
Historical Perspectives

Kurt Gödel (1906-1978)
• Logician, mathematician, and philosopher

• Proved completeness of predicate logic

and Gödel’s incompleteness theorem

• Proved consistency of axiom of choice

and the continuum hypothesis

• Invented “Gödel numbering”

and “Gödel fuzzy logic”

• Developed “Gödel metric” and 

paradoxical relativity solutions:

“Gödel spacetime / universe”

• Made enormous impact on logic, 

mathematics, and science









Gödel’s Incompleteness Theorem
Frege & Russell:
• Mechanically verifying proofs
• Automatic theorem proving

A set of axioms is:
• Sound: iff only true statements can be proved
• Complete: iff any statement or its negation can be proved
• Consistent: iff no statement and its negation can be proved

Hilbert’s program: find an axiom set for all of mathematics
i.e., find a axiom set that is consistent and complete

Gödel: any consistent axiomatic system is incomplete!
(as long as it subsume elementary arithmetic)

i.e., any consistent axiomatic system must contain true but 
unprovable statements

Mathematical surprise: truth and provability are not the same!



Gödel’s Incompleteness Theorem
That some axiomatic systems are incomplete
is not surprising, since an important axiom may 
be missing (e.g., Euclidean geometry without 
the parallel postulate)

However, that every consistent axiomatic system must be
incomplete was an unexpected shock to mathematics! 
This undermined not only a particular system (e.g., logic),
but axiomatic reasoning and human thinking itself!

Truth = Provability

Justice = Legality



Gödel’s Incompleteness Theorem
Gödel: consistency or completeness - pick one!

Which is more important?

Incomplete: not all true statements can be proved.
But if useful theorems arise, the system is still useful.

Inconsistent: some false statement can be proved.
This can be catastrophic to the theory:

E.g., supposed in an axiomatic system we proved that “1=2”.
Then we can use this to prove that, e.g., all things are equal!
Consider the set: {Bush, Pope}

| {Bush, Pope} | = 2

 | {Bush, Pope} | = 1 (since 1=2)

 Bush = Pope QED

 All things become true: system is “complete” but useless!



Gödel’s Incompleteness Theorem

Moral: it is better to be consistent than complete,
If you can not be both.

“It is better to be feared than loved, if you cannot be both.”  
- Niccolo Machiavelli (1469-1527), “The Prince”

“You can have it good, cheap, or fast – pick any two.”

- Popular business adage 



Gödel’s Incompleteness Theorem
Thm: any consistent axiomatic system is incomplete!

Proof idea:

• Every formula is encoded uniquely as an integer

• Extend “Gödel numbering” to formula sequences (proofs)

• Construct a “proof checking” formula P(n,m) such that 
P(n,m) iff n encodes a proof of the formula encoded by m

• Construct a self-referential formula that asserts its own 
non-provability: “I am not provable”

• Show this formula is neither provable 
nor disprovable

George Boolos (1989) gave shorter proof 
based on formalizing Berry’s paradox

The set of true statements is not R.E.!





Gödel’s Incompleteness Theorem
Systems known to be complete and consistent:
• Propositional logic (Boolean algebra)
• Predicate calculus (first-order logic) [Gödel, 1930]
• Sentential calculus [Bernays,1918; Post, 1921]
• Presburger arithmetic (also decidable)

Systems known to be either inconsistent or incomplete:
• Peano arithmetic
• Primitive recursive arithmetic
• Zermelo–Frankel set theory
• Second-order logic

Q: Is our mathematics both consistent and complete?
A: No [Gödel, 1931]

Q: Is our mathematics at least consistent?
A: We don’t know!  But we sure hope so.



Gödel’s “Ontological Proof” that God exists!

