Resource-Bounded Computation

Previously: can something be done?
Now: how efficiently can it be done?

Goal: conserve computational resources:

Time, space, other resources? ‘\\\\\}\\\ﬁ?\;ﬁé",u:.‘ll,.i,l,it,:-!:,'ﬁgﬁ«‘

Def: L is decidable within time O(t(n)) if some TM M
that decides L always halts on all we2.* within
O(t(Jw])) steps / time.

Def: L i1s decidable within space O(s(n)) if some TM
M that decides L always halts on all we2.* while
never using more than O(s(|w|)) space / tape cells.




Complexity Classes

Def: DTIME(t(n))={L | L is decidable within
time O(t(n)) by some determinist%ﬂ\/l} w,
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Def: NTIME(t(n))={L | L is deci
time O(t(n)) by some non-

Def: DSPACE(s(n))={L | dable within
space O(s(n)) b deterministic TM}
/\\\&f\

Def: NSPACE(s(n))={LZ| L decidable within | S
space O(s(n)) by some non-deterministic TM}

ministic TM}



Time 1s Tape Dependent
Theorem: The time depends on the # of TM tapes.

Idea: more tapes can enable higher efficiency.

N

Ex: {O"1" | n>0} is in DTIME(n?) for 1-tape | ‘ 4
TM’s, and is in DTIME(n) for 2-tape TM’s.

Note: For multi-tape TM’s, input tape space does not
“count” 1n the total space s(n). This enables D)
analyzing sub-linear space complexities. ¢ (Pl



Space Is Tape Independent

Theorem: The space does not depend on the # tapes.
Proof: lalolafofa] T T T w , %
)
0]1/1 ‘ 0 ‘ O [ 1| - > \\\\\\*'fi?\id‘?‘.‘\f‘f'{fifff':"'f:"i\'%15'
o
TIL(L(L(00 | | | == .

|dea: Tapes can be “interlaced” space-efficiently:

Note: This does not asymptotically increase the
overall space (but can increase the total time).

Theorem: A 1-tape TM can simulate a t(n)-time-
bounded k-tape TM in time O(k-t*(n)).




Space-Time Relations
Theorem: If t(n) <t’(n) ¥n>1 then:

DTIME(t(n)) < DTIME(t’(n))

NTIME(t(n)) < NTIME(t’(n))

Theorem: If s(n) <s’(n) Vn>1 then:
DSPACE(s(n)) < DSPACE(s’(n)) /\m

NSPACE(s(n)) < NSPACE(s’(n)) o=
Example: NTIME(n) < NTIME(n?)
Example : DSPACE(log n) < DSPACE(Nn)



Examples of Space & Time Usage
Let L,={0"1" | n>0}:

For 1-tape TM’s:
L, e DTIME(n?)
L, € DSPACE(n)
L, € DTIME(n log n) \\}\ﬁffi?\fd‘f'ff'fifif’ff’!"'t"ﬁgﬁ"{

For 2-tape TM’s:
L, € DTIME(n)
L, € DSPACE(log n)



Examples of Space & Time Usage

N

Let L,=>*
L, € DTIME(n)

Theorem: every regular language is in DTIME(n)
L, € DSPACE(1)

Theorem: every regular language Is in DSPACE(1)
L, e DTIME(1) —_)

A

Let Lo={w$w | w in Z*} e
L, € DTIME(n?)
L, € DSPACE(n)
L, € DSPACE(log n)




Special Time Classes

Def: P = U DTIME(nY)

vk>1
P = deterministic polynomial time
Note: P Is robust / model-independent

Def: NP = U NTIME(n¥)

vk>1

NP = non-deterministic polynomial time

Theorem: P < NP
Conjecture: P=NP ? Million $ question!



Other Special Space Classes

Def: PSPACE =\_J DSPACE(n¥) Rt

vk>1

PSPACE = deterministic polynomial space

Def: NPSPACE = \_J NSPACE(nk)

Vk>1

NPSPACE = non-deterministic polynomial space
Theorem: PSPACE < NPSPACE (obvious)
Theorem: PSPACE = NPSPACE (not obvious)



Other Special Space Classes

Def: EXPTIME = U DTIME(2"9)

Vvk>1

EXPTIME = exponential time

Def: EXPSPACE = \_) DSPACE(2)

vk>1

EXPSPACE = exponential space -

Def: L =LOGSPACE = DSPACE(logn)
Def: NL = NLOGSPACE = NSPACE(log n)

.............



Space/Time Relationships &2
Theorem: DTIM E(f(n)) = DSPACE (f(n)) = ez},\\i?fi?\fg‘i??‘.'i\i’5'71'5"5?

Theorem: DTIME(f(n)) ¢ DSPACE(f(n) / Iog(f(n)))

Theorem: NTIME(f(n)) < DTIME(c'™ )
for some ¢ depending on the language.

heorem: DSPACE(f(n)) = DTIME(c™ )
for some c, depending on the language.

Theorem [Savitch]: NSPACE(f(n)) = DSPACE(f?(n))
Corollary: PSPACE = NPSPACE
Theorem: NSPACE(n") < DSPACE(n™¢) ¥V >0, €>0
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Time Complexity Hierarchy

Theorem: for any t(n)>0 there exists a

Juris Hartmanis Richard Stearns

decidable language L DTIME(t(n)). ()

; - . 0l w
= No time complexity class contains all the ’*:.”;,;\

decidable languages, and the time hierarchy Is o!

