Symbolic Logic

Def: proposition - statement
either true (T) or false (F)

Ex: 1+1=2
2+2=3
3<7
X+4=5

“today 1s Monday”



Boolean Functions

“and” A
“or” v
“not” -
“xor” @
“nand”

“nor”

“implication” =

“equivalence” &




° “nOt’, —

“negation”
Truth table:
P [p
T |F
F T

Ex: let p="today 1s Monday”

—p ="“today 1s not Monday”



° Céandﬂﬂ

“conjunction”

Truth table:

PAq

T T~ |
T — T |
T T ™ —

Ex: x>0 Ax<10

(x>0) A (x510)



° CCQDD

“disjunction”

Truth table:

pPVvq

e e B Bl Rl
T —~ T |
T o~ =

Ex: (x=7) v (x=3)
(x=0) v (y=0)



° CCXOI.DD EI_>

“exclusive or”

Truth table:

P®Y

T T~ O
T —~ T |
T —~ = T

Ex: (x=0) @ (y=0)

“1t 1s midnight” @ “1t 1s sunny”



Logical Implication

¢  “implies” =

Truth table:

T — — O
T —~ ™ O
oy

F

Ex: (x20) A (x=0) = (x=0)

l<x<y=x3<y3
“today 1s Sunday” = 1+1=3




Other interpretations of p = Q:
o “pimplies q”
 “if p, then q”
* “p1s sufficient for q”
o “qifp”
* “q whenever p”

e “q1s necessary for p”



Logical Equivalence
*  “biconditional” —

or “if and only 1f” (“ifT”)
or ‘“‘necessary and sufficient”

19

or logically equivalent” =
Truth table:

- o
= — o — O
S
— o =
@

Ex: p&p

[(x=0) v (y=0)] < (xy=0)
min(x,y)=max(x,y) <> x=y



logically equivalent (<) - means “has
same truth table”

Ex: p=q1s equivalent to ("p) v q

1.e., p=q <= (Tp)vq

P |4 pP=d ~p pvq
TT|T |F| T
TF|F F | F
FIT T T | T
FIF T T | T

Ex: (p<=q) = [(p=9) A (q=D)]
p<>q =p=>q A q=p
P =[Cpvd A(qVvp)l
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Note: p—q 1s not equivalent to qg—=p

Thm: (P=Q) = (—Q = —P)

Q: What 1s the negation of p—.q?

A: ~(p=9) = ~(—pvq) =pPArq

P 9 |7qp=9 "(p=9)| pAq
T TF| T F F
T F T F T T
F TI|F|T F F
FFT|T F F

“Logic is in the eye of the logician.”

- Gloria Steinem
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Example

let p = *“1t 1s raining”
let g = “the ground 1s wet”

P=q : “1f 1t 1s raining,
then the ground 1s wet”

—q—=—p : “i1f the ground 1s not wet,
then 1t 1s not raining”

q=>p:  “if the ground 1s wet,
then 1t 1s raining”

—(p=q) : “it is raining, and
the ground 1s not wet”
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Order of Operations

*  negation first
e  or/and next
 1mplications last

parenthesis override others

(stmilar to arithmetic)

Def: converse of p—=(q 1S q=p
contrapositive of p—q 1s ~q—=—p

Prove: p=q=—"q="7
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Q: How many distinct 2-variable
Boolean functions are there?
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Bit Operations

0
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Bit Strings

Def: bit string - sequence of bits

Boolean functions extend to bit strings
(bitwise)
Ex: 70100=1011
0100 A 1110=0100
0100 v 1110=1110
0100 ® 1110=1010
0100 =1110=1111
0100 <1110=0101
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Proposition types

Def: tautology: always true
contingency.: sometimes true
contradiction: never true

Ex: pv™p 1s a tautology
pPATp 1s a contradiction

p=>""p 1S a contingency

P PPV PIPAP | P=TP
T|F| T F F
F|\T|] T F T
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Logic Laws

Identity:

pAT & p
pvF & p

Domination:

pvI < T
pAF S F

Idempotent:

pPVvp =P

PAP <P



Logic LLaws (cont.)

Double Negation:

“(p)=p

Commutative:

PVC
PAC

A

P .

<~ qQVvp

<~ qQAp

Associative:

(4
A

OV C

(4
» W

IV < pVv(C

OAC

AT <= PA(C

V)
AT)
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Logic LLaws (cont.)

