capable of solving the problem by brute force; that is, by checking
avery possible combination of 100 students. However, this apparent difficulty may
only reflect the lack of ingenuity of your programmer. In fact, one of the
outstanding problems in computer science is determining whether questions exist
whose answer can be quickly checked, but which require an impossibly long time
to solve by any direct procedure. Problems like the one listed above certainly
seem to be of this kind, but so far no one has managed to prove that any of them
really are so hard as they appear, i.e., that there really is no feasible way to
generate an answer with the help of a computer. Stephen Cook and Leonid Levin
formulated the P (i.e., easy to find) versus NP (i.e., easy to check) problem
independently in 1971.

() settings+

Dedicated to increasing and disseminating mathematical knowledge

SCHOLARS PUBLICATIONS

* The Millennium Problems

» Official Problem Description —
Stephen Cook
b Lecture by Vijaya Ramachandran

at University of Texas (video)

* Minesweeper

X Find: I

Mesxt Previous & Highlight all [~/ Match case

| Done

Emillennium Prize Problems - Mozilla Firefox — 3l x|
File Edit Wew History Bookmarks Tools Help

- c A T IE|http:,l’,iwww‘Elaymath.nrgjmi\lenmumj Wil |'|Gnngle >

12 Most Yisited ’ Getting Started |5 | Latest Headlines \j Customize Links \j Free Hotmail |j Suggested Sites |j ‘Web Slice Gallery |j ‘Windows Marketplace |j Windows Media \j Windows
Google np wiki -| |C| Search - | &2 * P - i:? Bookmarks~ Paﬁﬂar\k = % Autolink] AutoFil Send to~ é, np wiki Sektings~
s L J

@~ Clay Mathematics Institute

C = . Dedicated to increasing and disseminating mathematical knowledge
e >

b

Millennium Problems

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

F Birch and Swinnerton-Dyer
Conjecture

In order to celebrate mathematics in the new millennium, The Clay Mathematics * Hodge Conjecture

Institute of Cambridge, Massachusetts (CMI) has named seven Prize Problems. * Navier-Stokes Equations

The Scientific Advisory Board of CMI selected these problems, focusing on 27

important classic questions that have resisted solution over the years. The Board p;EM . @Q Ture Perelman

of Directors of CMI designated a i¥inlllifelalela¥{-Ri¥lsls Rielgiusl-Wle][Nule]gRoRualr1c » Riemann Hypothesis 2006

s]gelo][STaa P14 a l¢ I anlll[felph=lI[eler (=l liweX=FTelg. During the Millennium Meeting held on
May 24, 2000 at the College de France, Timothy Gowers presented a lecture

F Yang-Mills Theory =

entitled The Importance of Mathematics, aimed for the general public, while John * Rules
Tate and Michael Atiyah spoke on the problems. The CMI invited specialists to F Millennium Meeting Videos

formulate each problem.

One hundred years earlier, on August 81900, David H@elivered his famous
lecture about open mathematical problems at the second International Congress of

Mathematicians in Paris. This influenced our decision to announce the millennium
problems as the central theme of a Paris meeting.

The rules for the award of the prize have the endorsement of the CMI Scientific
Advisory Board and the approval of the Directors. The members of these boards
have the responsibility to preserve the nature, the integrity, and the spirit of this
prize.

|

x Find:l et Previous & Highlight all [Match case

‘ Done

Reduction Types

Many-one reduction: converts an instance of one
problem to a single instance of another problem.

Turing reduction: solves a problem A by multiple calls
to an “oracle” for problem B.

Polynomial-Time Reduction Types

Polynomial-time many-one reduction: transforms in
polynomial time an instance of problem A to an

Instance of problem B. _
— “Karp” reduction (transformation) Sy

Richard Karp

Polynomial-time Turing reduction: solves problem
A by polynomially-many calls to “oracle” for r

= “Cook” reduction a,

-
- .!

Stephen Cook

Open: do polynomial-time-bounded many-one and
Turing reductions yield the same complexity classes?

(NP, co-NP, NP-complete, co-NP-complete, etc.)

Boolean 3-Satisfiability (3-SAT)

Def: 3-CNF: each sum term has exactly 3 literals.

EX: (X +Xs+X%7) (X5 X, +X75)

Def: 3-SAT: given an n-variable boolean formula
(in CNF), is it satisfiable?

Theorem: 3-SAT is NP-complete.

Proof: convert each long clause of the given formula
Into an equivalent set of 3-CNF clauses:

Ex: (X+y+z+u+v+w)
= (x+y+a)(a'+z+b)(b'+u+c)(c'+v+w)
Resulting formula is satisfiable iff original formula is.

1-SAT and 2-SAT

ldea: Determine the “boundary of intractability” by
varying / trivializing some of the parameters.

Q: Is 1-SAT NP-complete?
A: No (look for a variable & its negation)

Q: Is 2-SAT NP-complete?
A: No (cycles in the implication graph)

Classic NP Complete Problems

Cligue: given a graph and integer K, Is there a
subgraph that is a complete graph of size k?

Classic NP Complete Problems

Set Cover: given a universe U, a collection of subsets S,
and an integer k, can k of these subsets cover U?

Classic NP Complete Problems

Hamiltonian cycle: Given an undirected graph, is there
a closed path that visits every vertex exactly once?

AND THEREFORE, BASED ON THE WHAT? \HAT 15177

EXISTENCE OF A HAMILTONIAN .

PATH, WE CAN PROVE THAT THE A SUDDEN RUSH OF PERSPECTIVE.
WHAT AM I DOING HERE® LIFE

ROUTING ALGORITHM GIVES THE
OPMIMAL RESULT IN ALL (ASES. 1550 MUCH BIGGER THAN THIS!

¥

/

HIS PROOF OMLY HOLDS IF THERE'S A
HAMILTONIAN CYCLE AS WELL AS A PATHI

\4

HEY, DO YOU MIND
IF I JOT DOWN SOME
NOTES ON YOUR CHEST?

Classic NP Complete Problems

Graph coloring: given an integer k and a graph, Is it
k-colorable? (adjacent nodes get different colors)

GRAPH
COILORING
PROBILEMS

Graph Colorings

Marek Kubgle
Editor

Classic NP Complete Problems

Partition: Given a set of integers, Is there a way to
partition Is into two subsets each with the same sum?

?

Classic NP Complete Problems

Knapsack: maximize the total value of a set of items
without exceeding an overall weight constraint.

KNAPSACK
PROBLEMS

SILVANO MARTELLO-PAOLO TOTH

MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

¢ CHOTCHKIES RESTAURAWT

«— APPENZERS —

MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 335
HOT WINGS 3.55

MOZZARELLA STICKS 4.20
SAMPLER PLATE 5.80

— SANDWICHES —~—

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE.

[. EXACTLY? UMK
HERE, THESE PAPERS ON THE KNaPSACK
PROBLEM MIGHT HELP YOU OUT
LISTEN, I HAVE 5ix OTHER
TABLES TO GET TD —

—AG FAST AS POSSIBLE, (F (DURSE. WANT
SOMETHING ON THPNELLI*E CALESMAN? /

v%%%’%%%

RARRECLIE L 5t

NP Complete Problems

Bin packing: minimize the number of same-size bins
necessary to hold a set of items of various sizes.

T 1] | =

Other Classic NP Complete Problems

Steiner Tree: span a given node subset in a weighted
graph using a minimum-cost tree.

Q

MINIMAL
NETWORKS

s ‘ S .
The F1
Steiner Tree '

Problem

' COMMUNICATION

NETWORKS

Other Classic NP Complete Problems

Traveling salesperson: given a set of points, find the
shortest tour that visits every point exactly once.