—There are decidable languages that take arbitrarily
long times to decide!

Note: t(n) must be computable & everywhere defined

Proof: (by diagonalization)

Fix lexicographic orders for TM’s: My, M,, M,, ...

Interpret TM Inputs 1eX* as encodings of integers:
a=1, b=2, aa=3, ab=4, ba=5, bb=6, aaa=7, ...



Time Complexity Hierarchy (proof)
Define L={i | M, does not accept | W|th|n t(1) tlme}
Note: L Is decidable (by S|mulat|on) <

Q:is LeDTIME(t(n)) ?
Assume (towards contradiction) LeDTIME(t(n))

l.e., 3 a fixed KeN such that Turing machine M
decides L within time bound t(n)

-J.

3-
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then +H— Reject

| — If M, accepts i within t(i) time
else + Accept

M, = decides / accepts L




Time Complexity Hierarchy (proof)

K—(TF M accepts K within t(K) fime __ then - Reject

else +— Accept
M, = decideg’/ accepts L | e
Consider whethe;/ke}:/ N

Kel. = M, must|accept|K within t(K

= M, must(reject]

= M, must|accept
So (Kel) < (KgL), a contradiction!
= Assumption Is false = L g DTIME(t(n))

—




Time Hierarchy (another proof)

Consider all t(n) time bounded TM’s on all Inputs:
L= 1 2.3 4 5 6 7 8 9101112131415

.................................................................................................................................................................................

........................................................................................................................................

. is:t(n) tzim:e-bou:nd:edi
But M’ computes a different function than any M j

— Contradiction!



“Lexicographic order.”



TRIVIA: ITs POSSIBLE To CREATE EVENTS
WHICH WIKIPEDIA CANNOT COVER NEUTRALLY

IN AWEEK, T\WILL BE DONATING $),000,000

TO A RECIPIENT DETERMINED BY THE WORD COUNT
o —— OF THE WIKIPEDIA ARTICLE ABOUT THIE EVENT.

IF 1T’ EVEN, THE MONEY GOES To PRO-CHOICE

ACTWISTS. IF IT'S ODD, PRO-LIFE.

GRS

Labn”iz Poole and &6&\\\;&2& with 168/c”
1 worK with /

L am Le\bmz b@o\@ and Godel

NOT CONTENT WITH NORMAL
RESTRAINING ORDERS,
MY EX GOT CREATIVE.

WAIT... T CAN'T GET CLOSER
THAN 500 YARDS OF YOU...
OR MORE THAN 60O YARDS AWAY ?

YOULL HAVE To MOVE
SOMEWHERE WITHIN
THIS RING.

&




Space Complexity Hierarchy

Theorem: for any s(n)>0 there exists a .
decidable language L g DSPACE(s(n) ) Hermens R.Cha'@iteéms

y \‘\\\\'?\\ f‘l, =
—No space complexity class contains all the o /
decidable languages, and the space hierarchy Is oo!

—There are decidable languages that take arbitrarily
much space to decide!

Note: s(n) must be computable & everywhere defined

Proof: (by diagonalization)

Fix lexicographic orders for TM’s: M, M,, M,, ...

Interpret TM Inputs 1eX* as encodings of integers:
a=1, b=2, aa=3, ab=4, ba=5, bb=6, aaa=7,




Space Complexity Hierarchy (proof)
Define L={i | M, does not accept 1 within t(i) space}
Note: L Is decidable (by simulation; oo-IOOpS'7)

/\\ i

Q:is LeDSPACEG(M) ? (1 | fi

Assume (towards contradlctlon) Le DSPACE(s(n))
l.e., 3 a fixed KeN such that Turing machine M

decides L within space bound s(n)

| —1 If M. accepts i within t(i) space then 4~ Reject
else + Accept

M, = decides / accepts L




Space Complexity Hierarchy (proof)

K—{(TT M, accepts K within s(K) space  then +—— Reject

else +— Accept
M, = decideg’/ accepts L | e
Consider whethe;/ke}:/ N

Kel = M, mustaccept|K within s(K) space
= M, must(reject]

= M, must|accept
So (Kel) < (KgL), a contradiction!
— Assumption Is false = L DSPACE(s(n)) pm

—




Space Hierarchy (another proof)

Consider all s(n) space bounded TM’s on all inputS'
L= 1 2.3 .4 5 6 7 8 9101112131415

.................................................................................................................................................................................

........................................................................................................................................

. is:s(n) Space:-bo:un:ded.
But M’ computes a different function than any M j

— Contradiction!



Savitch’s Theorem

Theorem: NSPACE(f(n)) ¢ DSPACE (f*(n)) ™ &’

Proof: Simulation: idea Is to aggressively conserve
and reuse space while sacrificing (lots of) time.

Consider a sequence of TM states in one branch of

an NSPACE(f(n))-bounded computation:

O
O—O—>0O0—>0—>0O—C
O

e

Computation time / length is bounded by ¢f™ (why?)
We need to simulate this branch and all others too!
Q: How can we space-efficiently simulate these?

A Use divide-and-conquer with heavy space-reuse!



