Problem: Give as many proofs as you can for the Pythagorean Theorem. i.e., $a^{2}+b^{2}=c^{2}$ holds for any right triangle with sides $\mathrm{a} \& \mathrm{~b}$ and hypotenuse c .


Problem: Does the Pythagorean theorem generalize to arbitrary figures on the sides of a right triangle?


## Problem: compute $111111111^{2}$ in your head.

## Problem: What is the approximate value of:

$$
\left(1+9^{\wedge}\left(-\left(4^{\wedge}\left(7^{*} 6\right)\right)\right)\right)^{\wedge}\left(3^{\wedge}\left(2^{\wedge} 85\right)\right) \approx ?
$$

Problem: Does every closed simple curve contain the vertices of an equilateral triangle?


## A Simple Closed Curve!



## Project Idea: TSP Art

- Traveling Salesperson Tour
- Optimal is NP-complete So use heuristics
- Convert image to B\&W
- Sample image density to obtain a pointset
- Run TSP heuristics
- Can use minimum spanning trees (easy to compute)
- Can also use minimum matchings (easy to compute) - What about colors?



## Project Idea: Turing Machine Simulator

Ex 1: Using software (with a GUI)
Ex 2: Using Lego!


See: http://www.youtube.com/watch?v=cYw2ewoO6c4

## Historical Perspectives

## Godfrey Hardy (1877-1947)

- Mathematician: contributed to analysis, number theory, physics, and genetics
- Wrote "A Mathematician's Apology" which popularized mathematics
- Discovered \& mentored Ramanujan


A Mathematician's Apology
With a Foreword by C. P. Snow
G.H.HARDY


## Historical Perspectives

Srinivasa Ramanujan (1887-1920)

- Mathematician: contributed to number theory, analysis, infinite series \& continued fractions
- Studied math on his own in isolation
- Proved 3,900 theorems
- Influenced many other fields, including physics
- Inspired generations of mathematicians
- Entire mathematical societies and journals are devoted to his work!


THE LOST NOTEBOOK AND OTHER UNYUBLSHED PAPERS

## SRINIVASA RAMANUJAN



> THE MAN
> WHO KNEW INFINITY



## Journal of The RAMANUJAN Mathematical Society

Editokial Board<br>Editon - in - Chief:<br>V. Kumar Murty

Associate Editons:
D.Prasad
R.Parimala

Shankar Sen
K.Paranjape

Ravi S.Kulkarni
D.Ramakrishnan
M.Pavaman Murthy

Managing Editor: E. Sampathkumar

MEMBERS' COPY NOT FOR SALE

## Published by

THE RAMANUJAN MATHEMATICAL SOCIETY INDIA


SPONSERED BY: NATIONAL BOARD FOR higher mathematics

EDTORIABEOARD
S. PONNUSAMY (Chief Editor) I. BHATTACHARYYA R.L. KARANDIKAR M. KRISHNA S. KUMARESAN R. PARVATHAM SHIVA SHANKAR SHOBHA MADAN A. VIJAYAKUMAR G.P. YOUVARAJ


## Lessons from Ramanujan's Lost Notebook



George Eyre Andrews
Pennsylvania State University President Elect, American Mathematical Society

## Awards:

- Allegheny Region Distinguished Teaching Award, MAA
- Elected Member, American Academy of Arts \& Sciences
- Elected Member, National Academy of Sciences
- MAA Polya Lecturer

ABSTRACT

In 1976 quite by accident, I stumbled across a collection of about 100 sheets of mathematics in Ramanujan's handwriting; they were stored in a box in the Trinity College Library in Cambridge. I titled this collection "Ramanujan's Lost Notebook" to distinguish it from the famous notebooks that he had prepared earlier in his life. On and off for the past 32 years, I have studied these wild and confusing pages. Some of the weirder results have yielded entirely new lines of discovery. Sometimes, if you pay close attention, you can gain some possible insights about the searches that Ramanujan undertook and the questions he must have asked himself. Even if such speculations may be far from Ramanujan's actual thinking, they are nonetheless valuable exercises to undertake. Some of these filights of fancy will form the topics in this talk.

THURSDAY, JANUARY 15, 2009 AT 1:00 PM LEBOW ENGINEERING CENTER (31ST \& MARKET STREETS) HILL CONFERENCE ROOM 240

THIS EVENT IS FREE AND OPEN TO STUDENTS, FACULTY, AND STAFF REFRESHMENTS WILL BE SERVED AT 12:45 PM

George E. Andrews Bruce C. Berndt

## Ramanujan's

Lost Notebook Part I

"The Hardy-Ramanujan Springer

## Number"

## G. H. Hardy on Ramanujan:

"I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. 'No,' he replied, 'it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways.'’

$$
\begin{aligned}
& \text { A Fermat "near-miss": } \\
& \qquad 1729=9^{3}+10^{3}=12^{3}+1^{3}
\end{aligned}
$$


"My greatest contribution to mathematics was discovering Ramanujan." - G. H. Hardy
"Ramanujan's theorems must be true, because, if they were not true, no one would have the imagination to invent them."

- G. H. Hardy, upon first seeing Ramanujan's results

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}} .
$$

$$
\int_{0}^{\infty} \frac{1+x^{2} /(b+1)^{2}}{1+x^{2} /(a)^{2}} \times \frac{1+x^{2} /(b+2)^{2}}{1+x^{2} /(a+1)^{2}} \times \cdots d x=\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma\left(b-a+\frac{1}{2}\right)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(b-a+1)} .
$$

$$
\frac{1}{1+\frac{e^{-2 \pi}}{1+\frac{e^{-4 \pi}}{1+\ldots}}}=\left(\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{\sqrt{5}+1}{2}\right) e^{2 \pi / 5}=e^{2 \pi / 5}(\sqrt{\varphi \sqrt{5}}-\varphi)=0.9981
$$

$$
1+9\left(\frac{1}{4}\right)^{4}+17\left(\frac{1 \times 5}{4 \times 8}\right)^{4}+25\left(\frac{1 \times 5 \times 9}{4 \times 8 \times 12}\right)^{4}+\cdots=\frac{2^{\frac{3}{2}}}{\pi^{\frac{1}{2}} \Gamma^{2}\left(\frac{3}{4}\right)}
$$

$$
\left[1+2 \sum_{n=1}^{\infty} \frac{\cos (n \theta)}{\cosh (n \pi)}\right]^{-2}+\left[1+2 \sum_{n=1}^{\infty} \frac{\cosh (n \theta)}{\cosh (n \pi)}\right]^{-2}=\frac{2 \Gamma^{4}\left(\frac{3}{4}\right)}{\pi}
$$

$$
1-5\left(\frac{1}{2}\right)^{3}+9\left(\frac{1 \times 3}{2 \times 4}\right)^{3}-13\left(\frac{1 \times 3 \times 5}{2 \times 4 \times 6}\right)^{3}+\cdots=\frac{2}{\pi}
$$





## Historical Perspectives

Frank Ramsey (1903-1930)

- Contributed to mathematics, decision theory, game theory, logic, philosophy, economics
- Pioneered Ramsey theory
- Was Wittgenstein's Ph.D. advisor
- Influenced Church, von Neumann, Keynes

- Died at age 26


Second Edition


RONALD L. GRAHAM
RUDIMENTS OF RAMSEY THEORY



# Problem: Show that any group of six people contains 

 either 3 mutual friends or 3 mutual strangers.Q : Is this true for $\mathrm{N}=5$ ?