= - b ST eI W’wlrmvua UsiETEILN MisteiBath
:F, Vilshofen P\\P\.\rf N f 24 e Ez: 2
1%

CEEETT O Hollabrunn
| 9 Krems an
L) y i der Donau

TN . Fol a

4 O~ Amstetten Polten

CKisteyr.
=

L

) Szombathely
\ ; (7 o
' 2 / 5
i~ A R .[Za!a’egerszeg &
c X ; TS
Kar 9 Wolfsberg 3 o
- o Sobat Kesztl
‘.‘o\-.er*‘srkl.-—-Maribor_,,v "k 7
— {

Klagenfurt \

Vi |L\. }\ %t)uj
elenje Py
0:.1 x] =\

Nagykanizsa
gy o

The
: TRAVELING
The Traveling
Salesman Problem IS)ﬁ%)E]SJ%ﬁN

A Guided Tourof
Combinatorial Optimizat

David L. Applegate, Q E - :
Robert E. Bixby, Vagek Chvatal, e K e,

and William J. Cook and DXB Shmoys

BROUTE-FORCE
S0L-UTTON:

O(n')

DYNAMIC

PROGRAMMING OELUNG ON EBAY:
ALGORITHMS: 0(1)
O (n*2")

STILL WORKING

ON YOUR ROUTE?

QAL

~

SHUT THE

HEW VP
Star(n3 at the Ce[/())gl [756 Bellman- Ford
’ghe asked me~wha(‘ m%—d:z(:n(iﬁ{}?\;eup. Olggrif;)n’! makes
T was thinking chodt. y terrible pillow talk,

/ /

A

f

A

Graph Colorability

Problem: given a graph G and an integer Kk,
IS G k-colorable?
Note: adjacent nodes must have different colors

—

&

Y308
IR R R
IRR R

ffom “Complexity of Computer Computations™, pp. 85-103, 1972.

¥

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS

0
University of Califo@‘&t Berkeley

Q
6*

Abstract: A large ss of computational problems involve the
determination of qsg;ties of graphs, digraphs, integers, arrays
of integers, finife¥ families of finite sets, boolean formulas and
elements of other countable domains. Through simple encodings

from such domains into the set of words over a finite alphabet
these problems can be converted into language recognition problems,
and we can inquire into their computational complexity. It is
reasonable to consider such a problem satisfactorily solved when
an algorithm for its solution is found which terminates within a
number of steps bounded by a polynomial in the length of the input.

We show that a large number of classic unsolved problems of cover-
ing, matching, packing, routing, assignment and sequencing are
equivalent, in the sense that either each of them possesses a
polynomial-bounded algorithm or none of them does.

1. INTRODUCTION

All the general methods presently known for computing the
chromatic number of a graph, deciding whether a graph has a
Hamilton circuit, or solving a system of linear inequalities in
which the variables are constrained to be 0 or 1, require a
combinatorial search for which the worst case time requirement
grows exponentially with the length of the input. In this paper
we give theorems which strongly suggest, but do not imply, that
these problems, as well as many others, will remain intractable
erpetually.

TThis research was partially supported by National Science Founda-

tion Grant GJ=-474,

86 RICHARD M. KARP

We are specifically interested in the existence of algorithms
that are guaranteed to terminate in a number of steps bounded by a
polynomial in the length of the input. We exhibit a class of well-
known combinatorial problems, including those mentioned above,
which are equivalent, in the sense that a polynomial-bounded algo-
rithm for any one of them would effectively yield a polynomial-
bounded algorithm for all. We also show that, if these problems
do possess polynomial-bounded algorithms then all the problems in
an unexpectedly wide class (roughly speaking, the class of problems
solvable by polynomial-depth backtrack search) possess polynomial-
bounded algorithms.

The following is a brief summary of the contents of the paper.
For the sake of definiteness our technical development is carried
out in terms of the recognition of languages by one-tape Turing
machines, but any of a wide variety of other abstract models of
computation would yield the same theory. Let ZI* be the set of
all finite strings of O's and 1's. A subset of I* is called
a language. Let P be the class of languages recognizable in
polynomial time by one-tape deterministic Turing machines, and let
NP be the class of languages recognizable in polynomial time by
one-tape nondeterministic Turing machines. Let Il be the class
of functions from I* into ¥ computable in polynomial time by
one-tape Turing machines. Let L and M be languages. We say
that L «M (L is reducible to M) if there is a function f € II
such that f(x) e M® x € L. If Me€ P and L« M then L € P.
We call L and M equivalent if L «M and M « L., Call L
(polynomial) complete if L € NP and every language in NP is
reducible to L. Either all complete languages are in P, or none
of them are. The former alternative holds if and only if P = NP,

The main contribution of this paper is the demonstration that
a large number of classic difficult computational problems, arising
in fields such as mathematical programming, graph theory, combina-
torics, computational logic and switching theory, are complete
(and hence equivalent) when expressed in a natural way as language
recognition problems.

This paper was stimulated by the work of Stephen Cook (1971),
[and rests on an important theorem which appears in his paper. The]
author also wishes to acknowledge the substantial contributions of

Eugene Lawler and Robert Tarjan.

2. THE CLASS P

There is a large class of important computational problems
which involve the determination of properties of graphs, digraphs,
integers, finite families of finite sets, boolean formulas and

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 87 88 RICHARD M. KARP

elements of other countable domains. It is a reasonable working random access machines, etc.) are delineated by restricting the func-
hypothesis, championed originally by Jack Edmonds (1965) in connec- tions E and T to be of certain very simple types. These definitions
tion with problems in graph theory and integer programming, and by are standard [Hopcroft & Ullman (1969)] and will not be repeated here.
now widely accepted, that such a problem can be regarded as tract- It is by now commonplace to observe that many such classes are equi-
able if and only if there is an algorithm for its solution whose valent in their capability to recognize languages; for each such
running time is bounded by a polynomial in the size of the input. class of algorithms, the class of languages recognized is the
In this section we introduce and begin to investigate the class of class of recursive languages. This invariance under changes in
[problems solvable in polynomial time. definition is part of the evidence that recursiveness is the cor-

rect technical formulation of the concept of decidability.

We begin by giving an extremely general definition of "deter-

ministic algorithm", computing a function from a countable domain The class of languages recognizable by string recognition

D into a countable range R. algorithms which operate in polynomial time is also invariant
under a wide range of changes in the class of algorithms. For

For any finite alphabet A, 1let A* be the set of finite example, any language recognizable in time p(*) by a multihead

strings of elements of A; for x € A*, let 1g(x) denote the or multitape Turing machine is recognizable in time p?(-) by a

length of x. one~-tape Turing machine. Thus the class of languages recognizable
in polynomial time by one-tape Turing machines is the same as the

[A deterministic algorithm A is specified by:] class recognizable by the ostensibly more powerful multihead or

multitape Turing machines. Similar remarks apply to random access

a countable set D (the domain)

Pl 1L achines.
a countable set R (the range) "

a finite alphabet A such that A*AR = ¢ Definition 1. P is the class of languages recognizable by
an encoding function E: D » A¥ one-tape Turing machines which operate in polynomial time.
: . AK *
& Exaugition tunctipn %@ 4 +APLR . Definition 2. 1l is the class of functions from L* into I*
The computation of A on input x € D is the unique sequence defined by one-tape Turing machines which operate in polynomial
YysYgrees such that ¥y = E(x), Yiuq * T(yi) for all i and, time.

if the sequence is finite and ends with Yy» then y, € R. Any
string occurring as an element of a computation is ca&led an
instantaneous description. If the computation of A on input x
is finite and of length t(x), then t(x) is the running time of
A on input x. A is terminating if all its computations are
finite. A terminating algorithm A computes the function

The reader will not go wrong by identifying P with the class
of languages recognizable by digital computers (with unbounded
backup storage) which operate in polynomial time and I with the
class of string mappings performed in polynomial time by such
computers.

fA: D - R such that fA(x) is the last element of the computation Remark. If f: IZ* » X* 4ig in I then there is a polynomial
of A on x. p(+) such that 1g(f(x)) < p(1lg(x)).