Savitch’s Theorem
Pick a midpoint state along target path:

Verify it is a valid intermediate state

by recursively solving both subproblems.
Iterate for all possible midpoint states! ;
The recursion stack depth is at most log(cf™)=0(f(n))
Each recursion stack frame size is O(f(n)).
— total space needed is O(f(n)=f(n))=0(f*(n))
Note: total time 1s exponential (but that’s OK).

—=non-determinism can be eliminated by squaring
the space: NSPACE(f(n)) = DSPACE (f*(n))




Savitch’s Theorem
Corollary: NPSPACE = PSPACE
Proof: ~ NPSPACE = \_ NSPACE(n¥)

k>1

— U DSPACE(n%)

k>1

= U DSPACE(nK)

k>1

= PSPACE "
l.e., polynomial space Is invariant with respect to
non-determinism!

B,
Walter Savitch

Q: What about polynomial time?
A Still open! (P=NP)



Space & Complementation

Theorem: Deterministic space is closed under
complementation, I.e.,
DSPACE(S(n)) = co-DSPACE(S(n)) |
= {Z*-L| L € DSPACE(S(n)) } (e
Proof: Simulate & negate. o

Theorem [Immerman, 1987]: Nondeterministic
space Is closed under complementation, i.e.
NSPACE(S(n)) = co-NSPACE(S(n))

Proof idea: Similar strategy to Savitch’s theorem.

No similar result is known for any of the standard
time complexity classes!

Q: Is NP = co-NP? ()
A Still open!

Neil Immerman
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Lecture 4

The Immerman-Szelepcsényi Theorem

Theorem 4.1

In 1987, Neil Immerman [65] and independently Rébert Szelepcsényi [119]
showed that for space bounds S(n} > logn, the nondeterministic space
complexity class NSPACE(S(n)) iz closed under complement. The case
S(r) = n gave an affirmative solution to a long-standing open problem of
formal language theory: whether the complement of every context-sensitive
language is context-sensitive.
{Immerman—Szelepcsényi Theorem)  For S(n) = logn, NSPACE(S(r)) =
co-NSPACE(S(n)).

FProaf. For simplicity we first prove the result for space-constructible
S(n). One can remove this condition in a way similar to the proof of Sav-
itch’s theorem (Theorem 2.7).

The proof is based on the following idea involving the concept of a census
function. Suppose we have a finite set A of strings and a nondeterministic
test for membership in A. Suppose further that we know in advance the
size of the set A. Then there is a nondeterministic test for nenmembership
in A: given vy, successively guess | A| distinct elements and verify that they
are all in A and all different from %. If this test succeeds, then ¥ cannot be
in A.

Let M be a nondeterministic S{n)-space bounded Turing machine. We
wish to build another such automaton N accepting the complement of
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L(M). Assume we have a standard encoding of configurations of M over
a finite alphabet A |A| = d, such that every configuration on inputs of
length n is represented as a string in A5,

Assume without loss of generality that whenever M wishes to accept,
it first erases its worktape, moves its heads all the way to the left, and
enters a unique accept state. Thus there is a unique accept configuration
accept € AS™ on inputs of length n. Let start € A% repressnt the
start configuration on input z, |z| = n: in the start state, heads all the
way to the left, worktape empty.

Because there are at most d°(® configurations M can attain on input
z, if = Is accepted then there is an accepting computation path of length
at most 4%, Define A,, to be the set of configurations in A that are
reachable from the start configuration start in at most m steps; that is,

Am = {ae A% | start = at.
Thus Ag = {start} and
M accepts ¢ < accept € Ay,

The machine N will start by laying off S(n) space on its worktape. It
will then proceed to compute the sizes | Ao, | 41|, |A2], ..., [Agsy | In-
ductively. First, | 4g| = 1. Now suppose | Ay, | has been computed and is
written on a track of N's tape. Because | A, | < d%0 this takes up S(n)
space at most. To compute | 4,11 |, successively write down each 3 € A5
in lexicographical order; for each one, determine whether 8 € A1 (the
algorithm for this is given below); if so, increment a counter by one. The
final value of the counter is | Ayyq|. To test whether 8 € A,,11, nondeter-
ministically guess the | A, | elements of Ay, in lexicographic order, verify

.. . . <
that each such ¢ is in Ay, by guessing the computation path start =2 o,

and for each such o check whether o =% . If any such @ yields 8 in one
step, then 8 € Ay, y1; if no such o does, then 8 ¢ Ay ;.

After | Ags) | has been computed, in order to test accept & Agswm
nondeterministically, guess the | Agse; | elements of A ;s in lexicographic
order, verifying that each guessed o is in A s(.) by guessing the computa-

tion path start Sd—S(r) o, and verifying that each such « is different from
accept.

The nondeterministic machine N thus accepts the complement of L{M)
and can eagily be programmed to run in space S(n).

To remove the constructibility condition, we do the entire computation
above for successive values 5 = 1,2,3,... approximating the true space
bound S(r). In the course of the computation for S, we eventually see all
configurations of length § reachable from the start configuration, and can

check whether M ever tries to use more than S space. If so, we know that
S is too small and can restart the computation with 5 + 1. ]
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Enumeration of Resource-Bounded TMs
Q: Can we enumerate TM’s for all l&g‘ﬁages in P?
Q: Can we enumerate TM’s foe&ﬁanguages in

NP, PSPACE? EXPT@@ EXPSPACE?
Note: not necessari i‘a lexicographic order.

