
 1

Predictive Thermal Management for Hard Real-Time Tasks

Albert Mo Kim Cheng and Chen Feng
Real-Time System Laboratory, Department of Computer Science

University of Houston, Houston, TX 77204, USA
{cheng, scfeng}@cs.uh.edu

Abstract
Dynamic thermal management (DTM)

techniques help a system to operate within a safe range
of temperature by reducing the performance of the CPU
dynamically when the system is too hot. Dynamic voltage
scaling (DVS) and localized toggling are both DTM
techniques. DVS is easier to use for real-time systems
since the performance degradation can be controlled
accurately so that tasks are still meeting their deadlines.
Localized toggling changes architectural configurations
of a CPU to a less optimized setting. Its performance
degradation is harder to measure and to control
accurately. In this paper, we propose a method which
applies various localized toggling techniques to real-
time systems while still able to meet task deadlines. Our
method activates DTM when the temperature over the
execution of a job is predicted to be too high at the start
time. When DTM is activated, our method measures the
performance degradation of different toggling techniques
during the slack time to select the most effective
technique and still be able to meet deadline. We use
instructions per cycle (IPC) as the performance measure.
Our method is evaluated on the SimpleScalar CPU
simulator with Wattch, the energy simulator, and
HotSpot, the thermal model.

1. Why Thermal Management?

Thermal management maintains the temperature
of a system to be below a predefined trigger temperature.
Although cooling systems such as CPU fans, heat sinks,
and packaging that help airflow are for the same purpose,
they are often designed for the worst-case workload.
Modern CPUs have increasingly faster clock rates and
consume more power and they produce more heat.
[Gunther et al. 2001] have shown that the cost of the
cooling system will increase dramatically if they have to
keep up with the worst-case workload. Thermal
management can guarantee the temperature of the system
by managing the workload so that cooling systems can
be designed for an average workload, thus reducing cost.

2. Triggering and Response Techniques

Thermal management involves triggering and
response techniques. Triggering technique decides when
to invoke the response technique and when to turn it off.
It constantly samples the actual temperature of the
system. There is usually a predefined trigger temperature
which is well below the temperature that can cause the

hardware to malfunction. A triggering technique can be
either reactive or predictive. A reactive technique
invokes the response technique at the moment when the
actual temperature becomes higher than the trigger
temperature. A predictive technique predicts when the
actual temperature might become higher then the trigger
temperature, and invokes the response technique early as
a preventive method. It has been shown in [Srinivasan
2003] that a predictive technique has the advantage that
more time is available for the response technique to react
to the trigger so that slower response methods such as
DVS (higher overhead compared to other techniques)
can be used. Our method is predictive.

A CPU can be viewed as a combination of
various components (i.e., registry file, instruction
pipeline, caches, functional units, DVS, etc.). A set of
parameters and values for all components in the CPU is
an architectural configuration. A response technique sets
the CPU to a lower-performance architectural
configuration with the goal of reducing temperature.
There are three classes of response techniques: throttling
the whole CPU, throttling parts of the CPU, and DVS.
Throttling of the whole CPU stops the fetching of the
instructions until the temperature is lowered [Brooks
2001]. Throttling parts of the CPU turns off various
optimizations. Some methods which have been tried in
this class include: turning off the branch prediction
[Brooks 2001], speculative execution, instruction cache
[Sanchez 1997], data cache, functional units [Skadron
2003] and part of the registry file, reducing the length of
the instruction pipeline, and decreasing the instruction
parallelism. DVS reduces CPU voltage which in turn
reduces heat dissipation and clock rate [Hughes 2001].

3. The Problem

Reducing system temperature by managing
workload usually results in performance degradation.
Real-time systems require controlled performance
degradation so that task deadlines can still be met with a
reduced performance. DVS can be used in a controlled
way while guaranteeing task deadline as demonstrated in
various energy-saving papers. However, many researches
show that DVS cannot effectively lower system
temperature because it decreases the temperature of the
whole CPU instead of targeting at a thermally-hot spot.
DVS’ long latency also makes it unsuitable for a fast
response to a thermal crisis. Throttling the whole CPU
has less latency; its effect on performance degradation

 2

can be measured accurately. However, it still suffers
from not targeting the thermally-hot spot. Throttling
parts of the CPU can target a thermally-hot spot, thus, it
can decrease system temperature more effectively than
DVS and complete throttling. However, the performance
degradation of this technique is harder to measure and to
control. This makes the whole class of techniques less
suitable in a real-time environment where tasks must
meet their deadlines.