If R = {ACCEPT,REJECT} then A is calied a recognition We next introduce a concept of reducibility which is of cen-
algorithm. A recognition algorithm in which D = I* 1is called a tral importance in this paper.
string recognition algorithm. If .A is a string recognition Definition 3. Let L and M be languages. Then L = M
algorithm then the language recognized by A is {x e I*| fA(x) = (L is reducible to M) if there is a function f € I such that
ACCEPT}. If D =R =5* then A is called a string mapping f(x) EM®x € L.

algorithm. A terminating algorithm A with domain D = I¥

operates in polynomial time if there is a polynomial p(-) 'such lemma 1. If LxM and MeP then LeP.

that, for every x € L*, t(x) < p(lg(x)). Proof. The following is a polynomial-time bounded algorithm
to decide if x € L: compute £(x); then test in polynomial time
To discuss algorithms in any practical context we must spe- whether f(x) € M.
cialize the concept of deterministic algorithm. Various well
known classes of string recognition algorithms (Markov algorithms, We will be interested in the difficulty of recognizing subsets

one-tape Turing machines, multitape and multihead Turing machines, of countable domains other than £*. Given such a domain D,

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 8¢9 90 RICHARD M. KARP

there is usually a natural one-one encoding e: D =+ *, For exam- SHORTEST PATH [Dijkstra (1959)]

ple we can represent a positive integer by the string of 0's and INPUT: G, w, W, s, t

1's comprising its binary representation, a l-dimensional integer PROPERTY: There is a path between s and t of weight < W.
array as a list of integers, a matrix as a list of l-dimensional

arrays, etc.; and there are standard techniques for encoding lists MINIMUM CUT [Edmonds & Karp (1972)}

into strings over a finite alphabet, and strings over an arbitrary INPUT: G, w, W, s, t

finite alphabet as strings of 0's and 1's. Given such an encod- PROPERTY: There is an s,t cut of weight < W.

ing e: D > E*, ye say that a set TCD is recognizable in poly-

nomial time if e(T) € P. Also, given sets T CD and UCDT, ARC COVER [Edmonds (1965)]

and encoding functions e: D+ I* and e': D' ¥ I* wesay T« U INPUT: G, k

if e(T) « e'(U). PROPERTY: There is a set Y C A such that [Y] < k and every

node is incident with an arc in Y.
As a rule several natural encodings of a given domain are

possible. For instance a graph can be represented by its adjacency ARC DELETION

matrix, by its incidence matrix, or by a list of unordered pairs INPUT: G, k

of nodes, corresponding to the arcs. Given one of these represen- PROPERTY: There is a set of k arcs whose deletion breaks all
tations, there remain a number of arbitrary decisions as to format cycles.

and punctuation, Fortunately, it is almost always obvious that

any two '"reasonable" encodings e, and ej of a given problem are BIPARTITE MATCHING [Hall (1948)]

equivalent; i.e., e,(5) € P* e1(S) € P. One important exception INPUT: S CZ x2Z

concerns the representation of positive integers; we stipulate PROPERTY: There are p elements of S, no two of which are
that a positive integer is encoded in a binary, rather than unary, | equal in either component.

representation. In view of the invariance of recognizability in

polynomial time and reducibility under reasonable encodings, we ‘ SEQUENCING WITH DEADLINES

discuss problems in terms*of their original domains, without speci- INPUT: (T,,...,T) € Z0, (Dl""’D) €z, k

fying an encoding into L°. PROPERTY: Starting at time O, onencan execute jobs 1,2,...,n,

[We complete this section by listing a sampling of problems that not more than k jobs miss their deadlines.

which are solvable in polynomial time. In the next section we exa-
mine a number of close relatives of these problems which are not
known to be solvable in polynomial time. Appendix 1 establishes
our nmotation. ’

] with execution times T; and deadlines Dj, in some order such

SOLVABILITY OF LINEAR EQUATIONS

INPUT: (Cij) s (ai)

PROPERTY: There exists a vector (yj) such that, for each 1,
Each problem is specified by giving (under the heading § cijyj = a;
"INPUT") a generic element of its domain of definition and (under

the heading "PROPERTIY") the property which causes an input to be

accepted. 3. NONDETERMINISTIC ALGORITHMS AND COOK'S THEOREM
SATISFIABILITY WITH AT MOST 2 LITERALS PER CLAUSE [Cook (1971)] In this section we state an important theorem due to Cook (1971)
INPUT: Clauses C,,C,,...,C , each containing at most 2 literals which asserts that any language in a certain wide class NP is
PROPERTY: The conjunction of the-given clauses is satisfiable; reducible to a specific set 5, which corresponds to the problem
i.e., there is a set § C {X_,X_,,400,X ,X,,X.,.00,% } such that of deciding whether a boolean formula in conjunctive normal form

" n 1 2 2 is satisfiable.

a) S does not contain a complementary pair of literals and
b) SﬁCk #¢, k=1,2,...,p .

Let P(z) denote the class of subsets of I*xEI* which are
recognizable in polynomial time. Given L(2 e P(2) and a poly-

Kruskal (1
MINIMUM SPANNING TREE [Kruskal (1956)] nomial p, we define a language L as follows:

INPUT: G, w, W

: i < W. 2
PROPERTY There exists a spanning tree of weight < W L = (xl there exists y such that <x,y> € L() and 1g(y) « p(lg(x))}.

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS N

We refer to L as the language derived from L(z) by

p-bounded existential quantification.

Definition 4. NP is the set of languages derived from ele-
ments of P by polynomial-bounded existential quantification.

There is an alternative characterization of NP in terms of
nondeterministic Turing machines. A nondeterministic recognition
algorithm A 1is specified by:

a countable set D (the domain)

a finite alphabet A such that A* N{ACCEPT,REJECT} = ¢
an encoding function E: D + A*

a transition relation T C A*x (A*U {ACCEPT,REJECT})

such that, for every y, € A*, the set {<yo,y>| <Y¥os¥> € T} has
fewer than ky elements, where k4 is a constant. A computation
of A on input x € D 1is a sequence ¥1s¥2s... such that

y1 = E(x), <¥i»¥i4+1> € T for all i, and, if the sequence is
finite and ends with yy, then vy, e {ACCEPT,REJECT}., A string
y € &% which occurs in some computation is an instantaneous
description. A finite computation ending in ACCEPT is an
accepting computation. Input x 1is accepted if there is an
accepting computation for x, If D =T then A is a nondeter-
ministic string recognition algorithm and we say that A operates
in polynomial time if there is a polynomial p(+) such that, when—
ever i accepts x, there is an accepting computation for x of
length < p(lg(x)).

A nondeterministic algorithm can be regarded as a process
which, when confronted with a choice between (say) two alternatives,
can create two copies of itself, and follow up the consequences of
both courses of action. Repeated splitting may lead to an exponen-
tially growing number of copies; the input is accepted if any
sequence of choices leads to acceptance.

The nondeterministic 1-tape Turing machines, multitape
Turing machines, random-access machines, etc., define classes of
nondeterministic string recognition algorithms by restricting the
encoding function E and transition relation T to particularly
simple forms. All these classes of algorithms, restricted to oper-
ate in polynomial time, define the same class of languages. More-
over, this class is NP,

Theorem 1. L € NP if and only if L is accepted by a non-
deterministic Turing machine which operates in polynomial time.

