
1

Programming Languages
Research and Education

the topic of
Ultimate Mastery

Wes Weimer
http://www.cs.virginia.edu/~weimer

2

Reasonable Initial Skepticism

3

Basic Plan
Show four topics in PL research

Relate each one to a project
kids might care about

Force you to do pencil-and-
paper work and participate

4

RecursionRecursion

UniversalityUniversality

AbstractionAbstraction

GrammarsGrammars
(Fractals)(Fractals)

Machine LearningMachine Learning
(Social Networks)(Social Networks)

Model CheckingModel Checking
(Game Theory)(Game Theory)

Genetic AlgorithmsGenetic Algorithms
(Music)(Music)

5

Goal: Fun

Thus: Interrupt!

6

Formal Grammars

• Grammars are used by linguists to
describe the block structure of languages
– Describe how sentences are built up

recursively from smaller phrases

• Dave Evans discussed:
– word ::= anti- word
– word ::= disestablishmentarianism
– word ::= floccinaucinihilipilification

• In practice, English is hard to capture but Java
and HTML are codified by formal grammars.

They're
Chomsky-riffic!

7

Rewriting Systems

• Grammars can equivalently be viewed as
term rewriting systems.

• Grammar:
– E ::= 2 E ::= 7
– E ::= E + E E ::= E – E

• Rewriting System:
– Start: E
– Rule1: E -> E + E Rule2: E -> E – E
– Rule3: E -> 2 Rule4: E -> 7

Quiz:
what's an integer

you can't form
with this system?

8

Example: Let's Get “1”
• Rewriting System:

– Start: E
– Rule1: E -> E + E Rule2: E -> E – E
– Rule3: E -> 2 Rule4: E -> 7

• Start: E
• Rule2: E – E
• Rule2: E – E – E
• Rule2: E – E – E – E
• Rule4: 7 – E – E – E
• Rule3: 7 – 2 – 2 – 2 (apply 3 times)

9

Douglas Hofstadter's MU Puzzle

• Start: MI

• Rule1: xI > xIU

• Rule2: Mx > Mxx

• Rule3: xIIIy > xUy

• Rule4: xUUy > xy
– x and y are any possibly-empty sequences of

letters

• Example: MI -> MIU -> MIUIU

10

• Start: MI

• Rule1: xI > xIU

• Rule2: Mx > Mxx

• Rule3: xIIIy > xUy

• Rule4: xUUy > xy

• Question1: How can we get MUI ?

• Question2: How can we get UI ?

• Question3: How can we get MUUIIU ?

• Question4: How can we get MU ?
– http://planetmath.org/encyclopedia/HofstadtersMIUSystem.html

http://planetmath.org/encyclopedia/HofstadtersMIUSystem.html

11

Research: String Variables
– 2007 top Web App security issues (MITRE)

12

Cross-Site Scripting

• Cross-site scripting is a security
vulnerability in which innocent browsers
(you) go to some trusted site (a blog,
cnn.com) and unknowingly receive
malicious content (evil javascript)
supplied by evildoers (script kiddies),
thinking that it is from the trusted site.
– “Obama site hacked; Redirected to Hillary

Clinton” http://blogs.zdnet.com/security/?p=1042

– http://youtube.com/watch?v=NKjomr1Afq0 (disregard the video's politics, sorry!)

http://blogs.zdnet.com/security/?p=1042
http://youtube.com/watch?v=NKjomr1Afq0

13

Our Research

• Given web application code like this:

age = read_string_from_evil_user();
if (age contains “0” or “1” or “2” or “3” or “4”

or “5” or “6” or “7” or “8” or “9”) then {
output_html = “Poster's Age: ” + age + “”;
display_to_innocent_user(output_html);

} else {
report_error();

}

• Is there any way for the “output_html”
shown to the innocent user to contain the
word “JavaScript”?

14

Fun Stuff: L-System Fractals

• Aristid Lindemayer, a theoretical biologist
at the University of Utrecht, developed
the L-system in 1968 as a mathematical
theory of plant development. In the late
1980s, he collaborated with Przemyslaw
Prusinkiewicz, a computer scientist at the
University of Regina, to explore
computational properties of the L-system
and developed many of the ideas on which
this problem set is based.