No mono-chromatic triangles

## Brute force approach?



78 possible friends-strangers graphs with 6 nodes

A more elegant approach is needed!

Problem: Show that any group of six people contains either 3 mutual friends or 3 mutual strangers.

## Pigeon-hole principle!



6 is said to be the "Ramsey number" $R(3,3)$.
Theorem: any group of 18 people contains either 4 mutual friends or 4 mutual strangers. $R(4,4)=18$

## Ramsey Theory

- $R(3,3)=6$ is the tip of a deep mathematical theory.

Theorem [Ramsey]: For any pair of positive integers $b$ and $r$, there exists a least positive integer $R(b, r)$ such that any complete graph over $R(b, r)$ vertices, where each edge is colored either blue or red, contains a monochromatic clique of size $b$ or $r$.

- Ramsey theory seeks "order" among "chaos": i.e., even "random" graphs / configurations still contain regular and predictable sub-structures.
- Pigeon-hole principle is a special case!


## Other known Ramsey numbers (and bounds):

| $\boldsymbol{r}, \boldsymbol{s}$ |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 3 |  | 5 | 6 | 7 | 8 | 9 | 10 |
| 3 | 1 |  | (6) $=R$ | 9 | 14 | 18 | 23 | 28 | 36 | 40-43 |
| 4 | 1 | 4 | 9 | 18 | 25 | 35-41 | 49-61 | 56-84 | 73-115 | 92-149 |
| 5 | 1 | 5 | 14 | 25 | 43-49 | 58-87 | 80-143 | 101-216 | 125-316 | 143-442 |
| 6 | 1 | 6 | 18 | 35-41 | 58-87 | 102-165 | 113-298 | 127-495 | 169-780 | 179-1171 |
| 7 | 1 | 7 | 23 | 49-61 | 80-143 | 113-298 | 205-540 | 216-1031 | 233-1713 | 289-2826 |
| 8 | 1 | 8 | 28 | 56-84 | 101-216 | 127-495 | 216-1031 | 282-1870 | 317-3583 | $\leq 6090$ |
| 9 | 1 | 9 | 36 | 73-115 | 125-316 | 169-780 | 233-1713 | 317-3583 | 565-6588 | 580-12677 |
| 10 | 1 | 10 | 40-43 | 92-149 | 143-442 | 179-1171 | 289-2826 | $\leq 6090$ | 580-12677 | 798-23556 |

'Imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for R(6,6). In that case, we should attempt to destroy the aliens." - Paul Erdös (1913-1996)

## Generalizations of Ramsey numbers

- Multi-colors: only known non-trivial exact value is $\mathrm{R}(3,3,3)=17$ E.g.: 16-node graph containing no mono-chromatic triangles:


Extra credit: prove that $R(3,3,3)=17$

- Hypergraphs (where "edges" can be vertex subsets of size $>2$ )
- Infinite graphs (which imply the finite cases as a corollary)


## Pigeon-Hole Principle

- J. Dirichlet (1834) - "Drawer principle" - "Shelf Principle" - "Box principle"


Theorem (pigeon-hole): There is no injective (1-to-1) function from a finite set (domain) to a smaller finite set (range).

## Generalization:

N objects placed in M containers; then:

- at least 1 container must hold $\geqslant\left\lceil\frac{\mathrm{N}}{\mathrm{M}}\right\rceil$
- at least 1 container must hold $\leq\left\lfloor\frac{\mathrm{N}}{\mathrm{M}}\right\rfloor$



## Historical Perspectives

## David Hilbert (1862-1943)

- One of the most influential mathematicians
- Developed invariant theory, Hilbert spaces
- Axiomatized geometry, "Hilbert's axioms"
- Co-founded proof theory, mathematical logic, meta-mathematics, \& formalist school
- Created famous list of 23 open problems that greatly impacted mathematics research
- Defended Cantor's transfinite numbers
- Contributed to relativity theory \& physics
- Hilbert's students included Courant, Hecke, Lasker, Weyl, Ackermann, and Zarmelo
- Influenced Russell, Gödel, Church, \& Turing John von Neumann was Hilbert's assistant!



## Hilbert's Impact

- Hilbert's axioms
- Hilbert class field
- Hilbert C*-module
- Hilbert cube
- Hilbert symbol
- Hilbert function
- Hilbert inequality
- Hilbert matrix
- Hilbert metric
- Hilbert number
- Hilbert polynomial
- Hilbert's problems
- Hilbert's program
- Hilbert-Poincaré series
- Hilbert space
- Hilbert spectrum
- Hilbert transform
- Hilbert's Arithmetic of Ends
- Hilbert's constants
- Hilbert's irreducibility theorem
- Hilbert's Nullstellensatz
- Hilbert's hotel paradox
- Hilbert's theorem
- Hilbert's syzygy theorem
- Hilbert-style deduction system
- Hilbert-Pólya conjecture
- Hilbert-Schmidt operator
- Hilbert-Smith conjecture
- Hilbert-Speiser theorem
- Einstein-Hilbert action
- Hilbert curve

Hilbert curve:


## Hilbert's Problems

International Congress of Mathematics, Paris, 1900

- David Hilbert proposed 23 open problems
- Most successful open problems compilation ever
- Set the direction for $20^{\text {th }}$ century mathematics
- Hilbert's problems received much attention to date
- Several have been resolved (e.g., Continuum hypothesis)
- Others still open (e.g., Riemann hypothesis)
- Catalyzed other open problems lists:
- Clay Institute's Millennium Prize problems - DARPA Mathematical Challenges, 2009


Mathematical developments arising from HILBERT PROBLEMS

## Introduction from Hilbert's Lecture

"Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the next advances of our science and at the secrets of its development during future centuries? What particular goals will there be toward which the leading mathematical spirits of coming generations will strive? What new methods and new facts in the wide and rich field of mathematical thought will the new centuries disclose?

History teaches the continuity of the development of science. We know that every age has its own problems, which the following age either solves or casts aside as profitless and replaces by new ones. If we would obtain an idea of the probable development of mathematical knowledge in the immediate future, we must let the unsettled questions pass before our minds and look over the problems which the science of today sets and whose solution we expect from the future. To such a review of problems the present day, lying at the meeting of the centuries, seems to me well adapted. For the close of a great epoch not only invites us to look back into the past but also directs our thoughts to the unknown future.

