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Abstract 
Dynamic thermal management (DTM) 

techniques help a system to operate within a safe range 
of temperature by reducing the performance of the CPU 
dynamically when the system is too hot. Dynamic voltage 
scaling (DVS) and localized toggling are both DTM 
techniques. DVS is easier to use for real-time systems 
since the performance degradation can be controlled 
accurately so that tasks are still meeting their deadlines. 
Localized toggling changes architectural configurations 
of a CPU to a less optimized setting. Its performance 
degradation is harder to measure and to control 
accurately. In this paper, we propose a method which 
applies various localized toggling techniques to real-
time systems while still able to meet task deadlines. Our 
method activates DTM when the temperature over the 
execution of a job is predicted to be too high at the start 
time. When DTM is activated, our method measures the 
performance degradation of different toggling techniques 
during the slack time to select the most effective 
technique and still be able to meet deadline. We use 
instructions per cycle (IPC) as the performance measure. 
Our method is evaluated on the SimpleScalar CPU 
simulator with Wattch, the energy simulator, and 
HotSpot, the thermal model. 

 
1.  Why Thermal Management? 

Thermal management maintains the temperature 
of a system to be below a predefined trigger temperature. 
Although cooling systems such as CPU fans, heat sinks, 
and packaging that help airflow are for the same purpose, 
they are often designed for the worst-case workload. 
Modern CPUs have increasingly faster clock rates and 
consume more power and they produce more heat. 
[Gunther et al. 2001] have shown that the cost of the 
cooling system will increase dramatically if they have to 
keep up with the worst-case workload. Thermal 
management can guarantee the temperature of the system 
by managing the workload so that cooling systems can 
be designed for an average workload, thus reducing cost. 

 
2.  Triggering and Response Techniques 

Thermal management involves triggering and 
response techniques. Triggering technique decides when 
to invoke the response technique and when to turn it off. 
It constantly samples the actual temperature of the 
system. There is usually a predefined trigger temperature 
which is well below the temperature that can cause the 

hardware to malfunction. A triggering technique can be 
either reactive or predictive. A reactive technique 
invokes the response technique at the moment when the 
actual temperature becomes higher than the trigger 
temperature. A predictive technique predicts when the 
actual temperature might become higher then the trigger 
temperature, and invokes the response technique early as 
a preventive method. It has been shown in [Srinivasan 
2003] that a predictive technique has the advantage that 
more time is available for the response technique to react 
to the trigger so that slower response methods such as 
DVS (higher overhead compared to other techniques) 
can be used. Our method is predictive. 

A CPU can be viewed as a combination of 
various components (i.e., registry file, instruction 
pipeline, caches, functional units, DVS, etc.). A set of 
parameters and values for all components in the CPU is 
an architectural configuration. A response technique sets 
the CPU to a lower-performance architectural 
configuration with the goal of reducing temperature. 
There are three classes of response techniques: throttling 
the whole CPU, throttling parts of the CPU, and DVS. 
Throttling of the whole CPU stops the fetching of the 
instructions until the temperature is lowered [Brooks 
2001]. Throttling parts of the CPU turns off various 
optimizations. Some methods which have been tried in 
this class include: turning off the branch prediction 
[Brooks 2001], speculative execution, instruction cache 
[Sanchez 1997], data cache, functional units [Skadron 
2003] and part of the registry file, reducing the length of 
the instruction pipeline, and decreasing the instruction 
parallelism. DVS reduces CPU voltage which in turn 
reduces heat dissipation and clock rate [Hughes 2001]. 

 
3.  The Problem 

Reducing system temperature by managing 
workload usually results in performance degradation. 
Real-time systems require controlled performance 
degradation so that task deadlines can still be met with a 
reduced performance. DVS can be used in a controlled 
way while guaranteeing task deadline as demonstrated in 
various energy-saving papers. However, many researches 
show that DVS cannot effectively lower system 
temperature because it decreases the temperature of the 
whole CPU instead of targeting at a thermally-hot spot. 
DVS’ long latency also makes it unsuitable for a fast 
response to a thermal crisis. Throttling the whole CPU 
has less latency; its effect on performance degradation 
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can be measured accurately. However, it still suffers 
from not targeting the thermally-hot spot. Throttling 
parts of the CPU can target a thermally-hot spot, thus, it 
can decrease system temperature more effectively than 
DVS and complete throttling. However, the performance 
degradation of this technique is harder to measure and to 
control. This makes the whole class of techniques less 
suitable in a real-time environment where tasks must 
meet their deadlines. 

