Improved Approximation Bounds for the Group Steiner Problem

Chris Helvig Gabriel Robins Alexander Zelikovsky

Outline VLSI CAD Problem Mathematical Model Approximation Algorithm Practical Enhancement **Experimental Results** Java Implementation

Appeared in Design Automation and Test Conference in Europe 1998, Networks 2001, and IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2000

Motivation: Multi-Port Terminals

Terminals have size / geometry Port choice is significant

 ≥ 1 port per terminal is involved Interconnection is a forest

Problem Formulation and Bounds

- Strong Connectivity Version Assign 0-cost to intra-group $edges \Rightarrow$ Steiner Tree Problem
- The Group Steiner Tree Problem: • Given: weighted graph G=(V,E) and k disjoint groups $N_1, ..., N_k \subseteq V$ Find: min-cost tree containing at

Strong Connectivity

• Cost of intra-group edges = 0

 \Rightarrow Steiner Problem

Modules can be rotated / flipped ♦ Each terminal \Rightarrow 8 "virtual" ports

Low-Norm Partial d-Stars

- Partial d-star
 - Potential subtree of the solution

- Strong connectivity variant: All nodes of a group implicitly connected to each other Weak connectivity variant: Intra-group edges must be explicitly part of the solution

strong-connectivity weak-connectivity

- The Steiner Tree Problem • Given: weighted graph G=(V,E)and node subset $M \subseteq V$ \diamond Find: min-cost tree spanning M
- NP-hard
- 11/6 · OPT approximation

A greedy framework:

while it is possible

Our goal is to specify:

Find any feasible solution

Greedily improve current solution

First **bounded** feasible solution

◆ Local improvements of solution

◆ **Measure** local improvement quality

least one node from each group N_i Even $O(\ln k)$ approx. is NP-hard Best previous bound: O(k)• **Our** heuristics:

root

1-star

Optimal 1-star rooted

at center costs at most

 $\frac{1}{2}$ # groups · OPT

sub-linear performance bounds: $O(k^{\mathcal{E}}) \quad \forall \mathcal{E} > 0$

• d-star = rooted tree of depth d

intermediate

2-star

2nd/partial 2-star

Optimal d-star rooted

at center costs at most

 $2d \cdot (\# groups)^{1/d} \cdot OPT$

nodes

■ $11/6 \cdot \text{OPT}$ approximation

d-Star Approximation

• *depth* \equiv max #edges on root-leaf paths **Theorem:** 2-Stars cost no more than $O(k^{1/2})$ times the cost of the optimal group Steiner tree.

- Proof requires concept of "edge reuse" Green edge cost \leq corresponding path
- Middle edge "reused" 4 times \Rightarrow Green tree $cost \le 4 x$ (black tree cost)

Group Steiner Heuristic

- Corresponding 1-star
 - Same root and same groups
- norm(d-star) = cost(d-star)/cost(1-star)Relative gain of d-star over 1-star
- d-stars are composed of partial d-stars
- Partial d-stars consist of:
- The root ◆ d-1 levels of intermediate nodes
- ◆Leaves

Algorithm is recursive: Find d-stars by first finding (d-1) -stars Base case: d = 2Sort groups by potential gain Include groups while norm decreases

Use Partial d-Star Algorithm to find low-cost partial d-star

Store the 1st partial d-star and remove its groups from further consideration

Find low-cost partial d-star over remaining groups

- Partition leaves into \sqrt{k} blocks of \sqrt{k}
- Intermediate nodes are least common ancestors of blocks
- 2-stars have two types of paths: ◆ Root to intermediate nodes

 \sqrt{k} root-to-intermediate-node paths Left-most and right-most blocks not completely contained in subtree \Rightarrow edge reused $2\sqrt{k}$ times in such paths Total 2-star cost $\leq 3\sqrt{k}$ times original

Combine partial d-stars to obtain solution, & run algorithm for each possible root

1st partial 2-star

Store 2nd partial star and remove its