The deep significance of certain problems for the advance of mathematical science in general and the important role which they play in the work of the individual investigator are not to be denied. As long as a branch of science offers an abundance of problems, so long is it alive; a lack of problems foreshadows extinction or the cessation of independent development. Just as every human undertaking pursues certain objects, so also mathematical research requires its problems. It is by the solution of problems that the investigator tests the temper of his steel; he finds new methods and new outlooks, and gains a wider and freer horizon.

It is difficult and often impossible to judge the value of a problem correctly in advance; for the final award depends upon the gain which science obtains from the problem. Nevertheless we can ask whether there are general criteria which mark a good mathematical problem. An old French mathematician said: "A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to the first man whom you meet on the street." This clearness and ease of comprehension, here insisted on for a mathematical theory, I should still more demand for a mathematical problem if it is to be

## The Honors Class

Hilbert's Problems and Their Solvers


Ben H. Yandell perfect; for what is clear and easily comprehended attracts, the complicated repels us.

## Hilbert's Problems

Problem 1: The continuum hypothesis (conjectured by Georg Cantor: there is no set whose cardinality is strictly between those of the integers and the reals)
Status: The continuum hypothesis was proven by Gödel (1939) and Cohen (1963) to be independent of (i.e., impossible to prove or disprove) Zermelo-Frankel set theory. Related open questions remain (e.g., regarding the generalized continuum hypothesis), and there is still much active research in this area.

Problem 2: Prove the axioms of arithmetic are consistent.
Status: Gödel (1931) proved that the consistency of Peano arithmetic can not be proven within Peano arithmetic itself. Gödel also proved that every consistent formal axiomatic system is incomplete. Gentzen (1936) proved the consistency Peano arithmetic within a different system (that is weaker than set theory).


## Hilbert's Problems

Problem 3: Given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second?
Status: Proved via counter-example to be impossible by Hilbert's student Dehn (1901). The Wallace-BolyaiGerwien theorem (1807): in 2D this is always possible for polygons of equal areas.

Problem 4: Construct all metrics where lines are geodesics.
Status: Too vague for a definite answer.
Problem 5: Are continuous groups automatically differential groups?

Status: Resolved in the negative by von Neumann (1929), Pontryagin (1934), Gleason-Montgomery-Zippin (1950's), and Yamabe (1953).


## $\frac{v_{5}}{\sqrt{5 l-3}} \Leftrightarrow$

## $\sum_{\substack{2 / 2}} \underset{B}{ }$

<
Wallace-Bolyai-Gerwien
Dissections

$5 / 2^{-9}$


LC-6
LC-7

LC-6/2
4


G-8


## Hilbert's Problems

Problem 6: Axiomatize all of physics.
Status: Since Hilbert stated this problem in 1900, relativity theory was developed by Einstein (1905 and 1915), as was quantum mechanics by Dirac (1920's), followed by other more modern approaches, e.g. quantum field theory, the standard model, quantum gravity, and string theory. Hilbert himself made significant contributions to relativity and physics, but his original problem/goal of axiomatizing all of physics remains mostly open.

Problem 7: Is $a^{b}$ transcendental, for algebraic $a \neq 0,1$ and
 irrational algebraic $b$ ?
Status: Shown to be true by Gelfond and Schneider (1934), even for complex $a$ and $b$. This proves that, e.g.,

$$
\begin{array}{llll}
\mathrm{e}^{\pi} & \mathrm{i}^{\mathrm{i}} & 2^{\sqrt{2}} & \sqrt{2}^{\sqrt{2}}
\end{array}
$$

are all transcendental. But many similar problems remain open, such as the trancendance (or even the irrationality) of $\pi^{\mathrm{e}}, 2^{\mathrm{e}}$, or even $\pi+\mathrm{e}$ and $\pi / \mathrm{e}$.

STRING THEORY SUMMARIZED:
1 JUST HAD AN AWESOME IDEA.
SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS:"




Puppet Theoretical Physics


Science


String Theory



Quantum mechanics.
(c) OriginalArtist
-Reproduction rights obtainable from

"What are you talking about? how can you have half a quantum theory?"

BROTHERS AND SISTERS, AT THE TIME OF $10^{-33}$ SECONDS AFTER THE BIG BANG, THE HEAT WA ENORMOUS. ${ }^{\circ}$ VERILY IT WAS OVER


## Hilbert's Problems

Problem 8: The Riemann hypothesis (the real part of any non-trivial zero of the Riemann zeta function is $1 / 2$ ) and Goldbach's conjecture (every even number > 2 can be written as the sum of two primes).
Status: Both the Reimann hypothesis (1859) and Goldbach's conjecture (1742) remain open to this day. The Reimann hypothesis has many far-reaching

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$ implications in mathematics, logic, and computer science. It was numerically verified for the first ten trillion zeroes, and appears on the Millennium Prize list ( $\$ 1 \mathrm{M}$ bounty) as well as the ARPA Mathematical Challenges List. The Goldbach conjecture was verified for the first $10^{18}$ values.

Problem 9: Find most general law of the reciprocity theorem in any algebraic number field.
Status: Partially solved by Artin (1924), Takagi \& Hass and Shafarevich (1948); still some open issues.

Evidence for Goldbach's conjecture: the number of distinct ways to write an even number as the sum of two primes (computational data for $4<\mathrm{n}<1,000,000$ ):



Theorem (Jingrun, 1973): Every sufficiently large even number can be written as either the sum of two primes, or the sum of a prime and a product of two primes.

Series in Pure Mathematics - Volume 4
The
Goldbach Conjecture Second Edition

Yuan Wang




Firactal Geometry, Complex Dimensions and Zeta Functions

Proceedings of the Conterencence
in Memory of Tsuneo $\mathfrak{A r a k a w a}$

## AUTOMORPHIC FORMS AND ZETA FUNCTIONS



Marcus du Sautoy Luke Woodward

Forms of Fermat Equations and Their Zeta Functions
of Groups and Rings


Series Associated with the Zeta and Related Functions


## RIEMAW HYPOTHESIS IS PROBABLY TRUE NOW STOP WORRYING AND GET A GIRLFRIEND




No Preniun User. Please solve the Rienann Hypothesis.

$$
\left.\pi(x)-\int_{0}^{x} \frac{\mathrm{~d} t}{\ln (t)} \right\rvert\,=\mathcal{O}\left(x^{1 / 2+\varepsilon}\right)
$$

Solution: $\square$ Download via Teleglobe

## Clay Mathematics Institute

## Dedicated to increasing-and disseminating mathematical knowledge

HOME | ABOUT CMI | PROGRAMS | NEWS \& EVENTS | AWARDS | SCHOLARS | PUBLICATIONS

## Millennium Problems

In order to celebrate mathematics in the new millennium, The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven Prize Problems. The Scientific Advisory Board of CMI selected these problems, focusing on important classic questions that have resisted solution over the years. The Board of Directors of CMI designated a $\$ 7$ million prize fund for the solution to these problems, with $\$ 1$ million allocated to each. During the Millennium Meeting held on May 24, 2000 at the Collège de France, Timothy Gowers presented a lecture entitled The Importance of Mathematics, aimed for the general public, while John Tate and Michael Atiyah spoke on the problems. The CMI invited specialists to formulate each problem.