IF YOU DON'T TURN IN

AT LEAST ONE HOMEWDRK

ASSIGNMENT, YoU LL

FAlL THIS CLASS.  YEAH. BUTIF I CAN FAIL
THIS CLASS THE GRADES
ON MY REFORT (ARD WILL
BE INALPHABETICAL ORDER!

\
v




Denseness of Space Hierarchy

Q: How much additional space does It
take to recognize more languages?

A: Very little more!

| €:§¢§i:t
Theorem: Given two space bounds s, and s, such that
Lim s,(n) /s,(n)=0 as h—oxo, I.e.,s,(n) = 0(s,(n)),
3 a decidable language L such that

L e DSPACE(S,(n)) but Lz DSPACE(s,(n)).
Proof idea: Diagonalize efficiently.

Note: s,(n) must be computable within s,(n) space.

—> Space hierarchy Is infinite and very dense!



Denseness of Space Hierarchy

Space hierarchy is infinite
and very dense! P
Examples: ‘\\\:\}\\:ﬁ:;‘{???\i.’f\'\\\‘\\w*'f"
DSPACE(log n) = DSPACE(log?n)
DSPACE(n) « DSPACE(n log n)
DSPACE(n?) « DSPACE(n+%1)
DSPACE(n*) « DSPACE(nY) V 1<x<y

Corollary: LOGSPACE # PSPACE

Corollary: PSPACE # EXPSPACE



Denseness of Time Hierarchy

Q: How much additional time does it
take to recognize more languages?

A: At most a logarithmic factor more!

Theorem: Given two time bounds t; and t, such that
t,(n)-log(t,(n)) = o(t,(n)), 3 a decidable language L
such that Le DTIME(t,(n)) but L DTIME(t,(n)).

Proof idea: Diagonalize efficiently.
Note: t,(n) must be computable within t,(n) time.

= Time hierarchy is infinite and pretty dense!



Denseness of Time Hierarchy

Time hierarchy Is Infinite
and pretty dense!
Examples:
DTIME(n) =« DTIME(n log? n)
DTIME(n?) =« DTIME(n%%1)
DTIME(2") « DTIME(n2")
DTIME(nX) < DTIME(nY) V 1<x<y

Corollary: LOGTIME =P
Corollary: P EXPTIME



Complexity Classes Relationships

Theorems: LOGTIME c L c NL c P < NP c PSPACE
c EXPTIME c NEXPTIME c EXPSPACE ...

Theorems: L # PSPACE # EXPSPACE #. ..

Theorems: LOGTIME #P #EXPTIME #...  £#&)

Conjectures: L=NL, NL;«&P, NP=PSPACE,

PSPACE#£EXPTIME, EXPTIMENEXPTIME,
NEXPTIME#EXPSPACE, . ..

Theorem: At least two of the above conjectures are true!



Theorem: P = SPACE(n)

O
O

nen: P < SPACE(n) ?

en: SPACE(n) cP?  &&

Open: NSPACE(n) # DSPACE(n) ?
Theorem: At least two %‘%
of the following ==
conjectures are true: %t\_\:
L =
NL=P QO@ :“":“a
P=NP 0 : HEOR'ESQ
NP#PSPACE ‘Of‘o )
PSPACE=EXPTIME /@
EXPTIME=NEXPTIME

§/

NEXPTIME#EXPSPACE




The Extended Chomsky Hierarchy Reloaded
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Gap Theorems

3 arbitrarily large space & time complexity gaps!

Theorem [Borodin]: For any computable function g(n),
3 t(n) such that DTIME(t(n)) = DTIME(g(t(n)).

Ex: DTIME(t(n)) = DTIMEZ™) for some t(n)

Theorem [Borodin]: For any computable function g(n),
3 s(n) such that DSPACE(s(n)) = DSPACE(g(s(n)). L&
Ex: DSPACE(s(n)) = DSPACE(S(n)*™) for some s(n) %
Proof idea: Diagonalize over TMs & construct a gap
that avoids all TM complexities from falling into it.
Corollary: 3 f(n) such that DTIME(f(n)) = DSPACE(f(n)).

Note: does not contradict the space and time hierarchy
theorems, since t(n), s(n), f(n) may not be computable.

Allan Borodin

N




The First Complexity Gap -
The first space “gap” is between O(1) and O(log log n) ""‘”"“f

Theorem: LEDSPACE(O(IOQ Iog n)) — | | Ilan orodi
L e DSPACE(O(1)) = L is regular!

All space classes below O(log log n) collapes to O(1).

FOR FOUR YEARS SHE 1\ sy 15 A# SEARCH WRONG
STUDIED ALGORITHIB. | |\ THIS SITUATION?
MEMORY
— USAGE!
| ' % )
N WHAT WOULD  DITKSTRA'S
YOU USE? ALGORITHM |
UNTIL ONE DRY
SHE BESTED SO OUR LOWER NOPE.
HER MASTER BOUND Gor ITIN

0(n log (logn))




Speedup Theorem >

There are languages for which there are no asymptotic, .
space or time lower bounds for deciding them! ot

Manuel Blum

Theorem [Blum]: For any computable function g(n), 3 a
language L such that if TM M accepts L within t(n) time,
J another TM M’ that accepts L within g(t(n)) time. @

Corollary [Blum]: There is a problem such that if any

algorithm solves it in time t(n), 3 other algorithms that
solve it, in times O(log t(n)), O(log(log t(n))),
O(log(log(log t(n)))), ...