Distributive:

p Vv (qAr) < (pvq) A(

p A(qvr) < (pAQ) V (

De Morgan’s:

“(pvc

)&

~(pAC
Misc:

pV P

pA P

pPA (]

)<

T
< F

PV q

A(p:q) < (TpVvq)

OVT)

DAT)
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Example

Simplify the following:
(PAQ) = (pVvq)
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Predicates

Def:predicate - a function or formula
involving some variables

Ex: let P(x) = “x > 3”

X 1S the varia

“x>3” is the
P(5)
P(1)

Ex: Q(x,y,z) = “ X’ +y’=z

Q(2,3,4)
Q(3,4,5)

vle

oredicate

2 99
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Quantifiers

e  Umnversal: ‘“for all” \v/
VX P(x)
< P(X1) A P(X2) A P(x3) A L.
Ex: Vx x<x+1
VX x<x°

. Existential: “there exists”

dx P(x)
< P(x1) v P(x3) v P(x3) Vv ...
Ex: 3x x =x?

Ix x<x-1

Combinations:
VX dy y>X
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Examples
Vx dy x+y=0
dy Vx x+y=0
“every dog has his day’:
vd dy H(d,y)

Lim f(x)=L

X_ya

VeI8Vx (0<[x-al<6=>|f(x)-L|< &)
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Examples (cont.)
* n1s divisible by j (denoted n|j ):
n|j < dkeZ n=kj
* m 1s prime (denoted P(m)):
P(m) < [VieZ (m)1) = (1=m)v(1=1)]
* “there 1s no largest prime”
Vp dqeZ (g>p) A P(q)

Vp 3qeZ (g>p) A
[VieZ (q))) = (1=q)v(=1) ]

Vp 3qeZ (¢>p) A
[VieZ {FkeZ g=ki} = (i=q)v(i=1)]
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Negation of Quantifiers

Thm: —(Vx P(x)) < 3Ix 7P(x)

Ex: — “all men are mortal”
& “there 1s a man who 1s not mortal”

Thm: —(3x P(x)) < Vx 7P(x)

Ex: ™ “there is a planet with life on it”
<> “all planets do not contain life”

Thm: "3IxVy P(x,y) < Vx3y “P(x,y)

Ex: = “there is a man that exercises every day”

<>*“every man does not exercise some day”

Thm: ~Vx3y P(x,y) ©3IxVy “P(x.y)

Ex: ~ “all things come to an end”

<>*“some thing does not come to any end”
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Quantification Laws

Thm: Vx (P(x) A Q(x))

< (VX P(x)) A (VX Q(X))
Thm: dx (P(x) v Q(x))

< (Ix P(x)) v (3x Q(x))

Q: Are the following true?

3x (P(x) A Q(x))
< (3x P(x)) A (3x Q(x))

vx (P(x) v Q(x))
< (VX P(x)) v (Vx Q(x))



More Quantification Laws

e (Vx QX)) AP <= VX (Q(x) AP)

e (Ax QX)) AP < Ix(Q(x) AP)

e (VxQX)) VP Vx(Q(Xx)VvP)

e (Ix QX)) vP<dx(Q(x)VvP)



Unique Existence

Def: 4!x P(x) means there exists a
unique x such that P(x) holds

Q: Express d!x P(x) 1n terms of the
other logic operators

A:

29



Mathematical Statements

e Definition
e [ emma

e Theorem

e Corollary

Proof Types

e Construction

e Contradiction

e Induction

e Counter-example
e Existence
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Sets

Det: sef - an unordered collection of
elements

Ex: {1,2,3} or {hi, there}

Venn Diagram:

GO

Def: two sets are equal 1ff they contain
the same elements

Ex: {1,2,3}=12,3, 1}

0f # 115
{3,5}=13,5,3,3,5}
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. Set construction:
| or > means ““such that”

Ex: {k|0<k<4
k| k 1s a perfect square}

. Set membership: € ¢

=

Ex: 7 € {p|p prime}
qe {0,2,4,6,...}

e Sets can contain other sets
Ex: {2, {5}}

1103 # {0} =0
S=1{1,2,3, {1}, {{2}}}
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Common Sets

Naturals: N=1{I1,23,4,..}

Integers: Z=1{.2,-1,0,1,2,.}

Rationals: Q= {% la,beZ, b+0}

Reals: ‘R = {x | x areal #}

Empty set: O = {}

+ L.
Z = non-negative integers

R = non-positive reals, etc.
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Multisets