15

Example L-System

• Start: (F)
• Rule: F -> (F O(R30 F) F O(R-60 F) F)

– F = “Forward”
– O(x) = “Make an offshoot containing x”
– Ry = Turn right y degrees

• Iteration 0: (F)

• Iteration 1: (F O(R30 F) F O(R-60 F) F)

• Iteration 2: (F O(R30 F) F O(R-60 F) F O(R30 F O(R30 F) F
O(R-60 F) F) F O(R30 F) F O(R-60 F) F O(R-60 F O(R30 F) F
O(R-60 F) F) F O(R30 F) F O(R-60 F) F)

16

L-System Growth
• Rule: F ->

(F O(R30 F) F O(R-60 F) F)

17

L-System Growth
• Rule: F ->

(F O(R30 F) F O(R-60 F) F)

Note the
recursion!

18

Iteration 5

19

Fractals Made By 1st Semester
CS students, 4 weeks in

“Stars of David”

“Sting Rays”

“Clocks”

Each fractal corresponds to a different F -> ... rewrite rule.

20

Fractals Made By 1st Semester
CS students, 4 weeks in

“A Heart”

“DNA Infinity”“It Looks Pretty To Me”

http://www.cs.virginia.edu/~weimer/150/frac/index.html
http://www.cs.virginia.edu/~weimer/150/ps/ps3/

http://www.cs.virginia.edu/~weimer/150/frac/index.html
http://www.cs.virginia.edu/~weimer/150/ps/ps3/

21

Topic 2 – Machine Learning
(aka “Finding Patterns”)

• In frequent itemset mining, a problem in
machine learning, store owners attempt
to discover items that are commonly
purchased in tandem. This helps them
arrange aisles and coordinate sales.

• Riddle: What do beer and diapers have in
common?

• The same basic ideas are used to detect
when your credit card has been stolen.

22

Grocery Cards and
Amazons

• Grocery stores can afford to give you a
“discount” if you use these because they
view the marketing information (e.g.,
what sets of items you purchase together
over time) as more valuable.

• Amazon.com, Netflix, etc.
– Recommendations!

23

Research: Specification Mining

• In programs, open must be followed by
close, lock must be followed by unlock,
and malloc must be followed by free.

• If we know these rules, we can look at the
source code to your program and find bugs
without testing before you ship the
program (i.e., before you turn it in)!

• But ... how do we know these rules?

24

A Reading Rainbow

• In essence: learn the rules of English
grammar by reading high school English
essays.

• Look at actual program paths for patterns
• Path1: open, print, close
• Path2: open, read, print, close
• Path3: print, print, exit
• Path4: print, open, read, write, close
• Path5: open, read, print

25

Research: Specification Mining

• Problem: actual programs have bugs
• Our insight: this task would be easier if we

could tell the A+ students from the C-
students.
– We thus incorporate software quality metrics.

• Look for rules that are followed on “good”
paths and broken on “bad” paths

• Result: reduce false positive rate from 90-
99% (previous state-of-art) to 5%

26

Fun Part: Social Networking

• Social networking sites like Facebook and
MySpace use similar algorithms to
recommend friends and groups to existing
members.

27

Project Suggestion
• Write a FaceBook application

– http://fyi.oreilly.com/2008/08/how-to-write-your-own-facebook.html

– http://gathadams.com/2007/06/18/how-to-write-a-facebook-application-in-10-minutes/

– http://developers.facebook.com/get_started.php

• It's relatively painless to convert an
existing class program (e.g., Sudoku) into
a FaceBook app.
– Optionally: make an app that finds the most

similar person to every person who joined

• Cellphone apps are also painless: Google
Android, for example, uses standard
Eclipse/Java development.

http://fyi.oreilly.com/2008/08/how-to-write-your-own-facebook.html
http://gathadams.com/2007/06/18/how-to-write-a-facebook-application-in-10-minutes/
http://developers.facebook.com/get_started.php

28

Project Suggestion 2
• Try out making movie recommendations.

Netflix offers prizes from $50,000 to $1M
for movie recommendation algorithms that
can improve the state of the art.