4. Contributions
 CPU optimizations such as instruction
pipelining and out-of-order issuing along with compiler
optimizations allow modern CPUs to be capable of
executing more than one instruction per CPU clock cycle.
The variation of IPCs (Instructions Per Cycle)
throughout the execution of a program is often used to
measure CPU workload and code performance [Ghiasi
2000, Gunther et al 2001]

This research has the following contributions. First,
we present a method which uses the IPC measurement in
a time-window to control the performance degradation of
throttling techniques. We also show a way to find the
thermally-hot spot during the slack-time. Combining
these two techniques gives us a way to manage system
temperature effectively while guaranteeing task
deadlines. Second, we present a predictive algorithm that
can trigger the response technique before the thermal
crisis takes place. Since we have ample time to respond,
a slow method such as DVS can also be used. Last, we
evaluate our approach on a multi-tasking real-time CPU
simulator. Researches that we know of only evaluate
their techniques with non-real-time single-task CPUs
[Srinivasan 2003].

5. Definitions

Given a set of n periodic tasks T = {T1 … Tn}.
Let i = 1 … n. WCET(Ti) is the relative worst-case
execution time of task Ti. deadline(Ti) is the smaller of
the relative deadline and the period of task Ti. Each task
is partitioned into a number of blocks so Ti = (B1 U B2
U … U Bm). Let j = 1 … m. WCET(Bj) is the relative
worst-case execution time of block Bj. A hyper-period is

the least-common-multiple (LCM) of the periods of all
the tasks so hyper-period = LCM(period(Ti)) for i = 1 …
n. The schedules are the same in different hyper-periods
for periodic tasks. At execution-time, a task Ti is divided
into a number of jobs in each hyper-period. Ji,k indicates
the kth instance of the task Ti in a hyper-period.

6. Our Method

Our method involves an off-line process and an
on-line process. The off-line process partitions a task into
blocks and measures the maximum temperature increase
and the WCET of each block. The on-line process
schedules tasks using EDF. Before the start of each block,
our method predicts the highest temperature that might
be reached during the execution of the block. If the
prediction is higher than the trigger temperature, then we
need to activate thermal control throughout the execution
of the block. The thermal control uses the slack time that
is available for the block to evaluate different response
techniques. Each response technique is called an
architectural configuration. We evaluate the performance
of each architectural configuration to select one to use
for the remaining execution of the block. In order to
guarantee that the task can meet its deadline, we execute
the block in a reduced performance for a limited amount
of time such that if the remaining work is executed with
the maximum performance, then the block will be able to
finish within its WCET. If all blocks of a job finish
within their WCETs, the job will meet its deadline.

The off-line process partitions a task into blocks
of instructions. Neighboring blocks having the same
average IPC should be combined into one block. We
measure WCET and the maximum temperature increase
for each block. The on-line process is an event-driven
process implemented at the OS level. This process relies
on the CPU to provide performance values including the
total number of instructions executed since the start of
the system and the total number of cycles elapsed since
the start of the system. We also need to know the current
CPU temperature provided by a sensor. Here is a list of
global values and their meanings.

Name Meaning Where does it come from
Slacks Maintains a set of slack times and

expirations of the slack times.
Our code.

Window_time The number of CPU clock cycles per time
window.

This is a constant which should be set to
be less than the shortest WCET of blocks.

Inst_count The total number of instructions executed
since the system start.

This value should be maintained by the
CPU.

cycle_count The total number of CPU clock cycles
elapsed since the system start.

This value should be maintained by the
CPU.

Curr_temp The current CPU temperature in degrees. This value comes from the sensor which is
attached to CPU.

trigger_temp The trigger CPU temperature in degrees.
Thermal control activates when the current
CPU temperature is higher than the trigger
CPU temperature.