Def: a set w/repeated elements allowed
(1.e., each element has “multiplier”)
Ex: {0,1,2,2,2,5,5}

For multisets: {3, 5} # {3, 5, 3, 3, 5}

Sequences

Def: ordered list of elements

Ex: (0,1,2,5) “4-tuple”
(1,2) #(2,1) “2-tuple”
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Subsets

Subset notation: -

Sc T (xeS=xeT)

Proper subset: -

ST ((ScT) A (S=T))
S=T< (TSNS )
VS OcS
VS Sc S
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Union: W,

SUT={x | xeS v xeT}

Intersection: M

SNT={x | xeS A xeT}



e Set difference: S-T

S-T={x|xeS AxegT}

* Symmetric difference: SOT

SPT = {x | xeS D xeT}
=SUT - ST




 Universal set: U (everything)

* Set complement: S’ or S

S’ ={x|xgS}=U-8S

= E
/ S

T 7%’

* Disjoint sets: SNT=0

COC >

S-T=S"T’
S-S=0




Examples

NUZUQUR=R

NcZcQcfRi

VxeR x < x2+1

VX,yeQ min(x,y)=max(x,y) < x=y
+ -

R UR =R

%fr\%f={0}
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Set ldentities

Identity:

SUO=S
SNU=S

Domination:

SuU=U
SNO=0

Idempotent:

SUS=S
SNS=S

Complementation:

(S’)’ =S
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Set Identities (Cont.)

e Commutative Law:

SUT=TUS

SNT=TNS

e Associative Law:

SU(TUV)= (SUT)UV

SN(TNV) = (SNT)nV
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Set Identities (Cont.)

e Distributive Law:

SU(TAV)=(SUT)N(SUV)

SN(TUV) = (SNT)u(SNV)

* Absorption:

SU(SNT)=S

SN(SUT)=S



DeMorgan's Laws

(SUT)' = S'NT'
o«
e

(SNT)' =S'UT"

e

Boolean logic version:
(XAY)=X'VY'
(XVY)=X'AY"



Generalized U and ~

. US =S, uUS,uUS;uU...US,

1<i<n
={x | d1 1<1<n >3 x€e8S;}

s £
.

—

e (S =S,"S$5NS3N...NS,

1<i<n
={X | V1 I<1<n = x €S}
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Set Representation

- U — {Xla X2, X3y X4yeee 5 Xn-15 Xp }
Ex: S = {x1, X, Xn }
bits: 1 01 0.0 0 1

1010000...01 encodes {x;, X3, Xy}
0111000...00 encodes {x,, X3, X4}

e “or” yields union:
1010000...01 {xy, X3, Xp}

v 0111000...00 {x,, X3, X4}
1111000...01 {Xl, X2, X3, X4, Xn}

» “and” yields intersection:
1010000...01 {Xl, X3, Xn}

A 0111000...00 {x», X3, X4}
0010000...00 {xs}
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Set closure: WRT operation A
VX,yeS = XAy eSS

Ex: ‘R 1s closed under addition
since x,ye ‘R = xtye R

Abbreviations

WRT “with respect to”

WLOG “without loss of
generality”

"When ideas fail, words come in very handy."
- Goethe (1749-1832)
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Cartesian Product

* Ordered n-tuple: element sequence

Ex: (2,3,5,7)1s a 4-tuple

* Tuple equality:

(a,b)=(x,y) < (a=x) A (b=y)
Generally: (a))=(x;) & V1 a=x;

* Cross-product: ordered tuples

SXT = {(s,t) | seS, teT}

Ex: {1,2,3} x {ab}=
1(1,2),(1,b),(2,2),(2,b),(3,a),(3,b) }

Generally, ST # TxS
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Generalized cross-product:

S1X SoX ... X Sy

= {(X1,---Xn) | Xi€S;, 1<i<n}
T! = TxTH-!
TI=T

Euclidean plane = RxR = R?