 
4.  Contributions 
 CPU optimizations such as instruction 
pipelining and out-of-order issuing along with compiler 
optimizations allow modern CPUs to be capable of 
executing more than one instruction per CPU clock cycle. 
The variation of IPCs (Instructions Per Cycle) 
throughout the execution of a program is often used to 
measure CPU workload and code performance [Ghiasi 
2000, Gunther et al 2001] 

This research has the following contributions. First, 
we present a method which uses the IPC measurement in 
a time-window to control the performance degradation of 
throttling techniques. We also show a way to find the 
thermally-hot spot during the slack-time. Combining 
these two techniques gives us a way to manage system 
temperature effectively while guaranteeing task 
deadlines. Second, we present a predictive algorithm that 
can trigger the response technique before the thermal 
crisis takes place. Since we have ample time to respond, 
a slow method such as DVS can also be used. Last, we 
evaluate our approach on a multi-tasking real-time CPU 
simulator. Researches that we know of only evaluate 
their techniques with non-real-time single-task CPUs 
[Srinivasan 2003]. 

 
5.  Definitions 

Given a set of n periodic tasks T = {T1 … Tn}. 
Let i = 1 … n. WCET(Ti) is the relative worst-case 
execution time of task Ti. deadline(Ti) is the smaller of 
the relative deadline and the period of task Ti. Each task 
is partitioned into a number of blocks so Ti = (B1 U B2 
U … U Bm). Let j = 1 … m. WCET(Bj) is the relative 
worst-case execution time of block Bj. A hyper-period is 

the least-common-multiple (LCM) of the periods of all 
the tasks so hyper-period = LCM(period(Ti)) for i = 1 … 
n. The schedules are the same in different hyper-periods 
for periodic tasks. At execution-time, a task Ti is divided 
into a number of jobs in each hyper-period. Ji,k indicates 
the kth instance of the task Ti in a hyper-period. 

 
6.  Our Method 

Our method involves an off-line process and an 
on-line process. The off-line process partitions a task into 
blocks and measures the maximum temperature increase 
and the WCET of each block. The on-line process 
schedules tasks using EDF. Before the start of each block, 
our method predicts the highest temperature that might 
be reached during the execution of the block. If the 
prediction is higher than the trigger temperature, then we 
need to activate thermal control throughout the execution 
of the block. The thermal control uses the slack time that 
is available for the block to evaluate different response 
techniques. Each response technique is called an 
architectural configuration. We evaluate the performance 
of each architectural configuration to select one to use 
for the remaining execution of the block. In order to 
guarantee that the task can meet its deadline, we execute 
the block in a reduced performance for a limited amount 
of time such that if the remaining work is executed with 
the maximum performance, then the block will be able to 
finish within its WCET. If all blocks of a job finish 
within their WCETs, the job will meet its deadline. 

The off-line process partitions a task into blocks 
of instructions. Neighboring blocks having the same 
average IPC should be combined into one block. We 
measure WCET and the maximum temperature increase 
for each block. The on-line process is an event-driven 
process implemented at the OS level. This process relies 
on the CPU to provide performance values including the 
total number of instructions executed since the start of 
the system and the total number of cycles elapsed since 
the start of the system. We also need to know the current 
CPU temperature provided by a sensor. Here is a list of 
global values and their meanings. 

 

Name Meaning Where does it come from 
Slacks Maintains a set of slack times and 

expirations of the slack times. 
Our code. 

Window_time The number of CPU clock cycles per time 
window. 

This is a constant which should be set to 
be less than the shortest WCET of blocks. 

Inst_count The total number of instructions executed 
since the system start. 

This value should be maintained by the 
CPU. 

cycle_count The total number of CPU clock cycles 
elapsed since the system start. 