This is constant which should be set lower
than the maximum temperature which the
CPU can work without flaw.

 3

The on-line process first computes the schedule using
EDF. It then executes the schedule. Throughout the

execution of the schedule the following events may
happen:

 Block-Start Event: triggers at the start time of a block.
We predict the maximum temperature and activate
thermal control if necessary.
 Time-Window-Start Event: triggers at the start of a
time window. If the thermal control is active and the
block is executing in the slack time, then we pick an
architectural configuration to evaluate for the current
time window.
 Before-Preemption Event: triggers before a block is
preempted by another block. We need to prepare the
transferring of the slack time and prepare some
information for resuming the block once the higher
priority job completes.
 Before-Resume Event: triggers before a block
resumes after the higher priority job completes. We
basically do the same as in Time-Window-Start. We
need to predict the maximum temperature again even if
thermal control was active before the block got
preempted. Since it is possible that the temperature has
been lowered by the blocks of the higher priority job, it
is possible that we do not need to activate thermal
control again.
 Time-Window-End Event: triggers at the end of a
time window. If thermal control is active, then we need
to measure IPC for the architectural configuration that
we are evaluating. If the IPC of the architectural
configuration is one that we can use for the rest of the
execution of the block and still be able to finish before
the WCET of the block, then we can pick the
architectural configuration.
 Block-Complete Event: triggers at the completion of a
block. If the block finishes before its WCET, then we
can transfer some slack time for the future blocks of the
current task or other tasks.
 Job-Complete Event: triggers at the completion of a
job. If the job finishes before its period (deadline) then
we can transfer some slack time for the future blocks of
other tasks.
 In each event we need to maintain some block
specific information. We define the following variables.
Name Meaning
WCET(b) Worst-case execution time of block b. This is
measured off-line.

IPC(b) Average IPC for block b without any
performance loses. This is measured off-line.

remaining_inst_count(b) The number of remaining
instructions for block b in the worst-case.

remaining_time(b) Remaining execution time in number
of CPU clock cycles for the execution of block b in the
worst-case.

max_temp_inc(b) Maximum temperature increase, in
degrees, throughout the execution of block b. This is
measured off-line.

thermal_ctrl(b) A Boolean value which indicates if
thermal control is active (true) or inactive (false).

candidate_arch_config(b) An integer which is no less
than -1. This is an index into the arch_configs list (see
arch_config(b,i)). This is the candidate architectural
configuration that we are currently evaluating the
performance of.

arch_configs(b, i) A list of architectural configurations
for block b in the order of increasing potential
performance slowdown. i is an integer no less then -1
which indexes the list of architectural configurations. For
all blocks, arch_config(b, -1) is the configuration of no
performance slowdown.

picked_arch_config(b) An integer which is no less than -
1. This is an index into the arch_configs list (see
arch_config(b,i)). This is the architectural configuration
that we have picked to be used to control the
temperature.

start_inst_count(b) This is the inst_count value at the
beginning of a time window for block b. At the end of
the time window we use this value to calculate an
average IPC for block b at the current window.

window_start_time(b) This is the cycle_count value at
the beginning of a time window for block b.

arch_config_max(b) This is the upper-bound of the index
for arch_configs, candidate_arch_config, and
picked_arch_config.

slack(b) This is the slack time available for block b in
number of cycles.

IPC_picked_arch_config(b) This is the IPC for the
architectural configuration picked_arch_config.

The following is the pseudo-code for our event-driven
on-line process. % indicates comments.