Euclidean space = RxRxR = R

Russel’s paradox: set of all sets that
do not contain themselves:

{IS|S¢ S}
Q: Does S contain 1tself??
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Functions

* Function: mapping f:S—T

Domain S

Range T

e k-ary: has k “arguments”
e Predicate: with range = {true, false}
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Function Types

* One-to-one function: “1-1”
a,beS ™ azb = f(a)=f(b)

Ex: f: RN, {(x)=2x1s 1-1
g(x)=x? is not 1-1

 Onto function:

VteT dseS s f(s)=t

Ex: f:7Z—>Z, {(x)=13-x1s onto
g(x)=x* is not onto
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1-to-1 Correspondence

* ]-to-1 correspondence: f:S<>T

f 1s both 1-1 and onto

Ex: f: ReR 5 f(x)=x (1dentity)

1
h: Ne>Z > h(x)= "5, x odd,

-X
5, X even.
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 Jnverse function:

ST  f1T->S

flity=s if f(s)=t
Ex: f(x)=2x [ (X)=x/2

* Function composition:

B:S—>T, . T>V

= (a* B)E)=a(P(x))
(o B):S—>V

Ex: B(x)=x+] a(x)=x"
(o * B)(x)=x>+2x + 1



Thm: (fof )(x) = (f*f)(x) =x



Set Cardinality

» Cardinality: |S| = #elements 1n S

Ex: |{a,b,c}|=3

p | pprime <9j|=4
?|=0

{{1,2,345}} =7

e Powerset: 2° = set of all subsets

25={T|TcS}

Ex: 2% = {{},{a},{b},{a,b}}
Q: What is 2% 2
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Theorem: [25=2!

Proof:

“‘Sometimes when reading Goethe, | have the
paralyzing suspicion that he is trying to be funny.”
- Guy Davenport
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Generalized Cardinality

* Sis at least as large as T:
S|I>|T| = 3 f:S—>T, f onto
1.e., “S covers T”

Ex: r:R—Z, r(x)=round(x)
= |R|IZ|Z

* S and T have same cardinality:
SI=IT| = [S[2[T] * [T|=[S]
or
1 1-1 correspondence S<>T

* Generalizes finite cardinality:

£1,2,3,4,5} > {a, b, c}
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Infinite Sets

Infinite set: |S| >k VkeZ
or

1 1-1 corres. f:S<T, SCT

Ex: {p | p prime}, ‘R

Countable set: |S| < |N|

Ex: O, {p|pprime}, N, Z

S 1s strictly smaller than T:

S| < [T = [SI=[T] ™ [SAT

Uncountable set: [N| < |[S]
Ex: |[N| <R
N| <[0,1]={x|xeR, 0<x1}
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Thm: 3 1-1 correspondence Q<>N
Pt (dove-tailing):

12 3 456
6 6 6 6 6 6
12 3 4 s 6
5 5 5 5 5 5
12 3 456
4 4 4 4 4 4
12 3 4 s 6
3 3 3 3 3 3
1 2 3 4 56
2 2 2 2 2 2
12 3 4 s 6
1 °r 1 1 1 1



hm: [R[>|N|

0

f (diagonalization):

Assume 3 1-1 corres. f: RN
Construct X € *R:

f(1)y=2.7/18281828... —>
f(2)=1.414213562... —
f(3)=1.611033989... —

X =0.020...#fK) VKeN
—> f not a 1-1 correspondence
—> contradiction

— SR 1s uncountable
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Q: Is [R| >1[0,1]] ?
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Q: Is 2" = |R| 2
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Thm: any set 1s "smaller" than its powerset.

S| < 23]
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Infinities

N‘ :NO
R| =N,
N0< Nl :ZNO

“Continuum Hypothesis™

370 3 Ny <o <N

Independent of the axioms!
[Cohen, 1963]

Axiom of choice [Godel 1940]

Parallel postulate [Beltrami 1868]
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Infinity Hierarchy

¢ N <Ny =2N
0, 1,2,... k k+1,...,8,,
N1 Noseery Ny Niiqseens

Nt Nt oo g N e

* First inaccessible infinity: ...

For an informal account on infinities, see e.g.:
Rucker, Infinity and the Mind, Harvester Press, 1982.
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Thm: # algorithms 1s countable.
Pf: sort programs by size:
"main(){}"
"main(){int k; k=7;}"
"<all of UNIX>"
“<Windows XP>"

"<intelligent program>"

= # algorithms 1s countable!
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Thm: # of functions 1s uncountable.

Pt: Consider 0/1-valued functions
(1.e., functions from N to {0,1}):

1(1,0), (2,1), (3,1), (4,0), (5,1), ...}
= { 2, 3, 5,..be 2N

So, every subset of N corresponds to a
different 0/1-valued function

2N is uncountable (why?)