Proof. = Suppose L € NP. Then, for some L{2) ¢ P(2) and
some polynomial p, L is obtained from L(2 by p-bounded exis-
tential quantification. We can construct a nondeterministic

92 RICHARD M. KARP

machine which first guesses the successive digits of a ?t ing vy
of length < p(lg(y)) and then tests whether <x,y> € L 2 Such
a machine clearly recognizes L in polynomial time.

< Suppose L is accepted by a nondeterministic Turing
machine T which operates in time p. Assume without loss of
generality that, for any instantaneous description Z, there are
at most two instantaneous descriptions that may follow 2 (i.e.,
at most two primitive transitions are applicable). Then the se-
quence of choices of instantaneous descriptions made by T in a
given computation can be encoded as a string y of 0's and 1's,
such that 1lg(y) < p(lg(x)).

Thus we can construct a deterministic Turing machine T',
with I*x3I* as its domain of inputs, which, on input <x,y>,
simulates the action of T on input x with the sequence of
choices y. Clearly T' operates in polynomial time, and L is
obtained by polynomial bounded existential quantification from the
set of pairs of strings accepted by T'.

The class NP is very extensive. Loosely, a recognition
problem is in NP if and only if it can be solved by a backtrack
search of polynomial bounded depth. A wide range of important
computational problems which are not known to be in P are obvious-
ly in NP. For example, consider the problem of determining whe-
ther the nodes of a graph G can be colored with k colors so
that no two adjacent nodes have the same color. A nondeterministic
algorithm can simply guess an assignment of colors to the nodes and
then check (in polynomial time) whether all pairs of adjacent nodes
have distinct colors.

In view of the wide extent of NP, the following theorem due

to Cook is remarkable. We define the satisfiability problem as
follows:

SATISFIABILITY

INPUT: Clauses Cj1,Cp,...,C

PROPERTY: The conjunction og the given clauses is satisfiable;

i.e., there is a set § C {xl,xz,..,,xn;il,iz,...,in} such that
a) S does not contain a complementary pair of literals

and b) SNC #¢, k=1,2,...,p.

Theorem 2 (Cook). If L € NP then L « SATISFIABILITY.

The theorem stated by Cook (1971) uses a weaker notion of
reducibility than the one used here, but Cook's proof supports the

present statement.
\Corollar){ 1. P = NP © SATISFIABILITY € P. /

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 93
Proof. If SATISFIABILITY € P then, for each L € NP, L € P,

since L = SATISFIABILITY. If SATISFIABILITY ¢ P
clearly SATISFIABILITY € NP, P # N

then, since

4 Remark. If P = NP then NP 1is closed under complementatio;\
and polynomial-bounded existential quantification. Hence it is

also closed under polynomial-bounded universal quantificatiom. It
follows that a polynomial-bounded analogue of Kleene's Arithmetic
Hierarchy [Rogers (1967)] becomes trivial if P = NP.

Theorem 2 shows that, if there were a polynomial-time algo-
rithm to decide membership in SATISFIABILITY then every problem
solvable by a polynomial-depth backtrack search would also be

solvable by a polynomial-time algorithm. This is strong circum—
\Etantial evidence that SATISFIABILITY ¢ P.)

4 4, CERELETS FRomEE>)

The main object of this paper is to establish that a large
number of important computational problems can play the role of

S BILITY 1in Cook's theorem. Such problems will be called
complete.

Definition 5. The language L
a) L € NP
and b) SATISFIABILITY « L.

is (polynomial) complete if

or none

Theorem 3. Either all complete languages are in P,
\Ef them are. The former alternative holds if and only if

= NP.)

We can extend the concept of completeness to problems defined

over countable domains other than I¥,
: 6‘3@’”’

Definition 6, Let D be a countable domain,
one-one encoding e: D> I* and T a subset of

complete if and only if e(D) is complete. X
Lemma 2. Let D and D be cou mains, with one-one

encoding functions e and e'. Let nd T' CD'. Then
T« T' if there is a fu ' such that
a) F(x) € T'® o
and b) there is a f €l such that f£(x) = e'(F(e ~(x)))
when F e-l(x))) is defined.

S%i of the paper is mainly devoted to the proof of the
f@ eorem.

94 RICHARD M. KARP
Main Theorem. All the problems on the following list are

complete.

(Il SATISFIABILITY “\
COMMENT: By duality, this problem is equivalent to deter-
mining whether a disjunctive normal form expression is a
tautology.

2 0-1 INTEGER PROGRAMMING
INPUT: integer matrix C and integer vector d
PROPERTY: There exists a 0-1 vector x such that Cx = d.
3. CLIQUE
INPUT: graph G, positive integer k
PROPERTY: G has a set of k mutually adjacent nodes.
4, SET PACKING
INPUT: Family of sets {Sj}, positive integer £
PROPERTY : {Sj} contains £ mutually disjoint sets.
5. NODE COVER
INPUT: graph G', positive integer £
PROPERTY: There is a set R C N' such that |R| < & and
every arc is incident with some node in R.
6. SET COVERING
INPUT: finite family of finite sets {S }, positive integer k
PROPERTY: There is a subfamily {T_} C {Sj} containing < k
sets such that LTh = sz.
7s FEEDBACK NODE SET
INPUT: digraph H, positive integer k
PROPERTY: There is a set R CV such that every (directed)
cycle of H contains a node in R.
8. FEEDBACK ARC SET
INPUT: digraph H, positive integer k
PROPERTY: There is a set S CE such that every (directed)
cycle of H contains an arc in S.
9. DIRECTED HAMILTON CIRCUIT
INPUT: digraph H
PROPERTY: H has a directed cycle which includes each node
exactly once.
10. UNDIRECTED HAMILTON CIRCUIT
INPUT: graph G
PROPERTY: G has a cycle which includes each node exactly
once,

J

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS

95

(1.

12.

13.

14,

15.

16.

17.

18.

19.

that

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
INPUT: Clauses Dj,Dp,...,Dy, isti a
literals from the set {ul,uz,...,um} U {ul’“Z""’um}
PROPERTY: The set {Dl,Dz,...,Dr} is satisfiable.

CHROMATIC NUMBER

INPUT: graph G, positive integer k

PROPERTY: There is a function ¢: N + Z; such that, if- u
and v are adjacent, then ¢(u) # ¢(v).

CLIQUE COVER

INPUT: graph G', positive integer £

PROPERTY: N' 4is the union of & or fewer cliques.

EXACT COVER

INPUT: family {Sj} of subsets of a set {uj, i = 1,2,...,t]
PROPERTY: There i3 a subfamily {T,} C {Sj} such that the
sets T, are disjoint and UTh = USj = {ui, fm 1,52, 0.5

HITTING SET

INPUT: family {Uj} of subsets of {s;, j = 1,2,.:.,r}
PROPERTY: There is a set W such that| for each i,
lwnu| =1.

STEINER TREE

INPUT: graph G, R C N, weighting function w: A + Z,
positive integer k .
PROPERTY: G has a subtree of weight < k containing the set
of nodes in R.
3-DIMENSIONAL MATCHING '
INPUT: set U C TxTxT, where T is a finite set
PROPERTY: There is a set W C U such that |[W]| = |T| and
no two elements of W agree in any coordinate.
KNAPSACK atl
INPUT: (aj,ag,...,ap,b) € Z
PROPERTY: L ajxj = b has a 0-1 solution.
JOB SEQUENCING p
INPUT: '"execution time vector" (Tl,...,q%) € z%,

""deadline vector" (Dy,...,D) € Z

"'penalty vector" (Pl,...,Ppg e zP

positive integer k
PROPERTY: There is a permutation 7 of {1,2,...,p} such

§ > D hen P else 0]) < k
i LRRE o ¥ .y then y s < .
(L UE Tyt gy ” Prgy) ())
J=

each consisting of at most 3

~

REDUCIBILIZY AMONG COMBINATORIAL PROBLEMS 97\
-
20. PARLITION s
INPUT: (°1-°2"'°’cs) € Z
PROPERTY: There is a set I € {1,2,...,s} such that
c, = C..
her P hzl B
21. MAX CUT
INPUT: graph G, weighting function w: A - Z, positive
integer W
PROPERTY: There is a set S CN such that
! w({u,v}) W .
{u,v}ea
uiS
vE€S
L Y,

It is clear that these problems (or, more precisely, their
encodings into I¥*), are all in NP. We proceed to give a series
of explicit reductions, showing that SATISFIABILITY is reducible
to each of the problems listed. Figure 1 shows the structure of
the set of reductions. Each line in the figure indicates a reduc-
tion of the upper problem to the lower one.