One hundred years earlier, on August 8, 1900, David Hilbert delivered his famous lecture about open mathematical problems at the second International Congress of Mathematicians in Paris. This influenced our decision to announce the millennium problems as the central theme of a Paris meeting.

The rules for the award of the prize have the endorsement of the CMI Scientific Advisory Board and the approval of the Directors. The members of these boards have the responsibility to preserve the nature, the integrity, and the spirit of this prize.

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs NP
- Poincaré Conjecture
- Riemann Hypothesis
- Yang-Mills Theory
- Rules
- Millennium Meeting Videos



## Hilbert's Problems

Problem 10: Find an algorithm that determines whether a given Diophantine (i.e., multi-variable polynomial) equation has any integer solutions.
Ex: $x^{2}+y^{2}=z^{2}$ has many integer solutions
(Pythagorean theorem, e.g., $x=3, y=4, z=5$ )
$x^{9}+y^{9}=z^{9}$ has no integer solutions (corollary of Fermat's Last Theorem, conjectured in 1637, proved in 1995 by Andrew Wiles)
Many attempts at solution \& partial results: Emil Post (1944), Martin Davis (1949), Julia Robinson (1950), Hilary Putnam (1959)


Martin Davis


## Hilbert's Tenth Problem

Solving even simple Diophantine equations is hard:
$\mathrm{Q}: \exists$ an integer solution for $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=29$ ?
A: Yes: $x=3, y=1, z=1$
$\mathrm{Q}: \exists$ an integer solution for $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=30$ ?
A: Yes: $x=2220422932, y=-2218888517, z=-283059965$
$\mathrm{Q}: \exists$ an integer solution for $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=33$ ?
A: still unknown!
Q : Is $\left\{\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3} \mid \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbb{Z}\right\}=\mathbb{Z}$ ?
A: still unknown!
$\mathrm{Q}:$ Is $\left\{\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3} \mid \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbb{Z}\right\}$ Turing-decidable?
A: still unknown!
Theorem [Lagrange]: $\left\{\mathrm{w}^{2}+\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \mid \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbb{Z}\right\}=\mathbb{Z}$ http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/matb0100.htm

## Hilbert's Tenth Problem

## Theorem [Matiyasevich, 1970]: Every

 Turing-enumerable set is Diophantine (i.e., the solutions of some polynomial) Ex: the set of primes coincides exactly with the positive values of this 26 -variable polynomial:$$
\begin{aligned}
& (k+2)\left(1-[w z+h+j-q]^{2}-[(g k+2 g+k+1)(h+j)+h-z]^{2}\right. \\
& -\left[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}\right]^{2}-[2 n+p+q+z-e]^{2} \\
& -\left[e^{3}(e+2)(a+1)^{2}+1-o^{2}\right]^{2}-\left[\left(a^{2}-1\right) y^{2}+1-x^{2}\right]^{2} \\
& -\left[16 r^{2} y^{4}\left(a^{2}-1\right)+1-u^{2}\right]^{2}-[n+l+v-y]^{2}-\left[\left(a^{2}-1\right) l^{2}+1-m^{2}\right]^{2} \\
& -[a i+k+1-l-i]^{2}-\left[\left(\left(a+u^{2}\left(u^{2}-a\right)\right)^{2}-1\right)(n+4 d y)^{2}+1\right. \\
& \left.-(x+c u)^{2}\right]^{2}-\left[p+l(a-n-1)+b\left(2 a n+2 a-n^{2}-2 n-2\right)-m\right]^{2} \\
& -\left[q+y(a-p-1)+s\left(2 a p+2 a-p^{2}-2 p-2\right)-x\right]^{2} \\
& \left.-\left[z+p l(a-p)+t\left(2 a p-p^{2}-1\right)-p m\right]^{2}\right)
\end{aligned}
$$

as $a, b, c, \ldots, z$ range over the nonnegative integers!

## Hilbert's Tenth Problem

 Corollary [Matiyasevich, 1970]: There is a fixed "universal" polynomial P such that for any Turing-enumerable set $S$ there exists an integer $\mathrm{n}_{0}$ such that$S=\left\{w \mid \exists x_{1}, x_{2}, \ldots, x_{k} \ni P\left(n_{0}, w, x_{1}, x_{2}, \ldots, x_{k}\right)=0\right\}$ i.e., there is a fixed polynomial that can "output" any computable set, depending on one parameter. This is an analogue of a universal Turing machine!


## Hilbert's Tenth Problem

Q: What is the minimum Diophantine degree and dimension (i.e., number of variables) of a given Turing-enumerable set?

Theorem [Skolem]: degree 4 suffices.
Theorem [Matiyasevich]: dimension 9 suffices.
But there is a dramatic tradeoff between the degree and the number of variables.

$$
\begin{aligned}
& (k+2)\left(1-[w z+h+j-q]^{2}-[(g k+2 g+k+1)(h+j)+h-z]^{2}\right. \\
& -\left[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}\right]^{2}-[2 n+p+q+z-e]^{2} \\
& -\left[e^{3}(e+2)(a+1)^{2}+1-o^{2}\right]^{2}-\left[\left(a^{2}-1\right) y^{2}+1-x^{2}\right]^{2} \\
& -\left[16 r^{2} y^{2}\left(a^{2}-1\right)+1-u^{2}\right]^{2}-[n+l+v-y]^{2}-\left[\left(a^{2}-1\right) l^{2}+1-m^{2}\right]^{2} \\
& -[a i+k+1-l-i]^{2}-\left[\left(\left(a+u^{2}\left(u^{2}-a\right)\right)^{2}-1\right)(n+4 d y)^{2}+1\right. \\
& \left.-(x+c u)^{2}\right]^{2}-\left[p+l(a-n-1)+b\left(2 a n+2 a-n^{2}-2 n-2\right)-m\right]^{2} \\
& -\left[q+y(a-p-1)+s\left(2 a p+2 a-p^{2}-2 p-2\right)-x\right]^{2} \\
& \left.-\left[z+p l(a-p)+t\left(2 a p-p^{2}-1\right)-p m\right]^{2}\right)
\end{aligned}
$$

This is analogous to finding small universal TMs (where there is a tradeoff between the alphabet size and the number of states).

From "Undecidable Diophantine Equations" by James P. Jones, Bulletin of the American Mathematical Society, vol 2, No 3, 1980, pp. 859-862.