— # functions 1s uncountable!
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Thm: most functions are uncomputable!

Pf: # algorithms 1s countable
# functions 1S not countable

—d more functions than
algorithms / programs!

— some functions do not have
algorithms!

Ex: The halting problem

Given a program P and input I,
does P halt on I?

Def: H(P,I) = 1 1f P haltson I
0 otherwise
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The Halting Problem

H: Given a program P and input I,
does P halt on 1? i.e., does P(I){ ?

Thm: H 1s uncomputable

Pf: Assume subroutine S solves H.

4 )

P——S — yes
I — P(I)i? f—=no

Construct:

/S' 00 )

—=S  —=Yyes—

= POL? L= no —~yes

- J
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Analyze:
/S' 50 -

4 N\
- | P M
I Y

- J

S'(SH = S'(SHT
S'(SHT = S'(S"V

so, S'(S"HT<S' (S
a contradiction!

= S does not correctly compute H

But S was an arbitrary subroutine, so
—H 1s not computable!
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Pigeon-Hole Principle

If N+1 objects are placed into N boxes
— d a box with 2 objects.

If M objects are placed into N boxes &
M>N = d box With( % W objects.

e Useful in proofs & analyses
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Relations

Relation: a set of “ordered tuples”

Ex: {(a,1),(b,2), (b,3)}

<7 AXY) [ xyel, x<y}

Reflexive: x¥x VX

Symmetric: X¥y = y¥X

Transitive: xWy " y¥z = x¥z

Antisymmetric: x¥y = “(y¥x)

Ex: < 1s reflexive
transitive
not symmetric
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Equivalence Relations

Def: reflexive, symmetric, & transitive

66__9

Ex: standard equality “=
X=X
X=y = y=X
X=y Ny=Z = X=Z

Partition - disjoint equivalence classes:
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Closures

 Transitive closure of v: TC

smallest superset of ¥ satisfying

XWy N y¥Z = X¥Z

Ex: “predecessor”
{(x-1,x) | xel}
TC(predecessor) 1s “<” relation

o Symmetric closure of ¥:
smallest superset of ¥ satisfying

XVy = y¥X
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Graphs

e A special kind of relation

Graphs can model:
* Common relationships
* Communication networks
* Dependency constraints
» Reachability information

+ many more practical applications!

Graph G=(V,E): set of vertices V,
and a set of edges E < VxV

Pictorially: nodes & lines
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Undirected Graphs

Def: edges have no direction

e Example of undirected graph:

V={a,b,c,d,e}
E={(c,a),(c,b),(c,d),(c,e),
(a,b),(b,d),(d,e)}
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Directed Graphs

Def: edges have direction

e Example of directed graph:

V={a,b,c,d,e}
E={(a,b),(a,c),(b,c),(b,d),
(d,c),(d,e),(c,e)}
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Graph Terminology

Graph G=(V.,E), E c VxV

e node = vertex
e cdge = arc

Vertices u,veV are neighbors in G 1iff
(u,v) or (v,u) 1s an edge of G

Ex: a & b are neighbors
a & ¢ are not neighbors
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Undirected Node Degree

Degree 1n undirected graphs:

Degree(v) = # of adjacent (incident)
edges to vertex vin G

Ex: deg(c)=4 deg(H)=0
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Directed Node Degree

Degree 1n directed graphs:

In-degree(v) = # of incoming edges
Out-degree(v) = # of outgoing edges

Ex: 1mn-deg(c)=3 out-deg(c)=1
in-deg(f)=0  out-deg(f)=0
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Q: Show that at any party there 1s an
even number of people who shook
hands an odd number of times.
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Complete graph K, contains all edges
1.e., E = {{u,v} eVxV | uzv}

Q: How many edges are there in K,,?

Subgraph of G 1s G’=(V’,E’)
where V'V and E’cE

Q: Give a (non-trivial) lower bound on
the number of graphs over n vertices.

81



Paths 1n Graphs

Undirected path 1n a graph:

A graph 1s connected 1ff there 1s a path
between any pair of nodes:

82



Directed path 1n a graph:
P
(¢

Graph 1s strongly connected 1ff there 1s
a directed path between any node pair:

Ex: connected but not strongly:
R0
c 9@
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A cycle 1n a graph:

A tree 1s an acyclic graph.

Tree T=(V’,E’) spans G=(V,E) 1t T'is a
connected subgraph with V=V
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