%at the start of the system
schedule <- EDF_scheduler(T)
%schedule tasks T with EDF
execute(schedule) %execute schedule

%at the start of a block b at time t
event Block-Start(b, t)
 slack(b) <- available slack time
 for b in number of
 cycles
 remaining_inst_count(b) <- WCET(b)*

 4

 IPC(b)
 remaining_time(b) <- WCET(b)
%decide if thermal control for b is
needed
if max_temp_inc(b) + curr_temp >
 trigger_temp then
 thermal_ctrl(b) <- true
 candidate_arch_config(b) <- -1
 picked_arch_config(b) <- -1
 IPC_picked_arch_config(b) <-
 IPC(b)
end event

%at each time window of the execution
of a block b at time t
event Time-Window-Start(b, t)
 start_inst_count(b) <- inst_count
 window_start_time(b) <- t
 if thermal_ctrl(b) then
 if slack(b) > 0 then
 % try the next one
 candidate_arch_config(b) <-
 candidate_arch_config(b) + 1
 % if we run out of config to try
 and still didn't find the best
 % one, then try from beginning
 if candidate_arch_config(b) =
 arch_config_count(b) &&
 picked_arch_config(b) = -1
 then
 candidate_arch_config(b) <- 0
 % if there are more config to
 evaluate so try the next one
 if candidate_arch_config(b) <
 arch_config_count(b) - 1
 then
 set CPU to use
 candidate_arch_config(b)
 configuration
 else % no more slack for b
 if picked_arch_config(b) != -1
 then
 % need to decide if we
 % need to turn-off thermal
 % control to catch up with
 % the deadline
 if remaining_time(b) <
 remaining_inst_count(b) /
 ipc_picked_arch_config(b)
 then
 picked_arch_config(b) <- -1
 set CPU to use
 configuration -1
 %the fastest possible
 % configuration
 thermal_ctrl(b) <- false
 else % no good architectural
 configuration to use
 thermal_ctrl(b) <- false
end event

%before a block b is preempted by
another block c at time t
event Before-Preemption(b, c, t)
% before the start of block c (the
higher priority block)
remaining_inst_count(b) <-
 remaining_inst_count(b) –

 (inst_count - start_inst_count(b))
% decrease slack time
 slack(b) <- slack(b) - (t -
 window_start_time(b))
% decrease remaining time if there are
no more slack left
if slack(b) < 0 then
 remaining_time(b) <-
 remaining_time(b) + slack(b)
 slack(b) <- 0
end event

%before a block b resumes after block
c finishes at time t
event Before-Resume(b, c, t)
% after the end of block c (the higher
priority block)
slack(b) <- available slack time for b
in cycles
% decide if we need to do thermal
control for b (c might have lowered
% the temperature)
if max_temp_inc(b) + curr_temp >
 trigger_temp then
 thermal_ctrl(b) <- true
 % we need to redo all evaluation
 since c might have heated up
 % different parts of CPU
 candidate_arch_config(b) <- -1
 picked_arch_config(b) <- -1
else % prediction no longer higher
 than trigger temperature
 thermal_ctrl(b) <- false
%invoke start time window event for b
Time-Window-Start(b, t)
end event

%at the end of a time window of the
execution of a block b
event Time-Window-End(b, t)
if thermal_ctrl(b) then
% check if we can pick the current
config under evaluation
if candidate_arch_config(b) != -1 then
IPC <- (inst_count -
start_inst_count(b)) / time_window
solve for t: remaining_inst_count =
IPC * t + IPC(b) *
(remaining_time(b) - t)
if t > 0 then
 picked_arch_config(b) <-
 candidate_arch_config(b)
 ipc_picked_arch_config(b) <- IPC
 % decrease slack time by 1
 time_window
 slack(b) <- slack(b) - time_window
 % decrease remaining time if there
 is no more slack left
if slack(b) < 0 then
 remaining_time(b) <-
 remaining_time(b) + slack(b)
 slack(b) <- 0
 % keep track of how many
 instructions have been executed
 remaining_inst_count(b) <-
 remaining_inst_count(b) -
 (inst_count –
 start_inst_count(b))

 5

end event

%at the completion of a block b at
time t
event Block-Complete(b, t)
% decrease slack time
slack(b) <- slack(b) - (t
window_start_time(b))
% decrease remaining time if there are
no more slack left
if slack(b) < 0 then
 remaining_time(b) <-
 remaining_time(b) + slack(b)
 slack(b) <- 0
 % keep the slack of this block for
 intra or inter task use
if WCET(b) - t > 0 then
 s <- create_slack()
 length(s) <- WCET(b) - t
 expire(s) <- period(job(b)) % this

 slack time expires at the
 % deadline of the job of block b
 register_slack(s, slacks)
end event
%at the completion of job j at time t
event Job-Complete(j, t)
% keep the slack time for this job for
inter-task use
if period(j) - t > 0 then
 s <- create_slack()
 length(s) <- period(j) - t
 expire(s) <- period(j)
 register_slack(s)
end event