## Tradeoff between degree and the number of variables in universal polynomials:

## Examples:

## 58 variables \& degree <br> 4 suffice 28 variables \& degree 20 suffice 19 variables \& degree 2668 suffice 14 variables \& degree $\sim 10^{5}$ suffice 13 variables \& degree $\sim 10^{43}$ suffice 9 variables \& degree $\sim 10^{45}$ suffice

## Corollary: 100 additions and/or multiplications suffice to "prove" any provable proposition.

## Catch: using very large integers!

function appear. Next these are eliminated so that we obtain a system of purely polynomial equations.

Theorem 3. In order that $x \in W_{\langle z, u, y)}$, it is necessary and sufficient that the following system of equations has a solution in positive integers.

$$
\begin{gathered}
e l g^{2}+\alpha=(b-x y) q^{2}, \quad q=b^{500}, \lambda+q^{4}=1+\lambda b^{5}, \\
\theta+2 z=b^{5}, l=u+t \theta, e=y+m \theta, n=q^{16}, \\
r=\left[g+e q^{3}+l q^{5}+\left(2(e-z \lambda)\left(1+x b^{5}+g\right)^{4}+\lambda b^{5}+\lambda b^{5} q^{4}\right) q^{4}\right]\left[n^{2}-n\right] \\
+\left[q^{3}-b l+l+\theta \lambda q^{3}+\left(b^{5}-2\right) q^{5}\right]\left[n^{2}-1\right], \\
p=2 w s^{2} r^{2} n^{2}, p^{2} k^{2}-k^{2}+1=\tau^{2}, 4\left(c-k s n^{2}\right)^{2}+\eta=k^{2}, \\
k=r+1+h p-h, a=\left(w n^{2}+1\right) r s n^{2}, \\
c=2 r+1+\varphi, d=b w+c a-2 c+4 \alpha \gamma-5 \gamma, d^{2}=\left(a^{2}-1\right) c^{2}+1, \\
f^{2}=\left(a^{2}-1\right) i^{2} c^{4}+1,(d+o f)^{2}=\left(\left(a+f^{2}\left(d^{2}-a\right)\right)^{2}-1\right)(2 r+1+j c)^{2}+1 .
\end{gathered}
$$

The equations of Theorem 3 have twenty eight unknowns, $a, b, c, d, e, f$, $g, h, i, j, k, l, m, n, o, p, q, r, s, t, w, \alpha, \gamma, \eta, \theta, \lambda, \tau, \varphi$. The degree is $5^{60}$, however the equation $q=b^{560}$ can be replaced by certain others of low degree. In fact, by introducing some 30 additional unknowns and new equations one can reduce the degree of the system to 2 . Then, by transposing terms to one side and summing squares one can construct a universal diophantine equation in 58 unknowns and degree 4.

Alternatively one may try instead to reduce the total number of unknowns, $\boldsymbol{v}$. In [6] Julia Robinson and Ju. Matijasevič showed that $\boldsymbol{v}$ can be reduced universally to 13. More recently Matijasevič [5] has improved this to $v=9$. The corresponding value of the degree, $\delta$ is however very large. The following table gives various simultaneous possibilities for $\delta$ and $v$, sufficient for a universal equation.

| THEOREM $v=58$ | $\begin{aligned} & \text { The fo } \\ & \delta=4 \end{aligned}$ | iversal. $v=21,$ | $\delta=96$ |
| :---: | :---: | :---: | :---: |
| $\nu=38$, | $\delta=8$ | $v=19$, | $\delta=2668$ |
| $v=32$, | $\delta=12$ | $v=14$, | $\delta=2.0 \times 10^{5}$ |
| $v=29$, | $\delta=16$ | $\nu=13$, | $\delta=6.6 \times 10^{43}$ |
| $v=28$, | $\delta=20$ | $v=12$, | $\delta=1.3 \times 10^{44}$ |
| $v=26$, | $\delta=24$ | $v=11$, | $\delta=4.6 \times 10^{44}$ |
| $\nu=25$, | $\delta=28$ | $v=10$, | $\delta=8.6 \times 10^{44}$ |
| $v=24$, | $\delta=36$ | $v=9$, | $\delta=1.6 \times 10^{45}$ |

## Hilbert's Tenth Problem

Q: Find an algorithm that determines whether a given Diophantine (i.e., multi-variable polynomial) equation has any integer solutions. rational
A: Still open!

## CLAY MATHEMATICS INSTITUTE

## March 15-16, 2007

One Bow Street, Cambridge, Massachusetts

## Conference on Hilbert's

Tenth Problem
Thursday, March 15
9:00 Coffee
9:15-9:25 Constance Reid, Genesis of the Hilbert Problems
9:25-10:00 George Csicsery, Film clip on life and work of Julia Robinson, discussion
10:15-11:15 Bjorn Poonen, Why number theory is hard 11:30-12:30 Yuri Matiyasevich, My collaboration with Julia Robinson
2:30-3:30
3:45-4:45
7:30

Co-Sponsored by the Mathematical Sciences Research Institute and the UCBerkeley Department of Mathematics

## Aullá Notrufon

A film by George Csicsery

Wednestay, April 30, 2008 7 pm to 9 pm

Hoom 2050 (Chan Shun Auditorium) in the Valley Life Sciences Building at UC Berkeley

Post-screening panel discussion with Constance Reid (sister and biographer of Julia Robinson), filmmaker George Csicsery, and mathematicians Martin Davis, Dana Scott and Bjom Poonen. Moderated by Alan Weinstein, UCB Math Dept. Chair.

The story of an American mathematician and her passionate pursuit and triumph over an unsolved problem.

Hibert's loti Prootem (1900): is there an algorithm for dociaing whether a colynomial equation with integor
coefficients has an inteqer solition?

8:30
9:00-10:00
What was done and what is to be done
10:15-11:15 Bjorn Poonen, Thoughts about the analogue for
11:30-12:30 Alexandra Shlapentokh, Diophantine generation, horizonta and vertical problems, and the weak vertical method
Break for lunch
2:00-3:00 Yuri Matiyasevich, Computation paradigms in the light of
3:15-4:15 Gunther Cornelisson, Hard number-theoretical problems and elliptic curves
$\begin{array}{ll}\text { 4:30-5:30 } & \begin{array}{l}\text { and elliptic curves } \\ \text { Kirsten Eisentrager, Hilbert's Tenth Problem for algebraic } \\ \text { function fields }\end{array}\end{array}$
www.claymath.org


Museum of Science.
mos.org


Hilbert's 10th Problem (1900): is there an algorithm for
deciding whether a polynomial equation with integer coefficients has an integer solution? coefficients has an integer solution?

$$
x^{2}-\left(a^{2}-1\right) y^{2}=1
$$

MUSEUM OF SCIENCE • SCIENCE PARK, BOSTON, MA 02114 • T. 6177232500 CLAY MATHEMATICS INSTITUTE • ONE BOW STREET, CAMBRIDGE, MA 02138 • T. 6179952600 • general@claymath.org

## Hilbert's Problems

Problem 11: Solving quadratic forms with algebraic numerical coefficients.
Status: Partially solved by Hasse (1923).
Problem 12: Extend the Kronecker-Weber theorem on abelian extensions of the rational numbers to any base number field.
Status: Still unsolved.
Problem 13: Solve all 7 -th degree equations using functions of two parameters.
Status: Partially solved by Kolmogorov (1956), Arnold (1957), and Shimura (1976).