Formalized Saint Anselm's ontological 

argument using modal logic:

For more details, see:

http://en.wikipedia.org/wiki/Godel_ontological_proof







Historical Perspectives

Alonzo Church (1903-1995)
• Founder of theoretical computer science

• Made major contributions to logic

• Invented Lambda-calculus, Church-Turing Thesis

• Originated Church-Frege Ontology, Church’s theorem

Church encoding, Church-Kleene ordinal, 

• Inspired LISP and functional programming

• Was Turing’s Ph.D. advisor! Other students: 

Davis, Kleene, Rabin, Rogers, Scott, Smullyan

• Founded / edited Journal of Symbolic Logic

• Taught at UCLA until 1990; published “A Theory 

of the Meaning of Names” in 1995, at age 92!



http://fp.bakarika.net/




Historical Perspectives

Alan Turing (1912-1954)
• Mathematician, logician, cryptanalyst, 

and founder of computer science

• First to formally define computation / algorithm

• Invented the Turing machine model

- theoretical basis of all modern computers

• Investigated computational “universality”

• Introduced “definable” real numbers

• Proved undecidability of halting problem

• Originated oracles and the “Turing test”

• Pioneered artificial intelligence

• Anticipated neural networks

• Designed the Manchester Mark 1 (1948)

• Helped break the German Enigma cypher

• Turing Award was created in his honor







Bletchley Park (“Station X”), Bletchley, Buckinghamshire, England

England’s code-breaking and cryptanalysis center during WWII



“Bombe” - electromechanical computer designed by Alan Turing.

Used by British cryptologists to break the German Enigma cipher









Program for ACE computer
hand-written by Alan Turing











Another famous belated apology:



Turing’s Seminal Paper

≡

“On Computable Numbers, with an Application to the
Entscheidungsproblem”, Proceedings of the London 
Mathematical Society, 1937, pp. 230-265.

• One of the most influential & significant papers ever!

• First formal model of “computation”

• First ever definition of “algorithm”

• Invented “Turing machines”

• Introduced “computational universality”
i.e., “programmable”!

• Proved the undecidability of halting problem

• Explicates the Church-Turing Thesis





Turing



































Turing’s insight:
simple local actions 
can lead to arbitrarily 
complex computations!



See: http://www.youtube.com/watch?v=cYw2ewoO6c4

Lego Turing Machines

http://www.youtube.com/watch?v=cYw2ewoO6c4


Lego Turing Machines



Babbage’s difference engine

“Mechano” Computers



Tinker Toy Computers

Plays 
tic-tac-toe!



Tinker Toy Computers



Mechanical Computers



Hydraulic Computers

Resistor

Voltage source
or inductor

Diode

Transistor

Simple circuit



Hydraulic Computers

Wire

Resistor

Transistor

Capacitor

Diode

Simple
circuit

Theorem: fluid-based “circuits” 
are Turing-complete / universal!

http://upload.wikimedia.org/wikipedia/commons/f/f2/Electrionics_Analogy_-_Pipe_%28Wire%29.svg
http://upload.wikimedia.org/wikipedia/commons/5/5d/Electrionics_Analogy_-_Valve_%28Diode%2C_conducting%29.svg
http://upload.wikimedia.org/wikipedia/commons/0/0c/Electrionics_Analogy_-_Reduced_Pipe_%28Resistor%29.svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Electrionics_Analogy_-_Flexible_Tank_%28Capacitor%29.svg
http://upload.wikimedia.org/wikipedia/commons/d/d3/Electrionics_Analogy_-_Pressure-activated_valve_%28Transistor%29.svg
http://upload.wikimedia.org/wikipedia/commons/0/04/Electrionics_Analogy_-_Example_Circuit.svg
http://upload.wikimedia.org/wikipedia/commons/3/38/Electrionics_Analogy_-_Valve_%28Diodes_comparison%29.svg








Theorem [Turing]: the set of algorithms is countable.

Proof: Sort algorithms  programs by length:

“main(){}”

“main(){int n; n=13;}”

“<UNIX OS>”

“<Windows Vista>”

“<super intelligent program>”

 set of algorithms is countable!

1

10100

9372

10999

1010100

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.













Theorem [Turing]: the set of functions is not countable.

Theorem: Boolean functions {ƒ|ƒ:ℕ{0,1}} are uncountable.

Proof: Assume Boolean functions were countable; i.e., 
$ table containing all of ƒi’s and their corresponding values:

ƒi ƒi(1) ƒi(2) ƒi(3) ƒi(4) ƒi(5) ƒi(6) ƒi(7) ƒi(8) ƒi(9)

ƒ1 0 0 0 0 0 0 0 0 0 …

ƒ2 1 1 1 1 1 1 1 1 1 …

ƒ3 0 1 0 1 0 1 0 1 0 …

ƒ4 1 1 0 1 0 0 0 1 0 …

ƒ5 0 1 1 0 1 0 1 0 0 …

… … … … … … … … … … …

1 0 1 0 0 ƒ’:ℕ{0,1}

But ƒ’ is missing from our table! ƒ’  ƒk " kℕ
 table is not a 1-1 correspondence between ℕ and ƒi’s
 contradiction  {ƒ | ƒ:ℕ{0,1} } is not countable!
 There are more Boolean functions than natural numbers!