7. A Thermal Control Example
 We use an example to illustrate the main ideas of the
above algorithm.

Figure 1 shows an example of thermal control.
In this example, b1 and b2 are blocks for tasks T1 and T2,
respectively, and they belong to jobs J1 and J2,
respectively. The priority of T2 is higher than the priority
of T1 so period(T2) < period(T1) and deadline(J2) <
deadline(J1); therefore, J2 preempts J1. For simplicity,
b2 is the only block in T2. At time t1, b2 starts and
preempts b1. During the time interval [t1, t3), b2
evaluates different architectural configurations in the
slack time (will be explained). During the time interval
[t3, t4), b2 executes the selected architectural
configuration at a reduced performance for thermal
control. During the time interval [t4, t5), b2 turns off
thermal control and executes using the fastest
configuration in order to complete in WCET(b2) and
meet the deadline at t5. At t5, b1 resumes execution. At
t6, b1 completes.

At time t1, the executing block b1 is preempted
by a higher priority block b2. Since t1 is the start time of
block b2, our method predicts the highest temperature
that could be reached during b2’s execution. In this
example, the predicted highest temperature is above the
trigger temperature so we activate thermal control for b2
at time t1. Since J2 preempts J1, there might be some

slack time which comes from earlier blocks (excluding
b1) of J1 that completes before their WCETs. This slack
is transferred for use by b2. The order of events at t1 is
Before-Preemption(b1, b2, t1) followed by Block-
Start(b2, t1) followed by Time-Window-Start(b2, t1).

b2 uses time windows [t1, t2), and [t2, t3) to
evaluate different architectural configurations. For
example, at time t1, Time-Window-Start(b2, t1) is
triggered to set the CPU to arch_config(b2, 0) (the 1st
configuration) for the execution of b2 in [t1, t2). At time
t2, Time-Window-End(b2, t2) is triggered. The IPC of
the arch_config(b2, 0) is checked to see that if this IPC is
used during [t3, t5), then is it possible to find a point t4
in [t3, t5) such that if we switch to the fastest
configuration at t4 we can finish the rest of the execution
before t5? Notice that some work of b2 has been
completed during [t1, t2) so we only need to consider the
remaining work in this calculation. The following
equation describes this relationship:
remaining_inst_count(b) = IPC * t +
IPC(b) * (remaining_time(b) - t)

Here, remaining_inst_count (b) is the remaining
work of block b, IPC is the IPC of the architectural
configuration that we evaluated, IPC(b) is the IPC when

t1 t2 t3 t4 t

b1 b2 b1

time windows

Execute in
slack time

Execute in a lower
performance configuration

Execute with
full speed

Figure 1. A thermal control

time

performance

 6

block b executes without any thermal control,
remaining_time(b) is the worst-case execution time of
block b, and t is the length of time that we want to
execute the rest of block b in a lower performance
configuration. With all values given except t we are
trying to solve for t. If t is a possible number then it tells
us that t4 = t3 + t and we can execute b2 using this
architectural configuration for [t3, t4) and still meets the
deadline at t5. The same set of events triggers for the
time interval [t2, t3), namely: Time-Window-Start(b2,
t2), Time-Window-End(b2, t3).

Time-Window-Start(b2, t3) is triggered after
Time-Window-End(b2, t3). Here we notice that there is
no more slack time left for evaluating architectural
configurations, so we must pick one to use for the
remaining execution of b2. Hopefully we have picked a
configuration. If all of the configurations that we
evaluated cannot provide a t4 that helps b2 to meet the
deadline, then we run the rest of b2 with no thermal
control. There is still a chance that the remaining of b2
might not cause the temperature to go above the trigger
temperature for two reasons: first, our prediction was not
accurate, and second, the lower performance
configurations that we used during [t1, t3) have already
lowered the temperature. At time t5, Block-Complete(b2,
t5) is triggered. If b2 completes before its WCET then
we can transfer some time to be used by future inter-task
blocks. Job-Complete(J2, t5) is triggered following
Block-Complete(b2, t5) since our example assumes that
b2 is the only block of J2. If J2 completes before its
deadline, then we can transfer some time to be used by
future inter-task blocks. Events Block-Resume(b1, t5)
and Time-Window-Start(b1, t5) are triggered afterwards
to continue the execution of b1.