This value should be maintained by the 
CPU. 

Curr_temp The current CPU temperature in degrees. This value comes from the sensor which is 
attached to CPU. 

trigger_temp The trigger CPU temperature in degrees. 
Thermal control activates when the current 
CPU temperature is higher than the trigger 
CPU temperature. 

This is constant which should be set lower 
than the maximum temperature which the 
CPU can work without flaw. 
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The on-line process first computes the schedule using 
EDF. It then executes the schedule. Throughout the 

execution of the schedule the following events may 
happen:

     Block-Start Event: triggers at the start time of a block. 
We predict the maximum temperature and activate 
thermal control if necessary. 
     Time-Window-Start Event: triggers at the start of a 
time window. If the thermal control is active and the 
block is executing in the slack time, then we pick an 
architectural configuration to evaluate for the current 
time window. 
     Before-Preemption Event: triggers before a block is 
preempted by another block. We need to prepare the 
transferring of the slack time and prepare some 
information for resuming the block once the higher 
priority job completes. 
     Before-Resume Event: triggers before a block 
resumes after the higher priority job completes. We 
basically do the same as in Time-Window-Start. We 
need to predict the maximum temperature again even if 
thermal control was active before the block got 
preempted. Since it is possible that the temperature has 
been lowered by the blocks of the higher priority job, it 
is possible that we do not need to activate thermal 
control again.  
     Time-Window-End Event: triggers at the end of a 
time window. If thermal control is active, then we need 
to measure IPC for the architectural configuration that 
we are evaluating. If the IPC of the architectural 
configuration is one that we can use for the rest of the 
execution of the block and still be able to finish before 
the WCET of the block, then we can pick the 
architectural configuration. 
     Block-Complete Event: triggers at the completion of a 
block. If the block finishes before its WCET, then we 
can transfer some slack time for the future blocks of the 
current task or other tasks. 
     Job-Complete Event: triggers at the completion of a 
job. If the job finishes before its period (deadline) then 
we can transfer some slack time for the future blocks of 
other tasks. 
     In each event we need to maintain some block 
specific information. We define the following variables. 
Name Meaning 
WCET(b) Worst-case execution time of block b. This is 
measured off-line. 
 
IPC(b) Average IPC for block b without any 
performance loses. This is measured off-line. 
 
remaining_inst_count(b) The number of remaining 
instructions for block b in the worst-case. 
 
remaining_time(b) Remaining execution time in number 
of CPU clock cycles for the execution of block b in the 
worst-case. 
 

max_temp_inc(b) Maximum temperature increase, in 
degrees, throughout the execution of block b. This is 
measured off-line. 
 
thermal_ctrl(b) A Boolean value which indicates if 
thermal control is active (true) or inactive (false). 
 
candidate_arch_config(b) An integer which is no less 
than -1. This is an index into the arch_configs list (see 
arch_config(b,i)). This is the candidate architectural 
configuration that we are currently evaluating the 
performance of. 
 
arch_configs(b, i) A list of architectural configurations 
for block b in the order of increasing potential 
performance slowdown. i is an integer no less then -1 
which indexes the list of architectural configurations. For 
all blocks, arch_config(b, -1) is the configuration of no 
performance slowdown. 
 
picked_arch_config(b) An integer which is no less than -
1. This is an index into the arch_configs list (see 
arch_config(b,i)). This is the architectural configuration 
that we have picked to be used to control the 
temperature. 
 
start_inst_count(b) This is the inst_count value at the 
beginning of a time window for block b. At the end of 
the time window we use this value to calculate an 
average IPC for block b at the current window. 
 
window_start_time(b) This is the cycle_count value at 
the beginning of a time window for block b. 
 
arch_config_max(b) This is the upper-bound of the index 
for arch_configs, candidate_arch_config, and 
picked_arch_config. 
 
slack(b) This is the slack time available for block b in 
number of cycles. 
 
IPC_picked_arch_config(b) This is the IPC for the 
architectural configuration picked_arch_config. 
 
The following is the pseudo-code for our event-driven 
on-line process. % indicates comments. 
 