To exhibit a reduction of a set TCD to a set T' Cco',
we specify a function F: D -+ D' which satisfies the conditions

of Lemma 2. 1In each case, the reader should have little difficulty
in verifying that F does satisfy these conditions.
SATISFIABILITY = 0-1 INTEGER PROGRAMMING

1 if
if xj € Ci

xj € Ci
Ch: ™ -1 i=1,2,...,p
ij o

0 otherwise j=12,...sn
bi = 1 - (the number of complemented variables in Ci) ,

1= 3520w Pn

SATISFIABILITY « CLIQUE

N = {<0,i>| ¢ is a literal and occurs in c;}
A= {{<0,1>,<8,5>}| 1 # j and o # 3§}
k = p, the number of clauses.

CLIQUE « SET PACKING

Assume N = {1,2,...,n}. The elements of the sets
$1182,+..,S, are those two-element sets of nodes {i,j}

s; ={{1,3}] (i,5} ¢ A}, i=1,2,...,n
L=k .

not in A.

95

SATISFIABILITY

0-1 INTEGER
PROGRAMMING

SATISFIABILITY WITH AT
MOST 3 LITERALS PER CLAUSE

SET
’////’///:;;SPVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED SET EXACT CLIQUE
NODE SET ARC SET HAMILTON COVERING COVER COVER
CIRCUIT
. ; 3-DIMENSIONAL KNAPSACK HITTING STEINER

UNDIRECTED MATCHING SET TREE
HAMILTON _
CIRCUIT

SEQUENCING PARTITION

MAX CUT

FIGURE 1 - Complete Problems

ddvX "W QavHDN

98 E RICHARD M. KARP

CLIQUE « NODE COVER
G' 1is the complement of G.
L= |N| -k

NODE COVER « SET COVERING

Assume N' = {1,2,...,n}. The elements are the arcs of G'.
Sj is the set of arcs incident with node j. k = %.
NODE COVER o« FEEDBACK NODE SET

vV = N'
E = {<u,v>| {u,v} € A"}
k=2

NODE COVER = FEEDBACK ARC SET

vV =N'x{0,1}
E = {<<u,0>,<u,1>>| u e N'} U {<<u,1>,<v,0>>| {u,v} € A"}
k = 2.

NODE COVER <« DIRECTED HAMILTON CIRCUIT

Without loss of generality assume A' = Zn.
Ve {31’32’--'s82} U {<u,i,0>| u € N' is incident with i € A"
and a € {0,1}}
E = {<<u,i,0>,<u,i,1>>| <u,i,0> € V}
U {<<u,i,a>,<v,i,0>>| i € A", u and v are incident with 1
a € {0,1}}
U {<<u,i,l>,<u,j,0>>| u is incident with i and j and #h,
i < h < j, such that u is incident
with h}
U {<<u,i,1>,af>| 1<f <2 and ¥h > i such that u is inci-
dent with h}
U {<ag,<u,i,0>>| 1 < f < £ and Zh < i such that u is inci-
dent with h} .

DIRECTED HAMILTON CIRCUIT « UNDIRECTED HAMILTON CIRCUIT

N =vx{0,1,2}
A= {{<u,0>,<u,1>},{<u,1>,<u,2>}] u € V}
U {{<u,2>,<v,0>}| <u,v> € E}

s)
SATISFIABILITY = SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE

Replace a clause OllJoz‘J---‘Jom, where the o; are literals
and m > 3, by

(01 Yoz Yup) (03Y -+ Vo, UG) (3 Vup) e+ Gy Uuy)
where ui is a new variable. Repeat this transformation until no

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 99

KBATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
« CHROMATIC NUMBER

Assume without loss of generality that m> 4,

N = {uj,up,een,u b U {ﬁl,ﬁz,...,ﬁm} Uivi,vgsena,vy}
U {Dy,Dy,...,D}

A= ug, 0y} 1=1,2,.00,0) U {{vg,vid] 145} U ({vg,x;}] 145}
U {{Vi’ij}l i#j} U {{uy,D¢}| uy ¢ Dg} U {{Gi,Df}f u; € D¢}

clause has more than three literals.)

-

_ k=r+1

CHROMATIC NUMBER « CLIQUE COVER
G' 1is the complement of G
L=k .
CHROMATIC NUMBER = EXACT COVER
The set of elements is
NUAU{<u,e,f>| u is incident with e and 1 < f < k}
The sets Sj are the following:

for each f, 1< f <k, and each u € N,
{u} Uf<u,e,f>] e is incident with u} ;

for each e € A and each pair f1, f2 such that
1<f;<k, 1<fy<k and f; #f,
{e}LJ{<u,e,f>,f#f1}lJ{<v,e,g>| g#fo}

where u and v are the two nodes incident with e.

EXACT COVER « HITTING SET)
The hitting set problem has sets Uj and elements $j, such
that Sj e Ui - uj € Sj'

EXACT COVER « STEINER TREE

N = {no}&J{Sj} U{ui}
R = {ng} Uluy)
A= {{nO’Sj}} U{{Sj’ui}l uy € Sj}

w({no,Sj]‘) = lSjl
w({s;,us}) = 0
k = l{ui}l

EXACT COVER « 3-DIMENSIONAL MATCHING

Without loss of generality assume [S | > 2 for each j.
Let T = {<i,j>| u, € Sj}. Let o be an arbitrary one-one function

100 RICHARD M. KARP

from {u } into T. Let w: T+ T be a permutation such that,
for each fixed j, {<i,3>] uj e Sj} is a cycle of .

= {<a(uy),<i,3>,<i,3>>| <i,j> € T}
U {<B,0,m(0)>| for all i, B # a(u;)} .

EXACT COVER « KNAPSACK
d=[{s;}[+1. Let ej; = b HuieS

17 Q0 1f ug &5y et

Let

i-1 _d-1
d and b = P

r = I{Sj}l, aj = z eji

KNAPSACK o« SEQUENCING
p=r, Ty =Py =aj, Dy =D,

KNAPSACK = PARTITION

s =1r+2
C{ = aj » ie= l,2,...,r
Cr4p = bH1
r
Crpn = pEaﬂ+l*b
i=1

PARTITION = MAX CUT

N =1{1,2,...,s}
= {{i,j}| i e N, jeN, i#j}
w(ii,j} = cieeq

W= [% L ci]

Some of the reductions exhibited here did not originate with
the present writer. Cook (1971) showed that SATISFIABILITY <«
SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE. The reduction

SATISFIABILITY « CLIQUE

is implicit in Cook (1970), and was also known to Raymond Reiter.
The reduction

NODE COVER = FEEDBACK NODE SET

was found by the Algorithms Seminar at the Cornell University
Computer Science Department. The reduction
NODE COVER « FEEDBACK ARC SET
was found by Lawler and the writer, and Lawler discovered the
reduction
EXACT COVER = 3-DIMENSIONAL MATCHING

PSPACE-complete

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 101

. The writer discovered that the exact cover problem was redu-
cible to the directed traveling-salesman problem on a digraph in
which the arcs have weight zero or one. Using refinements of the
technique used in this construction, Tarjan showed that

EXACT COVER =« DIRECTED HAMILTON CIRCUIT
and, independently, Lawler showed that
NODE COVER « DIRECTED HAMILTON CIRCUIT .
The reduction
DIRECTED HAMILTON CIRCUIT = UNDIRECTED HAMILTON CIRCUIT

was pointed out by Tarjan.