—Some problems don’t have an “inherent” complexity!

Note: does not contradict the time hierarchy theorem!



From:

Lecture 32
S K Dexter C. Kozen

The Gap Theorem and Other Pathology

Theory of
omputatlon

Manuel Blum
One might get the impression from the structure of the complexity hierar-
chies we have studied that all problems have a natural inherent complexity,
and that allowing slightly more time or space always allows more to be com-
puted. Both these statemenis seem to be true for most natural problems
and complexity bounds, but neither is true in general. One can construct
pathological examples for which they provably fail.

For example, one can exhibit a computable function f with no asymp-
=) totically best algorithm, in the sense that for any algorithm for f running
=~ in time T'(n), there ig¢ another algorithm for f running in time log7'(n).
@ Springer Thus f can be endlessly sped up. Also, there is nothing special about the

log function—the result holds for any total recursive function.

For another example, one can show that there is a space bound 5(n)
such that any function computable in space S(n) iz also computable in
space log S(n). At first this might seem to contradict Theorem 3.1, but
that theorem has a constructibility condition that is not satisfied by S(n).
Agaln, this holds for any recursive Improvement, not just log.

Most of the examples of this lecture are constructed by intricate diago-
nalizations. They do not correspond to anything natural and would never
arise In real applications. Nevertheless, they are worth studyving as a way
to better understand the power and limitations of complexity theory. We
prove these results in terms of Turing machine time and space in this lec-
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1

Theorem 321

Theorem 32.2

“a.e.” means “almost everywhere” or “for all but finitely many »”. Also,

ture; however, most of them are independent of the particular measure. A
more abstract treatment is given in Supplementary Lecture J.

The first example we look at is the gap theorem, which states that there
are arbitrarily large recursive gaps in the complexity hierarchy. This result
is due independently to Borodin [21] and Trakhtenbrot [122].

(Gap Theorem [21, 122])  For any total recursive funetion [ : «w —
w such that f(z) > x, there exists a fome bound T'(n) such that
DTIME(f(T(n))) = DTIME(T(n)); o other words, there is no set ac-
cepted by a deterministic TM in time f(T'(n)) thot is not accepted by a
determanistic TM in time T'(n).

Proof. Let, T3(z) denote the running time of TM M; on input 2. For each
n, define T'(n) to be the least m such that for all ¢ < n, if T;(n) < f(m),
then Ti(n) < m. To compute T'(n), start by setting m := 0. As long as
there exists an ¢ < n such that m < Tj(n) < f(m), set m := Ti(n). This
process must terminate, because there are only finitely many ¢ < n. The
value of T'(n) is the final value of m.

Now we claim that T'(n) satisfles the requirements of the theorem. Sup-
pose M; runs in time f(T'(n)). Thus T;(n) < f(T'(n)) a.e.! By construction
of T, for sufficiently large n > ¢, Ti(n) < T'(n). o

What we have actually proved is stronger than the statement of the
theorem. The theorem states that for any deterministic TM M; running
in time f(T'(n)), there is an equivalent deterministic TM M; running in
time T'(n). But what we have actually shown is that any deterministic TM
running in time f(7'(n)) also runs in time T'(r).

Of course, all these bounds hold a.e., but we can make them hold ev-
erywhere by encoding the values on small inputs in the finite control and
computing them by table lookup.

The next example gives a set for which any algorithm can be sped up
arbitrarily many times by an arbitrary preselected recursive amount. This
result ig due to Blum [17].

(Speedup Theorem [17])  Let Ti(z) denocte the running time of TM M;
on tnput x. Let f 1w — w be any monotone tolal recursive function such
that f(n) > n?. There exists a recursive set A such that for any TM M;
accepting A, there is another TM My accepting A with f(T;(x)) < T3(z)

a.€.

“

0.7

means, “infinitely often” =

“for infinitely many n”.

Proof. Let ™ denote the n-fold composition of f with itself:

def

o fofoof.
—_——

n

Thus f° is the identity function, f1 = f, and f™" = ™o f*, For example,
if f(m) = m?, then f*(m) = m>", and if f(m) = 2™, then f*(m) is an
iterated exponential involving a stack of 2’s of height n.

We construct by diagonalization a set A € 0 such that

(i) for any machine M; accepting 4, T;{0™) > f*~%(2) a.e.,? and

(if) for all k, there exists a machine M, accepting A such that 75(0%) <
FR2) ae

This achieves our goal, because for any machine M; accepting A4, (ii) guar-
antees the existence of a machine M; accepting A such that T;(0") <
F77i1(2) a.e; but then

FO0™) < f(F“12) ae. by monotonicity of f
i)
< T3(0™) ae. by (i).

Now we turn to the construction of the set A. Let My, M;,... be a
list of all one-tape Turing machines with input alphabet {0}. Let N be an
enumeration machine that carries out the following simulation. It maintains
a finite active list of descriptions of machines currently being simulated. We
assume that a description of M; suitable for universal simulation is easily
obtained from the index <.