%at the start of the system 
schedule <- EDF_scheduler(T)  
%schedule tasks T with EDF 
execute(schedule) %execute schedule 
 
%at the start of a block b at time t 
event Block-Start(b, t) 
   slack(b) <- available slack time   
               for b in number of  
               cycles 
   remaining_inst_count(b) <- WCET(b)*   
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                              IPC(b) 
   remaining_time(b) <- WCET(b) 
%decide if thermal control for b is 
needed 
if max_temp_inc(b) + curr_temp >   
   trigger_temp then 
      thermal_ctrl(b) <- true 
      candidate_arch_config(b) <- -1 
      picked_arch_config(b) <- -1 
      IPC_picked_arch_config(b) <-  
         IPC(b) 
end event 
 
%at each time window of the execution 
of a block b at time t 
event Time-Window-Start(b, t) 
   start_inst_count(b) <- inst_count 
   window_start_time(b) <- t 
   if thermal_ctrl(b) then 
      if slack(b) > 0 then 
      % try the next one 
      candidate_arch_config(b) <-      
      candidate_arch_config(b) + 1 
      % if we run out of config to try    
      and still didn't find the best 
      % one, then try from beginning 
         if candidate_arch_config(b) =  
            arch_config_count(b) && 
            picked_arch_config(b) = -1   
               then 
         candidate_arch_config(b) <- 0 
         % if there are more config to   
         evaluate so try the next one 
         if candidate_arch_config(b) <   
            arch_config_count(b) - 1  
            then 
            set CPU to use   
            candidate_arch_config(b)   
            configuration 
         else % no more slack for b 
        if picked_arch_config(b) != -1   
            then 
            % need to decide if we   
            % need to turn-off thermal   
            % control to catch up with   
            % the deadline 
        if remaining_time(b) <    
           remaining_inst_count(b) / 
           ipc_picked_arch_config(b)    
            then 
           picked_arch_config(b) <- -1 
           set CPU to use  
           configuration -1 
           %the fastest possible 
           % configuration 
            thermal_ctrl(b) <- false 
        else % no good architectural     
           configuration to use 
           thermal_ctrl(b) <- false 
end event 
 
%before a block b is preempted by 
another block c at time t 
event Before-Preemption(b, c, t) 
% before the start of block c (the 
higher priority block) 
remaining_inst_count(b) <-   
   remaining_inst_count(b) – 

   (inst_count - start_inst_count(b)) 
% decrease slack time 
   slack(b) <- slack(b) - (t -   
      window_start_time(b)) 
% decrease remaining time if there are 
no more slack left 
if slack(b) < 0 then 
   remaining_time(b) <-    
      remaining_time(b) + slack(b) 
   slack(b) <- 0 
end event 
 
%before a block b resumes after block 
c finishes at time t 
event Before-Resume(b, c, t) 
% after the end of block c (the higher 
priority block) 
slack(b) <- available slack time for b 
in cycles 
% decide if we need to do thermal 
control for b (c might have lowered 
% the temperature) 
if max_temp_inc(b) + curr_temp >   
   trigger_temp then 
   thermal_ctrl(b) <- true 
   % we need to redo all evaluation    
   since c might have heated up 
   % different parts of CPU 
   candidate_arch_config(b) <- -1 
   picked_arch_config(b) <- -1 
else % prediction no longer higher   
   than trigger temperature 
   thermal_ctrl(b) <- false 
%invoke start time window event for b 
Time-Window-Start(b, t) 
end event 
 
%at the end of a time window of the 
execution of a block b 
event Time-Window-End(b, t) 
if thermal_ctrl(b) then 
% check if we can pick the current 
config under evaluation 
if candidate_arch_config(b) != -1 then 
IPC <- (inst_count - 
start_inst_count(b)) / time_window 
solve for t: remaining_inst_count = 
IPC * t + IPC(b) * 
(remaining_time(b) - t) 
if t > 0 then 
   picked_arch_config(b) <-    
   candidate_arch_config(b) 
   ipc_picked_arch_config(b) <- IPC 
   % decrease slack time by 1    
   time_window 
   slack(b) <- slack(b) - time_window 
   % decrease remaining time if there    
   is no more slack left 
if slack(b) < 0 then 
   remaining_time(b) <-     
      remaining_time(b) + slack(b) 
   slack(b) <- 0 
   % keep track of how many    
   instructions have been executed 
   remaining_inst_count(b) <-    
      remaining_inst_count(b) -   
      (inst_count –   
       start_inst_count(b)) 
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end event 
 