Below we list three problems in automata theory and language
theory to which every complete problem is reducible. These pro-
blems are not known to be complete, since their membership in NP
is presently in doubt. The reader unacquainted with automata an

d

" PEQUIVALENCE OF NONDETERMINISTIC FINITE AUTOMATA

language theory can find the necessary definitions in Hopcroft and
Uliman (1969).

{0,1}

/;QUIVALENCE OF REGULAR EXPRESSIONS
MINPUT: A pair of regular expressions over the alphabet
PROPERTY: The two expressions define the same language.

\¢

INPUT:
alphabet
PROPERTY:

A pair
{0,1}
The two automata define the s

of nondeterministic finite automatagt%“i i
e

CONTEXT-SENSITIVE RECOGNITIO! \ >
INPUT: A context-sensiti QL 1ng x
e geneﬁ}fe by

\EROPERTY: X 1is in the la

First we show that

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
= EQUIVALENCE OF REGULAR EXPRESSIONS .

The reduction is made in two stages. In the first stage we con-
struct a pair of regular expressions over an alphabet A = {uj,uz,
...,un,ﬁl,ﬁz,...,ﬁn}. We then convert these regular expressions to

regular expressions over {0,1}.

The first regular expression is ATA*
written out as (u1+u2+'°'+un+ul+---+un),
copies of the expression for A
cond regular expression is

% Y * Fem gk k= Ak *
an* U U (At 4% 0% U %G A% a%) U hEEO(Dh)

(more exactly, A is
and AP represents n

concatenated together). The se-

RICHARD M. KARP

102
where
A 3 A* if Dy = 03
AcrAcA AoA ifD=01U02
e(Dh)= AaleAUA QUAUAUZA
U AYG)A%T 147540 UAozA*UBAclA
U a*goa%a1a%oo0* U a*osa*oonto n*
if Dy = 03VYoyVo, .
Now let m be the least positive integer > log |A|, and let

¢ be a 1-1 function from A into {0,1}m, Replacezeach regular
expression by a regular expression over {0,1}, by making the
substitution a - ¢(a) for each occurrence of each element of A.

EQUIVALENCE OF REGULAR EXPRESSIONS o« EQUIVALENCE OF NONDETERMINISTIC
FINITE AUTOMATA

There are standard polynomial-time algorithms [Salomaa (1969)]
to convert a regular expression to an equivalent nondeterministic
automaton. Finally, we show that, for any L € NP,

L = CONTEXT-SENSITIVE RECOGNITION .

Suppose L is recognized in time p() by a nondeterministic
Turing machine. Then the following language L over the alphabet
{0,1,#} 1is accepted by a nondeterministic linear bounded automaton
which simulates the Turing machine:

Hence L 1is context-sensitive and has a context-sensitive grammar
I'. Thus x € L iff

i, 4P (1e()) e (1g(x))

is an acceptable input to CONTEXT-SENSITIVE RECOGNITION.

(Y
We conclude by listing the following important prob é;in NP

GRAPH ISOMORPHISM
INPUT: graphs G and G'
PROPERTY: G 1is isomorphic to

which are not known to be complete. Q
NONPRIMES

INPUT: positive integer k E P 2004
PROPERTY: k is composite.

LINEAR INEQUALITIES
INPUT: integer matrix C, integer vector d
PROPERTY: Cx > d has a rational solution.

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 103

APPENDIX I

Notation and Terminology Used in Problem Specification

PROPOSITIONAL CALCULUS

l,xz, ..,xn 1,uz,...,um propositional variables
i i X sicssa complements of
1% n 1 5 propositional variables
0,04 literals
€C1,C25...,Cp D1,D2,...,Dp clauses

Cx E {xl,xz,...,xn,§1,§2,...,in}
Dl S {Ul,\Iz, ...,Um,ﬁl,l_lz,... ,ﬁm}

A clause contains no complementary pair of literals.

SCALARS, VECTORS, MATRICES

z the positive integers
zP the set of p-tuples of positive integers
Zp the set {0,1,...,p-1}

k,W elements of 2Z
<x,y> the ordered pair <x,y>
(ai) (yj) d vectors with nonnegative integer components

(c,,) C matrices with integer components

ij
GRAPHS AND DIGRAPHS
(N,A) G' = (N',A") finite graphs

N,N sets of nodes A,A' sets of arcs
s,t,u,v nodes e,{u,v} arcs
(X,X) = {{u,v}| ue X and v e X} cut

If s € X and t € i, (X,i) is a s-t cut,
w:A>Z w':A'>2 weight functions

The weight of a subgraph is the sum of the weights of its arcs.

H = (V,E) digraph V set of nodes, E set of arcs
e,<u,v> arcs

SETS
¢ the empty set
!Sl the number of elements in the finite set S
Sj} {Th} {Ui} finite families of finite sets

Problem Transformations

Idea: To solve a problem, efficiently transform to another
problem, and then use a solver for the other problem:

Satisfiability SAT solution

(x+y)(X'+y’) x=1,y=0 \

" Colorabil
kel R

Colorability

Decision vs. Optimization Problems

Decision problem: “yes” or “no” membership answer.
. L X+y+27
Ex: Glven a Boolean formula, is it satisfiable? A(>(<'+§/'+Zg

Ex: Given a graph, is it 3-colorable? "XHy+z)

Ex: Given a graph & k, does it contain a k-clique?
Optimization problem: find a (minimal) solution.

Ex: Given a formula, find a satisfying assignment.

Ex: Given a graph, find a 3-coloring.

Ex: Given a graph & k, find a k-glique.

Theorem: Solving a decision problem is not harder
than solving its optimization version.

Theorem: Solving an optimization problem is not (more than
polynomially) harder than solving its decision version.

Decision vs. Optimization Problems

Corollary: A decision problem is in P if and only if its
optimization version is in P.

Corollary: A decision problem is in NP if and only If its
optimization version is in NP.

Building an optimizer from a decider:

Ex: what Is a satisfying assignemnt
of P=(X+y+z)(X'+y'+z)(X'+y+2') ?

|dea: Ask the decider 2 related yes/no questions:

] Satsfiab M/

|S true il =TT
X 1s false

A X 1S “don’t care”
P Is not satisfiable

Graph Cligues

Graph clique problem: given a graph and an integer kK, Is
there a subgraph in G that is a complete graph of size k?

Theorem: The clique problem is NP-complete.

Proof: Reduction from 3-SAT:

Literals become nodes; k clauses induce node groups;
Connect all inter-group compatible nodes / literals.

.~ Graph clig
<1 i e

|

k-clique corresponds

to 3-SAT solution:
X =true, y = false, z = false

Independent Sets

Independent set problem: given a graph and an integer K,
IS there a pairwise non-adjacent node subset of size k?

Theorem: The independent set problem is NP-complete.

Proof: Reduction from graph clique:
Idea: independent set 1s an “anti-clique™ (1.e., negated clique)
—=finding a clique reduces to finding an independent set

In the complement graph:

4) 4

~

N Graph cligy eH rl ependent J
Independent set eNP | solv l I,et solver
= NP-complete.

—

e

r C:;;@’_‘N‘//[w/m ’ffléy%(g\(Lt At <

K
\l . v l\arr/is

As SMAQT As HE WAS ALekRT ENSTEM Coud
NOT FIGUE OUT How 1o HANDLE THOSE TRICKY
GOUNES AT THIRD BASE .

