
Few (O(log n/log log n)) moving targets ⇒
Efficient (1+α)-approximation algorithm
α is performance bound of a heuristic for stationary TSP
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2-Dimensional Moving-Target TSP

Moving-Target TSP with Resupply
When targets can pass through origin or when finding
the fastest valid tour:

Prove/Disprove NP-Hardness
Find efficient algorithms/heuristics

Multi-Pursuer Moving-Target TSP

Formulation of Moving-Target TSP

Exact algorithm for one-dimensional version

Heuristic when few targets are moving

Approximate and exact heuristics for selected
variants of Moving-Target TSP with Resupply

If all targets have the same di/vi
Total time objective is still NP-hard
Approximation algorithm with

      Performance ratio = max i  {(1 + vi) / (1 - vi)}

If all targets have the same speed vi
Nontrivial result
The following strategy is optimal:

        send next available pursuer after the closest target

Moving-Target Vehicle Routing Problem with
Multiple pursuers
Pursuer supply = target demand
All targets are moving away

Minimization Objectives:
Makespan = when the last pursuer at the base

Standard for multiprocessor scheduling
NP-hard even for stationary targets

Total time = total time while pursuers are moving
Standard for classical vehicle routing problem
Trivial for stationary case

Theorem: Total time objective is NP-hard

Problem: Find the fastest valid tour

Theorem:  The tour where the pursuer intercepts
targets in descending order of di/vi is always valid
and the slowest

Theorem: Slowest tour ≤ 2×(optimal valid tour)

Targets intercept origin ⇒
Implicit change in target velocity

Valid tour:  No target passes through the origin

Theorem: If the tour in which pursuer intercepts
Targets moving away in ascending order of di/vi
Approaching targets in descending order of di/vi

    is valid, then it is optimal

Pursuer can intercept only one target before
requiring resupply at the origin

Targets move directly away (or towards) the origin

Corresponds to Moving-Target VRP except:
Single pursuer
Pursuer supply = target demand

Solution (when targets move away from origin):
Intercept targets in order of increasing di/vi
Algebraic proof for two targets
For n targets, swapping targets improves tour

Lemma:  Pursuer can change direction only after
intercepting the fastest target

Dynamic programming solution

O(n2) algorithm

Implemented and verified

Trivial Algorithm:
Intercept all targets on one side of the origin first
Then intercept targets on the other side
Does not work
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Given:
A set S = {s1, s2,..., sn} of targets

Each target si has constant velocity vi
Each target si starts moving from a position pi ∈ ℜn

A pursuer starting at origin with maximum speed v > |vi|
Find:

A fastest tour which intercepts all targets

Variations (Moving-Target Vehicle Routing Problem):
Multiple pursuers j = 1.. k
Pursuers have a given capacity to fill target demand

Lemma:  Optimal tours have no waiting periods

Corollary:  Pursuer always moves at max speed
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Classical TSP:  sites to be visited are stationary
Related work:

Time-dependent TSP (cost to travel between stationary
sites changes with time)

Our contribution:
Moving-Target TSP formulation
Algorithms for variants of Moving-Target TSP

Motivation:
Supply ships resupply patrolling boats
Planes intercept mobile ground units
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