Problem 14: Proof of the finiteness of certain complete systems of functions.
Status: Counter-examples found by Nagata (1959).


## Hilbert's Problems

Problem 15: Find a rigorous foundation for Schubert's enumerative calculus.
Status: Partially resolved.
Problem 16: Topology of algebraic curves and surfaces.
Status: Open-ended: some results, but unresolved.
Problem 17: Expression of definite rational function as quotient of sums of squares
Status: Resolved in the affirmative by Artin (1927) and Delzel (1984).


## Hilbert's Problems

Problem 18: Is there a non-regular, space-filling polyhedron? What is the densest sphere packing?
Status: Anisohedral tilings were found in 3D by Reinhardt (1928), and for 2D by Heesch (1935).

Sphere packing in 3D (Kepler's problem, 1611) was solved by Toth (1953) and Hale (1998). Regular sphere packing in 24 dimensions was solved by Cohn and Kumar (2004), where the "kissing number" is $196,560$. Many related open problems remain, including nonregular, non-uniform, and ellipsoid packings.


## Aperiodic Tilings

Goal: tile the entire plane without overlaps, non-periodically

- Non-periodic tiling is not equal to a translation of itself - Aperiodic tile set admits only non-periodic tilings
"Kites and Darts" 2-tile aperiodic set, Roger Penrose, 1974



Open question:
$\exists$ a single-tile 2D aperiodic tiling?

## Aperiodic Tilings

Penrose tilings in architecture and design:


## Aperiodic Tilings

"Pinwheel tiling", John Conway and Charles Radin, 1992

- Tiles occur in infinitely many orientations, with uniform distribution!
- Despite irrational edge lengths and incommensurable angles, all vertices of tiles have rational coordinates!




# Aperiodic Tilings <br> "Pinwheel tiling", John Conway and Charles Radin, 1992 

## SCIENCE

Bathroom tiling to drive you mad



## 3D Aperiodic Tilings

Goal: tile all of 3D space non-periodically
"Quaquaversal" non-periodic tiling of 3D space,
John Conway and Charles Radin, 1998

- Generalization of 2D Pinwheel tiling

$\mathrm{Q}: \exists$ a single-tile aperiodic 3D tiling?
(i.e., that does not admit any periodic tiling?)

A: Yes! (yet this is still open for 2D)

Aperiodic 3D Tiling
The Schmitt-Conway
"biprism" tiles 3D space aperiodically using 1 convex tile!


This is more than Hilbert asked for, since the biprism tiling is also anisohedral, and with an infinite number of tile orientations!


## Undecidability of Tiling Problem

Q [Wang, 1961]: Is there an algorithm for determining whether a given set of tiles can tile the entire plane? (Tiles can not be rotated)

Wang gave a decision algorithm for periodic tilings (and falsely assumed that non-periodic tilings do not exist).

Theorem [Berger, 1966]: Tiling is undecidable.
Proof idea: A tiling can "simulate" an arbitrary Turing computation.
Berger discovered a set of 20,426 Wang tiles that can tile the plane only aperiodically, and conjectured that smaller sets exist.
Theorem [Culik, 1996]: The following 13 tiles is an aperiodic tiling set.


## Aperiodic Tiling for Texure Generation



## Recursive Wang Tiles for Real-Time Blue Noise




Zooming into a stippled non-photorealistic rendering Each image shows a subset of the same implicitly infinite point set while zooming in, more points are shown to of the point set was evaluated for each image


Interactive texture painting application. The user controls the placement of textons by directly painting individual density maps for different texton classes using various brushes. The high speed of our technique allows computing the instance positions on-the-fly from the density maps only where needed at any given time.


## 3D "Wang Cubes"

Generalizations to higher dimensions: "Wang cubes" 16 Wang cubes and a partial aperiodic 3D tiling:


Applications in graphics:

- Texture generation
- Volume rendering
- Video synthesis
- Geometry placement
- Self assembly


# Wang Cubes for Fast Geometry Placement \& Video Synthesis 

Peter G. Sibley ${ }^{\dagger}$, Philip Mongomery, G. Elisabeta Marai

## 1. Abstract

We present an extension of Cohen's Wang Tiles to three dimensions: Wang Cubes. Cubes are filled with video or Poisson distributed points to perform realtime video synthesis or geometry placement. Video synthesis from a sample is useful for generating dynamic backgrounds for games or special effects but costly in terms of storage and runtime. Randomly positioning nonwe propose geometry is useful for simulations and games but also costly runtime, large amounts of synthesized video, or Poisson distributed geometry

## 2. Methods

Cohen et al. introduced a fast and simple stochastic algorithm to plane with as few as eight Wang Tiles (oriented squares with color associated edges). Cohen et al used these tilings for texture synthesis and 2 D geometry placement.

We extend these applications to the 3D case, where cubes with colored faces replace tiles. 32 cubes are sufficient to tile space The extended tiling algorithm lerates through the space, placing The 32 cubes contain either Poisson ball distributed points or Poisson ball distributed points or
video data and are tiled at runtime to generate large stretches of 3 D geometry or video sequences.

To place geometry data, we use dart-throwing to fill each cube with Poisson distributed points. Several iterations of Lloyd's elaxation are applied to prevent oints near boundaries from onstrint in tiling nstraint in tiling

To fill the cubes with video data, we cut six octahedra from the video stream and stitch them together through the graph cut method of Kwatra et al. Then, the result is trimmed into a cube Figure 3). Each original ctahedron is associated with a face color. A xy plane in this cube corresponds to a frame of video and the z axis corresponds to time (Figure 4).


Figure 2: Aligning face colors of Wang Cubes


## 3. Geometry Results



As a geometry placement application, we modeled the asteroid belt of Saturn with 5958 asteroids (Figure 6) constructed from 3972 tiled cubes with 15 points in each cube. The asteroids are placed according to a Poisson distribution in this large area (Figures 7 and 8). It only took 15 minutes to precompute the
cubes, and under 20 seconds to tile them. Note that filling the same region with dart throwing is simply infeasible. Teapot geometry and sheep billboard distributions are shown in Figures 9 and 11. These tests were performed on an AMD Athlon XP 1800 with 512MB of memory.