8. Evaluation

Since it is still not clear to us how to automate
the partition of tasks we plan to handcraft a few tasks
which are partitioned nicely for the off-line process. We
plan to evaluate the on-line process of our method on a
CPU simulator with benchmark applications running in
real-time. We choose to integrate the Watcch CPU
simulator with the HotSpot Thermal Model. HotSpot is
the current state-of-the-art thermal model for CPU. It is
able to output simulated temperature readings on
different parts of the CPU floor-plan and the sink.
Wattch is a modified version of the SimpleScalar CPU
simulator with energy usage simulation. The per-cycle
energy usage values are used as inputs into HotSpot to
create the temperature values.

Wattch supports CPU configurations that are
close to the current state-of-the-art CPU architectures
(such as pipelining and out-of-order execution). However,
it executes one program at a time from start to finish and
there is currently no OS ported to it yet. This makes it
impossible to study multi-program interaction on Wattch.
SIMCA - The SImulator for Multi-threaded Computer
Architectures is a multithreaded version of the
SimpleScalar simulators, implemented by the ARCTiC

Group(http://www.mount.ee.umn.edu/~lilja/SIMCA/inde
x.html). However, there is no energy simulator for it.
Therefore, we choose to modify Wattch with the ability
to do both time-sharing multitasking and EDF scheduling.

MiBench is a free benchmark suite for
embedded applications maintained by the University of
Michigan [Guthaus 2001]. We have successfully
modified Wattch to produce IPC plots for MiBench
programs including qsort and susan (an image processing
program). We have difficulty on the temperature plot at
this time. The temperature plot we get does not fluctuate
with the workload, which is not what we have expected.
Our modified Wattch can perform time-sharing
multitasking on certain applications. Due to some
memory addressing issue, it fails on some combination
of programs and large programs. We suspect that it is
due to the data in the cache being fetched into the wrong
program. Thus we have not started the implementation of
the real-time scheduler. However, we have planned how
to do it and it should be straightforward once we fix the
multitasking bug. Once our simulator is ready to produce
per-cycle IPC as well as temperature readings and is able
to execute programs in real-time, we will evaluate our
method and report the results in an upcoming full paper.

Acknowledgments
 This material is supported in part by a grant from
the Institute for Space Systems Operations.

References
[Gunther 2001] S. H. Gunther et al. Managing the impact of
increasing microprocessor power consumption. Intel
Technology Journal, 1st Quarter, 2001.

[Srinivasan 2003] J. Srinivasan and S. V. Adve. Predictive
dynamic thermal management for multimedia applications.
Proc. 17th ACM Intl. Conf. Supercomputing, June 2003

[Sanchez 1997] H. Sanchez et al. Thermal management system
for high performance PowerPC microprocessors. Proc. IEEE
Compcon'97 Digest of Papers, February 1997.

[Brooks 2001] D. Brooks and M. Martonosi. Dynamic thermal
management for high-performance microprocessors, 2001.

[Hughes 2001] C. J. Hughes, J. Srinivasan, and S. V. Adve.
Saving energy with architectural and frequency adaptations for
multimedia applications, 2001.

[Ghiasi 2000] S. Ghiasi et al, Using IPC variation in workloads
with externally specified rates to reduce power consumption.
Proc. Workshop on Complexity-Effective Design, June 2000.

[Guthaus 2001] M. R. Guthaus et al, MiBench: A free,
commercially representative embedded benchmark suite, 2001.
Available at http://www.eecs.umich.edu/jringenb/mibench/.

[Skadron 2003] K. Skadron et al, Temperature-Aware
Microarchitecture, in ISCA, June 2003.