ƒ’(i) = . . .



Theorem: the set of algorithms is countable.
Theorem: the set of functions is uncountable.
Theorem: the Boolean functions are uncountable.

Corollary: there are “more” functions than algorithms / programs.

Corollary: some functions are not computable by any algorithm!

Corollary: most functions are not computable by any algorithm!

Corollary: there are “more” Boolean functions than algorithms.

Corollary: some Boolean functions on ℕ are not computable.

Corollary: most Boolean functions on ℕ are not computable.



Theorem: most Boolean functions on ℕ are not computable.

Q: Can we find a concrete example of an uncomputable function?

A [Turing]: Yes, for example, the Halting Problem.

Definition:  The Halting problem: given a program P and input I,

will P halt if we ran it on I?  

Define H:ℕℕ{0,1}

H(P,I)=1 if TM P halts on input I

H(P,I)=0 otherwise

Notes: 

• P and I can be encoded as integers, in some canonical order.

• H is an everywhere-defined Boolean function on natural pairs.

• Alternatively, both P and I can be encoded as strings in Σ*.

• We can modify H to take only a single input: H’(2P3I) or H’(P$I) 

Gödel numbering / encodingWhy 2P3I ?
What else will work?



Theorem [Turing]: the halting problem (H) is not computable.

Corollary: we can not algorithmically detect all infinite loops.

Q: Why not?  E.g., do the following programs halt?

main()
{ int k=3; }

main()
{ while(1) {} }

Halts! Runs forever! ?

main()
{ Find a Fermat

triple an+bn=cn

with n>2 }

Runs forever!
Open from 1637-1995!

main()
{ Find a Goldbach

integer that is not a 
sum of two primes }

?
Still open since 1742!

Theorem: solving the halting problem is at least as 

hard as solving arbitrary open mathematical problems!



Number of steps to termination 
for the first 10,000 numbers

Theorem [Turing]: the halting problem (H) is not computable.

Ex: the “3X+1” problem (the Ulam conjecture):

• Start with any integer X>0

• If X is even, then replace it with X/2

• If X is odd then replace it with 3X+1

• Repeat until X=1 (i.e., short cycle 4, 2, 1, ...)

Ex: 26 terminates after 10 steps

27 terminates after 111 steps

Termination verified for X<1018

Q: Does this terminate for every X>0 ?

A: Open since 1937!

“Mathematics is not yet ready for such confusing, 

troubling, and hard problems." - Paul Erdős, who 

offered a $500 bounty for a solution to this problem

Observation: termination is 

in general difficult to detect!



Theorem [Turing]: the halting problem (H) is not computable.

Proof: Assume $ algorithm S that solves the halting problem 

H, that always stops with the correct answer for any P & I.
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 S cannot exist! (at least as an algorithm / program / TM)

Using S, construct algorithm / TM T:

 T(T) halts

 T(T) does not halt

T(T) does not halt



Q: When do we want to feed a program to itself in practice?

A: When we build compilers.

Q: Why?

A: To make them more efficient!

To boot-strap the coding in the compiler’s own language!

Program
C

compiler

Executable
code



Theorem: virus detection
is not computable.

Theorem: Infinite loop 
detection is not computable.



One of My Favorite Turing Machines

“Kindle DX” wireless reading device
• 1/3 of an inch thin, 4GB memory

• holds 3,500 books / documents 

• 532 MHz ARM-11 processor

• 9.7" e-ink auto-rotate 824x1200 display

• Full PDF and text-to-speech

• 3G wireless, < 1 min / book

• 18.0 oz, battery life 4 days
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Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!

Generalized Numbers



Theorem: Some real numbers are not finitely describable.
Proof: The number of finite descriptions is countable.

The number of real numbers is not countable.
 Most real numbers do not have finite descriptions.