The computation of N proceeds in stages. Initially, the active list is
empty. At stage n, N puts the next machine M,, at the end of the active
list. It then simulates the machines on the active list in order, smallest
index first. For each such M;, it simulates M; on input 0" for f*"=#(2)
steps. It picks the first one that halts within its allotted time and does the
opposite: if M; rejects 0", NV declares 0" € A, and if M; accepts 0™, N
declares 0" ¢ A. This ensures that L(M;) £ A. It then deletes M; from the
active list. If no machine on the active list halts within its allotted time,
then N just declares 0" & A.

This construction ensures that any machine M; that runs In time
F77H(2) i.o. does not accept 4. The machine M; is put on the active list
at stage i. Thereafter, if M; halts within time f*7%(2) on 0™ but is not

"We are regarding fn’i(Z) as a function of n with ¢ a fixed constant. Thus ‘“i.0.” and “a.e.” in this context
meant to be interpreted as “for infinitely many »” and ‘“for all but finitely many »”, respectively.



218

Lecture 32

The Gap Theorem and Other Pathology 219

chosen for deletion, then some higher priority machine on the active list
must have been chosen; but this can happen only finitely many times. So
if M; halts within time f"~%(2) on 0" i.o., then eventually M; will be the
highest priority machine on the list and will be chosen for deletion, say
at stage n. At that point, 07 will be put inte 4 iff 0* & L(M;), ensuring
L{M;) # A. This establishes condition (i) above.

For condition (ii}), we need to show that for all &, A is accepted by a
one-tape TM Nj running in time fn_k(Q) a.e. The key idea is to hard-code
the first m stages of the computation of N in the finite control of N for
some sufliciently large m. Note that for each M;, either

(A) T:{(0™) < f~~%(2) i.o., in which case there is a stage m(4) at which N
deletes M; from the active list; or

(B) T;(0™) > f~~%2) a.e., in which case there is a stage m(i) after which
M; always exceeds its allotted time.

Let m = max;gx m(2). We cannot determine the m(2) or m effectively
(Miscellaneous Exercise 105), but we do know that they exist. The machine
Nj has a list of elements 0" € A for n < m hard-coded in its finite control.
On such inputs, it simply does a table lookup to determine whether 0% € 4
and accepts or rejects accordingly. On inputs 0" for i > m, it simulates the
action of N on stages we+1,m42,... ,n starting with a certain active list,
which it also has hard-coded in its finite control. The active list it starts
with iz N's active list at stage m with all machines M; for ¢ < & deleted.
This does not change the status of 0" € A: for each M; with i < k, in
case A 1t has already been deleted from the active list by stage m, and in
case B it will always exceed its allotted time after stage m, so it will never
be a candidate for deletion. The simulation will therefore behave exactly
as N would at stage m and beyond. The machine Ny can thus determine
whether 0% € A and accept or reject accordingly.

It remains to estimate the running time of N on input 0%, If n < m, Ny
takes linear time, enough time to read the input and do the table lookup. If
n > m, Ni must simulate at most n— & machines on the active list on n—m
inputs, each for at most f*~*=1(2) steps. Under mild assumptions on the
encoding scheme, interpreting the binary representation of the index 7 as a
description of M;, M; has at most logi states, at most logi tape symbols,
and at most log{ transitions in its finite control, and one step of M; can
be simulated in roughly c(logi)? steps of Ni. Thus the total time needed
for all the simulations is at most en(logn)? f*~*=1(2). But

n—k—1
22

en®(logn)? a.e.

)

A 1A

because f(m) > m?,

therefore

en(logn)? F7 4 1(2) (f7F 1202 ae.

<
< FUTENR)
fn_k(Z)

|

There are a few interesting observations we can make about the proof
of Theorem 32.2.

First, the “mild assumptions” on the encoding scheme are inconsequen-
tial. If they are not satisfied, the condition f(m) > m? can be strengthened
accordingly. We only need to know that the overhead for universal simula-
tion of Turing machines is bounded by a total recursive function.

The value m = max;<g m() In the proof of Theorem 32.2 cannot be
obtained effectively. We know that for each M; there exists such an m, but
it is undecidable whether M; falls in case A or case B, so we do not know
whether to delete M; from the active list. Indeed, it 1s Impossible to obtain
a machine for A running in time f*~%(2) effectively from k (Miscellaneous
Exercise 105).



Abstract Complexity Theory

Complexity theory can be[machine-independent!

Instead of referring to TM’s, we state simple axioms
that any complexity measure ® must satisfy.
Example: the Blum axioms:
1) d(M,w) is finite iff M(w) halts; a
2) The predicate “®(M,w)=n" is decidable.

Manuel Blum

Theorem [Blum]: Any complexity measure satisfying these
axioms gives rise to[hierarchy, gap, & speedup}theorems.

Corollary: Space & time measures satisfy these axioms.

AKA “Axiomatic complexity theory [Blum, 1967]



Alternation o [ W
Alternation: generalizes non-determinism, where "« (= &+
each state is either “existential” or “universal”

Stockmeyer ® Chanra

Old: existential states (5) 3 5
New: universal states |v g OB
 Existential state Is accepting Iff any RN HeRe

of its child states Is accepting (OR)

» Universal state Is accepting iff all
of its child states are accepting (AND)

 Alternating computation is a “tree”.
 Final states are accepting

« Non-final states are rejecting

« Computation accepts Iff initial state Is accepting 1
Note: in non-determinism, all states are existential =~ =



Alternation

Theorem: a k-state alternating finite automaton
can be converted into an equivalent 2k-state
non-deterministic FA.