Figure 8: An overhead of

4. Video Results

We constructed a cube set ( $64 * 64^{*} 64$ voxels per cube) from a video of simulated shallow poo caustics. Three vertical horizontally are shown in Figure 10. Note how the vertical seam in the middle of each frame is nvisible. An infinite caustics pool both in space and time) could be generated in this manner.
In order to keep our computation feasible, we constrained the cuts to lie near the intersecting triangles of the octahedra. We have noticed temporal artifacts in the videos, a growing and shrinking square-discontinuity We believe these are caused by constrained cuts and small cube sizes


Figure 10: Vertical slices from two tiled Wang cubes. Note the
invisible

## 5. Discussion and Future Work

For video synthesis, we restricted the space searched for a min-cut surface, sacrificing quality of the cut for faster execution. Also, because of computational constraints we could only use quite small cube sizes approximate the cut could yield much lower preprocessing, which would allow for less constrained cuts and eliminate temporal artifacts. Incorporating newer texture synthesis techniques could produce better quality cubes.


## References

Cohen, M.F., Shade, J.,.Hiller.S., and Deussen. 0.2003.
Wang tiles for image and texure generation. ACM Trans
image and texdure generation. $A C M$ Trans. Graph. 2,3,287-294. Graphait textures: Image and video synthesis using graph auts. ACM Trans. Graph. 22,3,27-286.

## Aperiodic Tilings

## "Kites and Darts"

Roger Penrose, 1974

(1)


 lec a
 $1-1-1-1$



 - 1 .


 Le $1+1+1+1+1+1+1+1+1$


 1- 1010101

## Aperiodic Tilings

"Pentagon, Boat, and Star"
Roger Pentose, 1974


$$
\begin{aligned}
& \text { 1- 太 }
\end{aligned}
$$



Aperiodic Tilings
"Penrose
Rhombuses"


$$
\begin{aligned}
& \Leftrightarrow \rightarrow \\
& \sim \rightarrow
\end{aligned}
$$




## Aperiodic Tilings

"Ammann A4"
Robert Ammann, 1977

$+1+4$
$4+2$

"Ammann
Beekner"

Robert Ammann,
1977
b

Aperiodic Tilings
"Ammann Beekner
Rhomb triangle
Robert Ammann, 1977
$\triangle \mathbb{A}$ $\nabla \nabla$

## $\square$ R

 $4 \sim 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$













 $\sim_{1}$


## "Binary"

F. Lançon, 1988

## $\rightarrow 4$ <br> $\infty$ $\omega$

 artery










 cay-

Aperiodic Tilings
"Colored Golden
Triangle"

Ludwig Danzer and G. van
Ophuysen $1-\lambda$
$n$

Aperiodic Tilings
"Conch"

G. Rauzy, 1982

$$
\square \rightarrow-\Delta
$$

$$
\rightarrow \rightarrow \Delta \Delta \rightarrow \nabla
$$

$\Delta \rightarrow \Delta-\infty$

## Aperiodic Tilings

"Cubic Pinwheel"
E. Harriss



Aperiodic Tilings
"Danzer 7-fold"
K.-P. Nischke and Ludwig Danzer, 1996

,


## Aperiodic Tilings

"Golden Pinwheel"
D. Frettlöh


Tiles occur in infinitely many orientations!


## Aperiodic Tilings <br> "Harriss’s 9-fold rhomb" <br> E. Harriss <br> 



## Aperiodic Tilings

"Kenyon 2 Polygonal" R. Kenyon


1


Aperiodic Tilings
"Kite-Domino'
D. Frettlöh and M. Baake, 1994 Coses)
"

Aperiodic Tilings
"Lord"
E. Lord



Aperiodic Tilings
"Maloney's 7-fold"
G. Maloney



## Aperiodic Tilings

"Nautilus"
P. Arnoux,
M. Furukado,
E. Harriss, and S. Ito

$$
\begin{aligned}
& n \rightarrow \ \backslash-\Delta \\
& \rightarrow \rightarrow \Delta \rightarrow \\
& \rightarrow \text { - }-\downarrow
\end{aligned}
$$




Aperiodic Tilings
"Pinwheel"
John Conway and C. Radin

Tiles occur in infinitely many orientations!

Despite irrational edge lengths and incommensurable angles, all vertices of tiles have rational coordinates!


Aperiodic Tilings

## "Pinwheel-3-1"

L. Sadun, 1998

## $\rightarrow$ <br> $\Delta \rightarrow$




Aperiodic Tilings
"Pythagoras-3-1"
J. Pieniak
$\Delta \quad \longrightarrow \quad \Delta$
$\Delta \quad \longrightarrow$
$\Delta \rightarrow \Delta$














Aperiodic Tilings
"Pythia-3-1"
D. Frettlöh

## $\stackrel{\rightharpoonup}{1}$ <br> $\rightarrow$, <br> $\rightarrow$

Tiles occur in infinitely many orientations with statistical
equidistribution!


## Aperiodic Tilings

"Watanabe Ito Soma 12-fold" Y. Watanabe,
T. Soma and M. Ito, 1995


## Aperiodic Tilings

"Watanabe Ito Soma 12-fold (variant)" Y. Watanabe,
T. Soma and M. Ito, 1995


Aperiodic Tilings
E

Aperiodic Tilings
"Tuebingen Triangle"
R. Lück, M. Baake M. Schlottmann 1990
 1

$$
8
$$

## Aperiodic Tilings

"Rorschach"
B. Sing, 2007

$$
\begin{aligned}
& \triangle \rightarrow \\
& \rightarrow \rightarrow \\
& \Delta \rightarrow \\
& \square \rightarrow \$
\end{aligned}
$$



## Aperiodic Tilings

"Shield"
F. Gähler, 1988
$\Delta \rightarrow Q$
$\Delta \rightarrow Q$
$D-Q$
$D \rightarrow Q$


## Aperiodic Tilings

"Smallest Pisot (dual)"

E. Harriss

Aperiodic Tilings "Socolar"
J. E. S. Cocolar, 1989




Aperiodic Tilings

## "Sqrt6 Triangles"

D. Walton

$$
\begin{aligned}
& \Delta \rightarrow \Delta \\
& \nabla \rightarrow \theta \\
& \forall \rightarrow A
\end{aligned}
$$

Tiles occur in infinitely many orientations with statistical equidistribution!




## Aperiodic Tilings

"Tipi-3-1" D. Frettlöh $\therefore \Delta$
$\rightarrow \Delta$
$\rightarrow \Delta$ c

## Aperiodic Tilings

## "Triangle Due"

L. Danzer and C. GoodmanStrauss

## $\Delta \rightarrow \Delta$

 $\Delta \rightarrow$.Tiles occur in infinitely many orientations!

