

A New Distributed System for **Large-Scale Sequence Analysis**

www.cs.virginia.edu Douglas Blair and Gabriel Robins

Presented at Intelligent Systems for Molecular Biology, August 19-23, 2000, San Diego, CA

omputer Science and Applied Science University of Virginia

{dmb4x, robins}@cs.virginia.edu

Bioinformatics

Data Avalanche

Yesterday

Today

Genomes and Proteomes

~588,000 ~4,600,000	
~4,600,000	
	4,28
~11,000,000	~6,60
~86,000,000	~14,30
~137,000,000	~13,50
~3,100,000,000	~30,000-60,00
	~86,000,000 ~137,000,000 ~3,100,000,000

Many other higher organisms' genomes being sequenced

Runaway Growth

Growth of GenBank

Paradigm Shift

Old Sequence Analysis Paradigm

Record new experimentally derived sequence Compare to known sequences in database Determine statistical significance of comparison scores Deduce biological and evolutionary relationships

New Sequence Analysis Paradigm:

Genomics and Comparative Genomics

Challenges

Computation grows quadratically with data volume

· Current parallel implementations scale poorly

Solution: Break the Data Bottleneck

Data Transmitted

Old vs. New

Data ≅ Work ◀ Data << Work -- "Square" tasks minimize data/computation</p> Data expansion takes as long as or longer than comparison operations Data expansion relatively inexpensive - compression becomes worthwhile Entire library required everywhere simultaneously (Poor NFS server...) Tasks self-contained, compact, independent - exquisitely parallel Parallelism constrained to number of machines not starved for data Parallelism constrained only by the available number of machines

Paves the way for Massively Parallel Computation e processors encourages use of more sensitive, computationally demanding techniques

Implementation & Results

Test Platform: Parabon Frontier

"Determine never to be idle. No person will have occasion

Thomas Jefferson, May 5, 178

Scalability

CPUs

Future Directions

Further Smith-Waterman optimizations

- Investigation of novel methods for estimating statistical significance Other methods (BLAST, FASTA, HMMs, GeneWise, etc.)
- Data compression
- Implementation of DNA-protein and DNA-DNA comparisons
- ·Large-scale structure-structure comparison
- •Large-scale sequence-structure threading/comparison Human Genome vs. GenBank scale searches
- •Java 1.3 JVM for Provider Compute Engine (Faster than C!) Other projects (e.g. Maximum Likelihood Tree Searches)