Proof idea: a generalized powerset construction.

Stockmeyer Chanra

Theorem: a k-state alternating finite automaton can be
converted into an equivalent 22" state deterministic FA.

Proof: two composed powerset constructions. i }

Def: alternating Turing machine is an alternating FA
with an unbounded read/write tape.

<+O O O<4—O O

Theorem: alternation does not increase the language
recognition power of Turing machine.

Proof: by simulation.




Alternating Complexity Classes E:
Def: ATIME(t(n))={L | L is decidafMe in s %
time O(t(n)) by some alternat| 1

Def: ASPACE(s(n))={L | \Uable I
space O(s(n)) by some ating TM}

Def: AP = UATI@‘%
AP = alternat& olynomial time

Def: APSPACE = \_J ASPACE(n¥)

vk>1 e

o) M
............
SN e

APSPACE = alternating polynomial space ¢+~



Alternating Complexity Classes [
Def: AEXPTIME = \U ATIME(2")

Stockmeyer  Chandra

Vvk>1

AEXPTIME = alternating exponential time

Def: AEXPSPACE = \_J ASPACE(2")

vk>1

AEXPSPACE = alternating exponential space

Def: AL = ALOGSPACE = ASPACE(logn)
AL = alternating logarithmic space

Note: AP, ASPACE, AL are model-independen



Alternating Space/Time Relations f :

Theorem:

Open: NP =AP ?
=AP?

Open: P

Pc NPcAP

Corollary P=AP — P=NP
ATIME(f(n)) ¢ DSPACE(f(n)) ¢ ATIME(f %(n))

Theorem:

neorem.
neorem.
neorem.
neorem.
neorem.
neorem.

PSPACE = NPSPACE c APSPACE
ASPACE(f(n)) < DTIME(c'™)
AL=P

AP = PSPACE

APSPACE = EXPTIME
AEXPTIME = EXPSPACE

Stockmeyer  Chandra

3)

FROM THE CREATORY SUMMERS
HIT THRILLER SWAKES Ohe A /f COMES:

SN‘ l K E S - ew
=) =
s 5L = R\ N\
TNEP A=~ N S
\\( 4 T
4

_MUCH WORSE THAN LAST TIME. )




Quantified Boolean Formula Problem

Def: Given a fully quantified Boolean formula, where each
variable is quantified existentially or universally, does it
evaluate to “true”?

Example: Is “V X 4y 4z (X A 2) vy’ true?

 Also known as quantified satisfiability (QSAT)
« Satisfiability (one 3 only) is a special case of QBF

Theorem: QBF is PSPACE-complete. /\M

A'.". SR

Proof idea: combination of [Cook] and [Savitch].

Theorem: QBF € TIME(2")
Proof: recursively evaluate all possibilities.

Theorem: QBF € DSPACE(Nn)
Proof: reuse space during exhaustive evaluations.

Theorem: QBF € ATIME(n)
Proof: use alternation to guess and verify formula.

x\




QBF and Two-Player Games

« SAT solutions can be succinctly (polynomially) specified.

« [t is not known how to succinctly specify QBF solutions.

* QBF naturally models winning strategies
for two-player games:

a move for player A
/ \
v moves for player B < V/x X
a move for player A NANZAAN VAN
v moves for player B IS IEN VTS LTI

a move for player A

player A has a winning move!



QBF and Two-Player Games

neorem: Generalizeo
neorem: Generalizeo
neorem: Generalizeo

neorem: Generalizeo

Checkers is EXPTIME-complete ®,
Chess is EXPTIME-complete. 'Y
Go I1s EXPTIME-complete.

B

EEEPSgREER




The Polynomial Hierarchy
Idea: bound # of “existential” / “universal” states

Old: unbounded existential / universal states @y%f:‘l(f;ckmew
New: at most 1| existential / universal alternations izz,/”}" -
Def: a >-alternating TM has at most I runs of ®
quantified steps, starting with existential © QPR 00
Def: a [[;-alternating TM has at most I runs of Q@ Q
v O 0'Qf O O O

quantified steps, starting with universal
Note: I'l;- and ;- alternation-bounded TMs
are similar to unbounded alternating TMs

“V ~
- / \
D=4l O O O
I—\ ’
~_ |t~
yal &Y
3 A
AN
O OI1=50, O O O
I \
\
f |
|
1 |
I 1
OHOIO Y
1 |
1 1
1 1
1
I 1
1
1
1
\ 1
O OO0 O O
1
! 1
|
i 1

Sc-alternating © 'O O



The Polynomial Hierarchy
Def: 3 TIME(t(n))={L | L is decidable within
time O(t(n)) by some >;-alternating TM}

Def: ».SPACE(s(n))={L | L is decidable within o
space O(s(n)) by some >;-alternating TM} N
Def: I, TIME(t(n))={L | L is decidable within SO wm O

time O(t(n)) by some [ .-alternating TM} oy

Def: II.SPACE(s(n))={L | L is decidable within & & & & O
space O(s(n)) by some Il;-alternating TM}  ~ 58 &