## Aperiodic Tilings

"Triangle Due
(single mirror)"
$\Delta \rightarrow \Delta$
$\Delta \rightarrow \Delta$


Aperiodic Tilings
"Triangle Due (twin mirror)"
$\triangle \rightarrow \Delta$

4



## Aperiodic Tilings

"Pinwheel variant (13 tiles)"
I. Suschko

"Pinwheel-1-2"
I. Suschko




## Aperiodic "Tangram"

I. Suschko

"Tetris"
I. Suschko


## Aperiodic Tilings

"Trihex"
Folklore

"Wheel Tiling"
H.U. Nissen
 8
 Lu 1 a are racer
 Mr M H M H H M
 $1 \times 1$ Hu *

 rar wrew 1.40



## Hilbert's Problems

Problem 19: Are solutions of Lagrangians always analytic? Status: Resolved in the affirmative by Bernstein (1904). Problem 20: Do all variational problems with certain boundary conditions have solutions?
Status: Resolved in the affirmative.
Problem 21: Proof of the existence of linear differential equations having a prescribed monodromic group Status: Resolved by Plemelj (1908), Schlesinger (1964), Dekkers (1978), and Bolibrukh (1989).

Problem 22: Uniformization of analytic relations by means of automorphic functions Status: Resolved.

Problem 23: Further development in calculus of variations Status: Unresolved.

# ©N.com/technology 

HOME WORLD U.S. POLITICS CRIME ENTERTAINMENT
Google-

Hot Topics " CES • iPhone • Mars Exploration * Solutions * Science • more topics »

## EDBE of ${ }^{2}$ DISCOVERY

updated 5:33 p.m. EDT, Tue October 14, 2008

## DARPA invests in math

## STORY HIGHLIGHTS

- Mathematicians being offered new challenges designed to "revolutionize" math
- One challenge is solving the Reimann Hypothesis, unsolved since before 1900
- New math could propel other sciences, including biology, computing, physics

Next Article in Technology "

## DARPA Mathematical Challenges

It's rare for mathematicians to be publicly challenged with solving the problems of the universe. In 1900, David Hilbert issued 23 iconic problems; in 2000, the Clay Mathematics Institute offered the Millennium Prize Problems; and DARPA's were

## The latest set of challenges

In 2007, the Defense Advanced Research Projects Agency (DARPA) issued 23 mathematical
challenges in order to "dramatically [revolutionize] mathematics and thereby [strengthen] the scientific and technological capabilities of [the Department of Defense.]" CNN spoke with John Etnyre, a professor of mathematics at the Georgia Institute of
Technology, to get an inside look at some of these challenges and why the mathematical community is interested in them.

Etnyre, who specializes in low-dimensional topology and geometry, says he finds the fluids and 4D problems on DARPA's list to be especially interesting, and he is considering tackling those challenges himself.



[^0]Most Viewed
Most Emailed
Top Searches

## DARPA＇s Mathematical Challenges

22．Settle the Smooth Poincare Conjecture in Dimension 4


国 17．Geometric Langlands and Quantum Physics
国 15．The Geometry of Genome Space


11．Optimal Nanostructures

## ＂DARPA－hard＂problems！

http：／／www．gogeometry．com／mindmap／darpa＿mathematical＿challenges＿elearning．html http：／／www．mathisfunforum．com／viewtopic．php？id＝10753

## DARPA's Mathematical Challenges

1: The Mathematics of the Brain: Develop a mathematical theory to build a functional model of the brain that is mathematically consistent and predictive rather than merely biologically inspired.

2: The Dynamics of Networks: Develop the high-dimensional mathematics needed to accurately model and predict behavior in large-scale distributed networks that evolve over time occurring in communication, biology and the social sciences.

3: Capture and Harness Stochasticity in Nature: Address Mumford's call for new mathematics for the 21st century. Develop methods that capture persistence in stochastic environments.

4: 21st Century Fluids: Classical fluid dynamics and the Navier-Stokes Equation were extraordinarily successful in obtaining quantitative understanding of shock waves, turbulence and solitons, but new methods are needed to tackle complex fluids such as foams, suspensions, gels and liquid crystals.

5: Biological Quantum Field Theory: Quantum and statistical methods have had great success modeling virus evolution. Can such techniques be used to model more complex systems such as bacteria? Can these techniques be used to control pathogen evolution?

6: Computational Duality: Duality in mathematics has been a profound tool for theoretical understanding. Can it be extended to develop principled computational techniques where duality and geometry are the basis for novel algorithms?

## DARPA's Mathematical Challenges

7: Occam's Razorfin Many Dimensions: As data collection increases can we "do more with less" by finding lower bounds for sensing complexity in systems? This is related to questions about entropy maximization algorithms.

8: Beyond Convex Optimization: Can linear algebra be replaced by algebraic geometry in a systematic way?

9: What are the Physical Consequences of Perelman's Proof of Thurston's Geometrization Theorem? Can profound theoretical advances in understanding three dimensions be applied to construct and manipulate structures across scales to fabricate novel materials?

10: Algorithmic Origami and Biology: Build a stronger mathematical theory for isometric and rigid embedding that can give insight into protein folding.

11: Optimal Nanostructures: Develop new mathematics for constructing optimal globally symmetric structures by following simple local rules via the process of nanoscale self-assembly.

12: The Mathematics of Quantum Computing, Algorithms, and Entanglement: In the last century we learned how quantum phenomena shape our world. In the coming century we need to develop the mathematics required to control the quantum world.

13: Creating a Game Theory that Scales: What new scalable mathematics is needed to replace the traditional Partial Difterential Equations (PDE) approach to differential games?

## DARPA's Mathematical Challenges

14: An Information Theory for Virus Evolution: Can Shannon's theory shed light on this fundamental area of biology?

15: The Geometry of GenomeSpace: What notion of distance is needed to incorporate biological utility?

16: What are the Symmetries and Action Principles for Biology? Extend our understanding of symmetries and action principles in biology along the lines of classical thermodynamics, to include important biological concepts such as robustness, modularity, evolvability and variability.

17: Geometric Langlands and Quantum Physics: How does the Langlands program, which originated in number theory and representation theory, explain the fundamental symmetries of physics? And vice versa?

18: Arithmetic Langlands, Topology, and Geometry: What is the role of homotopy theory in the classical, geometric, and quantum Langlands programs?

19: Settle the Riemann Hypothesis: The Holy Grail of number theory.
20: Computation at Scalle: How can we develop asymptotics for a world with massively many degrees of freedom?

21: Settle the Hodge Conjecture: This conjecture in algebraic geometry is a metaphor for transforming transcendental computations into algebraic ones.

## DARPA's Mathematical Challenges

22: Settle the Smooth Poincare Conjecture in Dimension 4: What are the implicauons for space-time and cosmology? And might the answer unlock the secret of "dark energy"?

23: What are the Fundamental Laws of Biology? This question will remain front and center for the next 100 years. DARPA places this challenge last as finding these laws will undoubtedly require the mathematics developed in answering several of the questions listed above.


[^0]:    - STORIES