%at the completion of a block b at 
time t 
event Block-Complete(b, t) 
% decrease slack time 
slack(b) <- slack(b) - (t 
window_start_time(b)) 
% decrease remaining time if there are 
no more slack left 
if slack(b) < 0 then 
   remaining_time(b) <-     
      remaining_time(b) + slack(b) 
   slack(b) <- 0 
   % keep the slack of this block for   
   intra or inter task use 
if WCET(b) - t > 0 then 
   s <- create_slack() 
   length(s) <- WCET(b) - t 
   expire(s) <- period(job(b)) % this     

   slack time expires at the 
   % deadline of the job of block b 
   register_slack(s, slacks) 
end event 
%at the completion of job j at time t 
event Job-Complete(j, t) 
% keep the slack time for this job for 
inter-task use 
if period(j) - t > 0 then 
   s <- create_slack() 
   length(s) <- period(j) - t 
   expire(s) <- period(j) 
   register_slack(s) 
end event 
 
 
7.  A Thermal Control Example   
       We use an example to illustrate the main ideas of the 
above algorithm. 

Figure 1 shows an example of thermal control. 
In this example, b1 and b2 are blocks for tasks T1 and T2, 
respectively, and they belong to jobs J1 and J2, 
respectively. The priority of T2 is higher than the priority 
of T1 so period(T2) < period(T1) and deadline(J2) < 
deadline(J1); therefore, J2 preempts J1. For simplicity, 
b2 is the only block in T2. At time t1, b2 starts and 
preempts b1. During the time interval [t1, t3), b2 
evaluates different architectural configurations in the 
slack time (will be explained). During the time interval 
[t3, t4), b2 executes the selected architectural 
configuration at a reduced performance for thermal 
control. During the time interval [t4, t5), b2 turns off 
thermal control and executes using the fastest 
configuration in order to complete in WCET(b2) and 
meet the deadline at t5. At t5, b1 resumes execution. At 
t6, b1 completes. 

At time t1, the executing block b1 is preempted 
by a higher priority block b2. Since t1 is the start time of 
block b2, our method predicts the highest temperature 
that could be reached during b2’s execution. In this 
example, the predicted highest temperature is above the 
trigger temperature so we activate thermal control for b2 
at time t1. Since J2 preempts J1, there might be some 

slack time which comes from earlier blocks (excluding 
b1) of J1 that completes before their WCETs. This slack 
is transferred for use by b2. The order of events at t1 is 
Before-Preemption(b1, b2, t1) followed by Block-
Start(b2, t1) followed by Time-Window-Start(b2, t1). 

b2 uses time windows [t1, t2), and [t2, t3) to 
evaluate different architectural configurations. For 
example, at time t1, Time-Window-Start(b2, t1) is 
triggered to set the CPU to arch_config(b2, 0) (the 1st 
configuration) for the execution of b2 in [t1, t2). At time 
t2, Time-Window-End(b2, t2) is triggered. The IPC of 
the arch_config(b2, 0) is checked to see that if this IPC is 
used during [t3, t5), then is it possible to find a point t4 
in [t3, t5) such that if we switch to the fastest 
configuration at t4 we can finish the rest of the execution 
before t5? Notice that some work of b2 has been 
completed during [t1, t2) so we only need to consider the 
remaining work in this calculation. The following 
equation describes this relationship: 
remaining_inst_count(b) = IPC * t + 
IPC(b) * (remaining_time(b) - t) 