Def: »P = U = TIME(nK)

vk>1

Def: 11P = U 11 TIME(n¥)

vk>1 ) oo O




The Polynomial Hierarchy
Def: sPH = U =P

Vi>1

Def: 11PH =\U 1P

Vi>1
Theorem: >PH = T1PH

Def: The Polynomial Hierarchy PH = 2Pl

= Languages accepted by polynomial
time, unbounded-alternations TMs PO QOO0

Theorem: Z,P=T11,P=P

Theorem: ~,P=NP, T1,P=co-NP
Theorem: 2P < >, P, TIPc11,,,P
Theorem: 2P I1..,P, TIPc >, P oRe &




The Polynomial Hlerarchy
Theorem: 2,P < PSPACE

Theorem: I1.P = PSPACE % _
neorem: PH < PSPACE

Open: PH = PSPACE ?
Open: Z,P=2,P 7 < P=NP ?
Open: I1,P=I1,P ? < P=co-NP ? eloNeNeNe
Open: 21P:H1P 7<= NP=co-NP ? O Q O O O
O O O

Open: 2,P=2>,,,Pforany k? |

Infinite number© ©  © © O O
Open: [1,P =TI, ,Pforany K? » srep=np7type <% *
Open: 2, P =T11,P for any k ? ) open problems! Ll A

Theorem: PH = languages expressible by 2"d-order logic 5



The Polynomial Hierarchy

Open: Is the polynomial hierarchy infinite ?

Meyer Stockmeyer

Theorem: If any two successive levels conicide (>, P =2, P

or >, P =11,P for some k) then the entire polynomial
hierarchy collapses to that level (i.e., PH = 2> P =11, P).

Corollary: If P = NP then the entire polynomial hlerarchy
collapses completely (i.e., PH =P = NP). 7

Theorem: P=NP < P=PH

-Il.ll';pluﬂinnwuldnurﬁ

Corollary: To show P#£NP, it suffices to show P#P"ﬁi :
Theorem: There exist oracles that separate >, P = >, P.

Theorem: PH contains almost all well-known complexity
classes in PSPACE, including P, NP, co-NP, BPP, RP, etc.



The Extended Chomsky Hierarchy Reloaded
(o2 [ ‘Decidable Presburger arithmetic\N
ey ‘EXPSPACE A

|| [ EXPTIME A
g[[ CQ | [PSPACE PH
C— il ol Contextisgnsiive L BA
'Lé @ ] o[PS NP B h
S |5 .EJ& Slle
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Dense Infinite time & space complexity hierarchies
Other infinite complexity & descriptive hierarchies



Probabilistic Turing Machines
Idea: allow randomness / coin-flips during computation

Old: states
New: random states changes via coin-flips %’
 Each coin-flip state has two successor states

Def: Probability of branch B is Pr[B] = 2%
where Kk 1s the # of coin-flips along B. {

Def: Probability that M accepts w Is sum of
the probabilities of all accepting branches.

Def: Probability that M rejects w IS
1 — (probability that M accepts w).

Def: Probability that M accepts L with probability ¢ if:
we L = probability(M accepts w) = 1-¢
w¢ L = probability(M rejects w) > 1-¢




Probabilistic Turing Machines

Def: BPP 1s the class of languages accepted by ey
probabilistic polynomial time TMs with error € =1/3.

Note: BPP Bounded-error Probabilistic Polynomial time

Theorem: any error threshold 0<e<1/2 can be substituted.
Proof idea: run the probabilistic TM multiple times
and take the majority of the outputs.

Theorem [Rabin, 1980]: Primality testing is in BPP.
Theorem [Agrawal et al., 2002]: Primality testing is in P.
Note: BPP 1s one of the largest practical classes S
of problems that can be solved effectively. ‘ s

Theorem: BPP is closed under complement (BPP=co-BPP).
Open: BPP < NP ?
Open: NP c BPP ?




Probabilistic Turing Machines
neorem: BPP < PH

neorem: P=NP = BPP=P

neorem: NP < BPP = PH < BPP
Note: the former is unlikely, since this would imply efficient
randomized algorithms for many NP-hard problems.

Def: A pseudorandom number generator (PRNG) Is an
algorithm for generating number sequences that
approximates the properties of random numbers.

“Anyone who considers arithmetical

Theorem: The existance of strong [ methods of producing random digits
. ] IS, of course, in a state of sin.”
PRNGs implies that P=BPP.

/R
Welalad%e]sl Neumann



The Extended Chomsky Hierarchy Reloaded
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Complexity Zoo

Introduction

Welcome to the Complexity Zoo... There are now(489 classes and counting!

This information was originally moved from http://www.complexityzoo. com/ &
in August 2005, and is currently under the watchful eyes of its original
creators:

Zookeeper: Scott Aaronson
Veterinarian: Greg Kuperberg

Tour Guide: Christopher Granade what's your problem? &

Errors? Omissions? Misattributions? Your favorite class not here? Then
please contribute to the zoo as you see fit by signing up and clicking on the edit links. Please include references, or
better yet links to papers if available.

To create a new class, click on the edit link of the class before or after the one that you want to add and copy the format
of that class. (The classes are alphabetized by their tag names.) Then add the class to the table of contents and
increment the total number of classes. After this, you can use the side edit links to edit the individual sections. For more
on using the wiki language, see our simple wiki help page.

If you would like to contribute but feel unable to make the updates yourself, email the zookeeper at scott at
scottaaronson.com.
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