Theorem: Some finitely describable reals are not computable.
Proof: Let h=0.H1H2H3H4… where Hi=1 if i=2P3I for some 
integers P&I, and TM P halts on input I, and Hi=0 otherwise.
Clearly 0 < h < 1 is a real number and is finitely describable.
If h was computable, then we could exploit an algorithm that 
computes it, into solving the halting problem, a contradiction.  
 h is not computable.

Gödel numbering / encoding



Theorem: all computable numbers are finitely describable.
Proof: A computable number can be outputted by a TM.

A TM is a (unique) finite description.

What the unsolvability of the Halting Problem means:

There is no single algorithm / program / TM that correctly
solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

• Incorrectness on some instances

• Infinitely large algorithm / program

• Infinite number of finite algorithms / programs

• Some instances to not be solved

• Infinite “running time” / steps

• Powerful enough oracles



Oracles

• Originated in Turing’s Ph.D. thesis

• Named after the “Oracle of Apollo” 

at Delphi, ancient Greece

• Black-box subroutine / language

• Can compute arbitrary functions

• Instant computations “for free”

• Can greatly increase computation power of basic TMs

E.g., oracle for halting problem 



The “Oracle of Omaha”



The “Oracle” of the Matrix



• A special case of “hyper-computation”

• Allows “what if” analysis: assumes certain

undecidable languages can be recognized

• An oracle can profoundly impact the

decidability & tractability of a language

• Any language / problem can be

“relativized” WRT an arbitrary oracle

• Undecidability / intractability exists even 

for oracle machines!

Turing Machines with Oracles

Theorem [Turing]: Some problems are still not computable, 
even by Turing machines with an oracle for the halting problem!



Theorem [Turing]: the halting problem (H ) is not computable.

Proof: Assume $ algorithm S that solves the halting problem 

H, that always stops with the correct answer for any P  & I.
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Q ~Q  Contradiction!
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 S cannot exist! (at least as an algorithm / program / TM)

Using S, construct algorithm / TM T :

 T (T ) halts

 T (T ) does not halt

T (T ) does not halt
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H

Add to P an H-oracle:

P*

P* is “relativized” P.
S* is “relativized” S.
T* is “relativized” T.

*

*

* *

The halting problem for 
TMs with an H-oracle is
not computable by TM’s 
with an H-oracle!



Ø 

• Turing (1937); studied by Post (1944) and Kleene (1954)

• Quantifies the non-computability (i.e., algorithmic
unsolvability) of (decision) problems and languages

• Some problems are “more unsolvable” than others!

Turing Degrees

Emil Post
1897-1954

Alan Turing
1912-1954

Stephen Kleene
1909-1994

Students of 
Alonzo Church:

H
H

H*

Turing degree 0Turing degree 1Turing degree 2

• Defines computation 
“relative” to an oracle.

• “Relativized computation”
- an infinite hierarchy!

• A “relativity theory
of computation”!

Georg Cantor
1845-1918



• Turing degree of a set X is the set of all Turing-equivalent

(i.e., mutually-reducible) sets: an equivalence class [X]

• Turing degrees form a partial order / join-semilattice

• [0]: the unique Turing degree containing all computable sets

• For set X, the “Turing jump” operator X’ is the set of indices   

of oracle TMs which halt when using X as an oracle

• [0’]: Turing degree of the halting problem H; [0’’]: Turing 

degree of the halting problem H* for TMs with oracle H.

Turing Degrees

Emil Post
1897-1954

Alan Turing
1912-1954

Stephen Kleene
1909-1994

Students of 
Alonzo Church:

Turing 
jump

Turing 
jump



Turing Degrees

Emil Post
1897-1954

Alan Turing
1912-1954

Stephen Kleene
1909-1994

Students of 
Alonzo Church:

Turing 
jump

Turing 
jump

• Each Turing degree is countably infinite (has exactly 0 sets)

• There are uncountably many (20) Turing degrees

• A Turing degree X is strictly smaller than its Turing jump X’

• For a Turing degree X, the set of degrees smaller than X is

countable; set of degrees larger than X is uncountable (20)

• For every Turing degree X there is an incomparable degree 

(i.e., neither X  Y nor Y  X holds).

• There are 20  pairwise incomparable Turing degrees

• For every degree X, there is a degree D strictly between X

and X’ so that X < D < X’ (there are actually 0 of them)

The structure of the Turing degrees 

semilattice is extremely complex!
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