Graph Colorability

Problem: Is a given graph G 3-colorable?
Theorem: Graph 3-colorability is NP-complete.
Proof:. Reduction from 3-SAT.

|dea: construct a colorability “OR gate” “gadget™:

Property: gadget is 3-colorable iff I>.

(x+y+2z) IS true

Example: (x+y+2)(X'+y'+z)(X'+y+z2")

Example: (x+y+z)(x'+y'+z)(X'+y+Zz')

3-colorability
Solution:

3-satisfiability
Solution:
X = true M
y = false >
Z = false_J

Q: Are high node degrees the reason that graph
colorability 1s computationally difficult?

A: Nol

Gra
Gra
Gra

0
0

0

n colora
n colora

N colora

o

nility Is easy for max-o
nility Is easy for max-o

oility Is easy for max-c

egree-0 gra
egree-1 gra
egree-2 gra

What Makes Colorability Difficult?

0
0

0

Theorem: Graph colorability 1s NP-complete for
max-degree-4 graphs.

Restricted Graph Colorability

Theorem: Graph 3-colorability is NP-complete for
max-degree-4 graphs.

Proof: Use “degree reduction” gadgets:

3-colorability
constraint propagation:

Gadget properties:

a) Gadget has max-degree of 4

b) Gadget is 3-colorable but not 2-colorable

c) Inany 3-coloring all corners get the same color

Restricted Graph Colorability

Idea: combine gadgets into “super nodes”!

Local node

\,L/ replacement:

....

: Max

... _.degree 4

Properties (inherited from simple gadget):

a) Super-noc

e has max-degree of 4

b) Super-noo
c) Inany 3-c

e Is 3-colorable but not 2-colorable
oloring all “corners” get the same color

ldea: Use “super nodes” as “fan out” components

to reduce al

| node degrees to 4 or less

Restricted Graph Colorability

Example: convert high-degree to max-degree-4 graph

)

I[AI.’

guansEess

=
- = S
Max-deg‘_r‘ ol
Max degree 6 colo;%t;i!i‘ Max degree 4
asolver |

Conclusion: Solving max-degree-4 graph colorability
IS as difficult as solving general graph colorability!

Restricted Graph Colorability

Theorem: Planar graph 3-colorability is NP-complete.
Proof: Use “planarity preserving” gadgets:

Gadget properties: constraint prapagation

a) Gadget Is planar and 3-colorable
b) Inany 3-coloring opposite corners get same color

c) Pairs of opposite corners are “independent”

Restricted Graph Colorability

|dea: use gadgets to eliminate edge intersections!

A

® "y
o* %o

Local replacement:

. *
. .
“y s

|
by =
£
<. || 0 M
—— ° *
o -
A N . .
.

wi

Planar grap -
Ui ireeies Planar graph is 3-colorable
SOIVEL IFF original graph was

Conclusion: Solving planar graph colorability
Is as difficult as solving general graph colorability!

Restricted Graph Colorability

Theorem: Graph colorability is NP-complete for
planar graphs with max degree 4.

Proof: Compose max-degree-4 transformation with
planarity preserving transformation:

More degree reduction
replacements needed fere

L4 X]
[3 L]
o* %o

. .
. .
.....

"Ye
[3 L]
o* %o

Local Ny ./ Degree
intersection T reduction
replacement replacement

Resulting planar max-deg-4 graph is 3-colorable IFF original graph is!

Planar Graph Colorability

neorem: Planar graph 1-colorability is trivial. DTIME(n)
neorem: Planar graph 2-colorability is easy. DTIME(n)
neorem: Planar graph 3-colorability is NP-complete. \Nmﬂ

neorem: Planar graph 4-colorability is trivial. DTIME(1)

neorem: All planar graphs have 4-colorings.
Open since 1852; solved by Appel & Haken in 1976 using
long computer-assisted proof based on 1936 special cases!

The Four-Color Four ~‘

ey Colors
o Suffice oo

How
the & ‘K; nnnnnnnnnn :j .“
Map S
Pyoblem
Was Py
Solved Wor

Robin Wilson

Four Color Map of the United States

Planar Graph Colorability

neorem: Finding planar graph 4-coloring is in DTIME(n?).
neorem: Finding planar graph 5-coloring is in DTIME(n).
neorem: Graph planarity testing is in DTIME(n).
neorem: 4-coloring a 3-colorable graph is NP-hard.
neorem: 7 colors are necessary and sufficient on a torus.

Theorem: For a surface of genus G, the number of colors
that are both necessary and sufficient is VWJ

Genus: 0 1 2 3 4 5 6 7 8
colors: 4 7 8 9 10 11 12 12 13

Applications of Graph Coloring

Job scheduling:

Need to assign jobs to time slots;

Some jobs conflict (e.g., use shared resource);
Model jobs as nodes and conflicts as edges;

Chromatic number is “minimum makespan”
(optimal time to finish all jobs without conflict)

Jobs & conflicts Coloring Schedule

Applications of Graph Coloring

CPU Register allocation:

Compiler optimizes assignment of variables to registers;

Interference graph: model registers as nodes, and edges
represent variables needed simultaneously;

Chromatic number corresponds to minimum # of CPU
registers needed to accommodate all the variables.

Reg:l‘sj’e.z r 1 Register 2
D () ‘@ Q):
"""" I-?-egisters
© Rt
Variables Graph Register

& simultaneity coloring allocation

AT THE MOVIES, | GET FRUSTRATED
WHEN WE FILE INTO OUR ROW
HAPHAZARDLY, IGNORING THE
COMPUTATIONALLY DIFFICOLT
PROBLEM OF SEATING PEOPLE
TOGETHER FOR MARIMUM ENTOYMENT:

7B

~——— FRIENDS
=== IN A RELATIONSHIP
—3 ONE-WAY CRUSH
----- ACQUAINTANCES

GUYs! THIS IS NOT
SOCIALLY OFTIMALI

X

Se908 566

WERE A TERRIBLE MATCH.
BUT IF WE SLEEP TOGETHER,
ITLL MAKE THE. LOCAL
HOOKUP NETWORK A
SYMMETRIC GRAPH.

T CANT ARGUE
WITH THAT.
J

The Extended Chomsky Hierarchy Reloaded

o 4 : D)
D= ‘Decidable Presburger arithmetic
G ‘EXPSPACE = A
e - (EXPTIME R
L(Hng |(PH) BPP
O 'U|UUQ§(______ 1, | = P BPE
© = TR IE=-HHS ensiive L BA

=2 L[Oiim — 2
S = 29 =

3 |2 ;EEB <[P | anbne™
SRR el s |9 A A
Sl=|lw| 3| E| 2| o |[Context-free ww
> S |Iall 78l slla g nHN)

—_— | O) £2iLIJ:iLR::SE By a"b
QIO|S|O|wl| T =

E S b < S B 5 tar a*

C == z

=X E|E L [@{ab}%
SERSRIREE Il in i S 2)
P G— =),
k\\—/ ,KD:K JJ

Dense Infinite time & space complexity hierarchies
Other infinite complexity & descriptive hierarchies

Algorithms

Tradeoff: Execution speed vs. solution quality

Solution

exact approximate

fast

“Short & sweet” “Quick & dirty”

Speed

slow

“Slowly but surely” | “Too little, too late”

Computational Complexity

Problem: Avoid getting trapped in local minima

~ Global optimum

Approximation Algorithms

|dea: Some Intractable problems can be efficiently
approximated within close to optimal!