Here, remaining_inst_count (b) is the remaining 
work of block b, IPC is the IPC of the architectural 
configuration that we evaluated, IPC(b) is the IPC when 

t1 t2 t3 t4 t 

b1 b2 b1 

time windows 

Execute in 
slack time 

Execute in a lower 
performance configuration 

Execute with 
full speed 

Figure 1.  A thermal control 

time 

performance 
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block b executes without any thermal control, 
remaining_time(b) is the worst-case execution time of 
block b, and t is the length of time that we want to 
execute the rest of block b in a lower performance 
configuration. With all values given except t we are 
trying to solve for t. If t is a possible number then it tells 
us that t4 = t3 + t and we can execute b2 using this 
architectural configuration for [t3, t4) and still meets the 
deadline at t5. The same set of events triggers for the 
time interval [t2, t3), namely: Time-Window-Start(b2, 
t2), Time-Window-End(b2, t3).  

Time-Window-Start(b2, t3) is triggered after 
Time-Window-End(b2, t3). Here we notice that there is 
no more slack time left for evaluating architectural 
configurations, so we must pick one to use for the 
remaining execution of b2. Hopefully we have picked a 
configuration. If all of the configurations that we 
evaluated cannot provide a t4 that helps b2 to meet the 
deadline, then we run the rest of b2 with no thermal 
control. There is still a chance that the remaining of b2 
might not cause the temperature to go above the trigger 
temperature for two reasons: first, our prediction was not 
accurate, and second, the lower performance 
configurations that we used during [t1, t3) have already 
lowered the temperature. At time t5, Block-Complete(b2, 
t5) is triggered. If b2 completes before its WCET then 
we can transfer some time to be used by future inter-task 
blocks. Job-Complete(J2, t5) is triggered following 
Block-Complete(b2, t5) since our example assumes that 
b2 is the only block of J2. If J2 completes before its 
deadline, then we can transfer some time to be used by 
future inter-task blocks. Events Block-Resume(b1, t5) 
and Time-Window-Start(b1, t5) are triggered afterwards 
to continue the execution of b1. 

 
8.  Evaluation 

Since it is still not clear to us how to automate 
the partition of tasks we plan to handcraft a few tasks 
which are partitioned nicely for the off-line process. We 
plan to evaluate the on-line process of our method on a 
CPU simulator with benchmark applications running in 
real-time. We choose to integrate the Watcch CPU 
simulator with the HotSpot Thermal Model. HotSpot is 
the current state-of-the-art thermal model for CPU. It is 
able to output simulated temperature readings on 
different parts of the CPU floor-plan and the sink. 
Wattch is a modified version of the SimpleScalar CPU 
simulator with energy usage simulation. The per-cycle 
energy usage values are used as inputs into HotSpot to 
create the temperature values. 

Wattch supports CPU configurations that are 
close to the current state-of-the-art CPU architectures 
(such as pipelining and out-of-order execution). However, 
it executes one program at a time from start to finish and 
there is currently no OS ported to it yet. This makes it 
impossible to study multi-program interaction on Wattch. 
SIMCA - The SImulator for Multi-threaded Computer 
Architectures is a multithreaded version of the 
SimpleScalar simulators, implemented by the ARCTiC 

Group(http://www.mount.ee.umn.edu/~lilja/SIMCA/inde
x.html). However, there is no energy simulator for it. 
Therefore, we choose to modify Wattch with the ability 
to do both time-sharing multitasking and EDF scheduling.  

MiBench is a free benchmark suite for 
embedded applications maintained by the University of 
Michigan [Guthaus 2001]. We have successfully 
modified Wattch to produce IPC plots for MiBench 
programs including qsort and susan (an image processing 
program). We have difficulty on the temperature plot at 
this time. The temperature plot we get does not fluctuate 
with the workload, which is not what we have expected. 
Our modified Wattch can perform time-sharing 
multitasking on certain applications. Due to some 
memory addressing issue, it fails on some combination 
of programs and large programs. We suspect that it is 
due to the data in the cache being fetched into the wrong 
program. Thus we have not started the implementation of 
the real-time scheduler. However, we have planned how 
to do it and it should be straightforward once we fix the 
multitasking bug. Once our simulator is ready to produce 
per-cycle IPC as well as temperature readings and is able 
to execute programs in real-time, we will evaluate our 
method and report the results in an upcoming full paper. 
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