Fast:

« Simple heuristics (e.g., greed) \/\/,\/

 Provably-good approximations

S~

Slower: \L
« Branch-and-bound approaches !
- Integer Linear Programming relaxation |

o0~

Approximation Algorithms

Wishful:

« Simulated annealing
 Genetic algorithms

choose start travel up and down

mother

*

|
? father]
offspring

crossover point

def get Solutic 5%S (M\.rfgatimccde):
fuelStopCost =15

extrale omputationCost = 8
» ihfﬂﬂlgﬁri{hmﬁemmﬂy{ﬁkﬁne’f@s‘t: ??@%ﬁ??‘?
woterCrossingCost= H5

GENETIC ALGORITHMS TIP:
ALL/AYS INCLUDE THIS IN YOUR FITNESS FUNCTION

Minimum Vertex Cover

Minimum vertex cover problem: Given a graph, find
a minimum set of vertices such that each edge Is
Incident to at least one of these vertices.

Example:
Input graph Heuristic solution Optimal solution

Applications: bioinformtics, communications,
civil engineering, electrical engineering, etc.

* One of Karp’s original NP-complete problems

gg
g

Richard Karp

Minimum Vertex Cover Examples

Approximate Vertex Cover

Theorem: The minimum vertex cover problem is NP-
complete (even In planar graphs of max degree 3).

Theorem: The minimum vertex cover problem can be
solved exactly within exponential time n©1)20M),

Theorem: The minimum vertex cover problem can not
be approximated within < 1.36*OPT unless P=NP.

Theorem: The minimum vertex cover problem can be
approximated (in linear time) within 2*0OPT.

Idea: pick an edge, add its endpoints, and repeat.

ApprOX|mate Vertex Cover
Algorithm [Gavril,: 1974] Linear time: Z*OPT

approximation for minimum vertex COVET O
° O
— Pick random edge (X,y) 4
5

— Add {x,y} to the heuristic solution
— Eliminate x and y from graph
— Repeat until graph is empty Q,

Lo
\Q’QQ 0°$
6¥'

........ .. O

Idea: one of {x,y} must be in any optimal solution.

— Heuristic solution i1s no worse than 2*OPT.

Maximum Cut

Maximum cut problem: Given a graph, find a partition
of the vertices maximizing the # of crossing edges.

Example:

cutsize =2 cutsize =4 cutsize=5

(A8 & @}@

Input graph Heuristic solution Optimal solution

ﬁ
g

Richard Karp

Applications: VLSI circuit design, statistical
physics, communication networks.

* One of Karp’s original NP-complete problems.

Maximum Cut

Theorem [Karp, 1972]: The minimum vertex cover
problem is NP-complete.

Theorem: The maximum cut problem can be solved
In polynomial time for planar graphs.

Theorem: The maximum cut problem can not

be approximated within < 17/16*OPT unless P=NP.
=1.0625*OPT

Theorem: The maximum cut problem can be
approximated in polynomial time within

Theorem: The maximum cut problem can be
approximated in polynomial time within 1.14*OPT,

Maximum Cut
Algorithm: 2*OPT approximation for maximum cut:
Start with an arbitrary node partition

— If moving an arbitrary node across the partition
will improve the cut, then do so

— Repeat until no further improvement is possible

cutsize =2 cutsize =3 cutsize=5

Input graph Heuristic solution Optimal solution

|dea: final cut must contain at least half of all edges.\}q
— Heuristic solution is no worse than 2*OPT. <®

Approximate Traveling Salesperson

Traveling salesperson problem: given a pointset, find
shortest tour that visits every point exactly once.

2*OPT metric TSP heuristic: '
— Compute MST ﬁ
\

— T =Traverse MST & 1
Analysis: S<T =2*MST < 2*OPT TSP

— S = shortcut tour
7

— Output S
triangle T covers minimum TSP minus an edge is
inequality! spanning tree twice a spanning tree

HEY, CHECK 1T OUT: @™ ~11 15
19.999099979. THATS WEIRD.

YEAH. THAT'S HOW I |
GOT KICKED OUT OF
THE ACM IN COLLEGE.

DURING A COMPETITION, I
TOLD THE PROGRAMMERS ON
OUR TEAM THAT @7-1r

WAS A STANDARD TEST OF FLOATING-

POINT HANDLERS -- IT WOULD
(OME OUT To 20 UNLESS
THEY HAD ROUNDING ERRORS.

1

YEAH, THEY DUG THRouGH
HALF THEIR ALGORITHMS
LOOKING FOR THE BJG
BEFDRE THEY FIGURED
IT OUT.

THATS

-

@
ARTIFI0AL
[NTELU&EN(E

Jr.=a o |
- }fL(@

SS

S
-~

Z/
(f/’/&@«l\é\rj&g

“I gave it the traveling salesman problem. It said he should give up
sales and go into banking.”

Non-Approximability

« NP transformations typically do not preserve the
approximability of the problem!

« Some NP-complete problems can be approximated
arbitrarily close to optimal in polynomial time.

Theorem [Arora, 1996] Geometric TSP approximation
In polynomial time within (1+¢)*OPT for any £>0.

» Other NP-complete problems can not be approximated
within any constant in polynomial time (unless P=NP).

Theorem: General graph TSP can not be approximated
efficiently within K*OPT for any K>0 (unless P=NP).

Graph Isomorphism
Definition: two graphs G,=(V,,E,) and G,=(V,,E,) are
Isomorphic Iff 3 bijection f:V,—V,such that
vv,vieV, (v,v)eE, < (f(v).f(v))eE,
Isomorphism = edge-preserving vertex permutation
Problem: are two given graphs isomorphic?

@ (2)

Note: Graph isomorphism NP, but not known to be In P

Graph Isomorphism

Zero-Knowledge Proofs
Idea: proving graph isomorphism without disclosing it!
Premise: Everyone knows G, and G, but not =

~ must remain secret! ~
Create random G = G, Qj\
O

Note: = is =(=) %g/ \\ “Q&Q

Broadcast G

Verifier asks for = or =

Broadcast = or =
\erifier checks G=G, or G=G,
-Repeat k times

= Probability of cheating: 2 ?&Q

&

Zero-Knowledge Proofs
Idea: prove graph 3-colorable without disclosing how!

Premise: Everyone knows G, but not its 3-coloring y
which must remain secret!

Create random G, = %

Note: 3-coloring x(GZ) IS ~(x(G,))

Broadcast G,
< Verifier asks for = or '

Broadcast ~ or '

\erifier checks G,=G, or '(G,) >
- Repeat k times \6&
—> Probability of cheating: 27 @

Zero-Knowledge Caveats
» Requires a good random number generator
 Should not use the same graph twice

» Graphs must be large and complex enough

Vo

Applications:
* |dentification friend-or-foe (IFF)
» Cryptography

« Business transactions

Zero-Knowledge Proofs

|dea: prove that a Boolean formula P iIs satisfiable
without disclosing a satisfying assignment!

Premise: Everyone knows P but not its
satisfying assignment \V |

secret

= (x+y+z)(x+y'+7)(X+y+7)

® O
; ‘

P
- "
Convert P into a graph 3-colorability l

instance G =/(P)

< Publically broadcast f and G

Use zero-knowledge protocol
to show that G is 3-colorable

— P is satisfiable iff G is 3-colorable

= P is satisfiable with probability 1-2% /\Q

O
\ Y
O

Interactive Proof Systems

» Prover has unbounded power and may be malicious
 \erifier i1s honest and has limited power

Completeness: If a statement is true, an honest verifier will
be convinced (with high probability) by an honest prover.

Soundness: If a statement Is false, even an omnipotent
malicious prover can not convince an honest verifier that

the statement is true (except with a very low probability).

« The induced complexity class depends on the verifier’s
abilities and computational resources:

Theorem: For a deterministic P-time verifier, class is NP.
Def: For a probabilistic P-time verifier, induced class is IP.
Theorem [Shamir, 1992]. IP = PSPACE