• They provide anonymized training data (=
records of what people rated various
movies on Netflix in the past).
– 1 million ratings of the >1 billion they have

• Simple algorithms can be coded in one
page; provides natural into to Big-Oh, etc.

• http://www.netflixprize.com/

http://www.netflixprize.com/

29

Topic 3 – Model Checking

• Programmers spend quite a bit of time
hunting down and fixing bugs ...

30

It's Not Just You

• In 2008, 139 North American firms spent a mean
of $22 million each fixing bugs. The cost of fixing
a bug increases throughout development, from
about $25 while coding to $16000 after
deployment. In 2006, it took 28 days on average
for maintainers to develop fixes for security
flaws; in 2008 an FBI survey of over 500 large
firms found that the average annual cost of
security defects alone was $289,000. In 2002,
NIST calculated the average US-wide annual
cost of software errors to be $59.5 billion, or
0.6% of the US GDP.

31

Fun Part: Game Theory

• Software security and correctness can be
viewed as a two-player game: one player
represents the software, and another
player is “the environment”.
– The environment will try to mess you up: disk

reads will fail, you'll run out of memory, evil
users will perform cross-site scripting attacks,
etc.

• If you have a winning strategy, you don't
have bugs. Model checking exhaustively
explores all options to see if you have one.

32

Game Theory
• Game Theory is a branch of applied math

used in the social sciences (econ), biology,
compsci, and philosophy. Game Theory
studies strategic situations in which one
agent's success depends on the choices of
other agents.

33

Broad Applicability
• Finding equilibria (Nash) – sets of strategies

where agents are unlikely to change behavior.
• Econ: understand and predict the behavior of

firms, markets, auctions and consumers.
– Think “EBay”!

• Animals: (Fisher) communication, gender
• Ethics: normative, good and proper behavior
• PolySci: fair division, public choice. Players

are voters, states, interest groups,
politicians.

34

Nim
• Nim is a two-player game in which players

take turns removing objects from distinct
heaps.
– Properties: non-cooperative, symmetric,

sequential, perfect information, finite, impartial

• One each turn, a player must remove at least
one object, and may remove any number of
objects provided they all come from the
same heap.

• If you cannot take an object, you lose.
• Similar to Chinese game “Jianshizi” (“picking

stones”); European refs in 16th century

35

Example Nim
• Start with heaps of 3, 4 and 5 objects:

– AAA, BBBB, CCCCC

• Here's a game:
– AAA BBBB CCCCC I take 2 from A

– A BBBB CCCCC You take 3 from C

– A BBBB CC I take 1 from B

– A BBB CC You take 1 from B

– A BB CC I take all of A

– BB CC You take 1 from C

– BB C I take 1 from B

– B C You take all of C

– B I take all of B

– You lose! (you cannot go)

36

Real-Life Nim Demo

• I will now play Nim against audience
members.

• Starting Board: 3, 4, 7
– AAA, BBBB, CCCCCCC

• You go first ...

37

The Rats of NIM

• How did I win every time?
– Did I win every time? If not, pick on me

mercilessly.

• Nim can be mathematically solved for any
number of initial heaps and objects.

• There is an easy way to determine which
player will win and what winning moves are
available.
– Essentially, a way to evaluate a board and

determine its payoff / goodness / winning-ness.

38

Analysis

• You lose on the empty board.
• Working backwards, you also lose on two

identical singleton heaps (A, B)
– You take one, I take the other, you're left with

the empty board.

• By induction (recursion), you lose on two
identical heaps of any size (An, Bn)
– You take x from heap A. I also take x from heap B,

reducing it to a smaller instance of “two identical
heaps”.

39

Analysis II

• On the other hand, you win on a board with a
singleton heap (C).
– You take C, leaving me with the empty board.

• You win with a single heap of any size (Cn).
• What if we add these insights together?

– (AA, BB) is a loss for the current player
– (C) is a win for the current player
– (AA, BB, C) is what?

40

Analysis III

• (AA, BB, C) is a win for the current player.
– You take C, leaving me with (AA, BB) – which is

just as good as leaving me with the empty board.

• When you take a turn, it becomes my turn
– So leaving me with a board that would be a loss

for you, if it were your turn
– ... becomes a win for you!

• (AAA, BBB, C) – also a win for Player1.
• (AAAA, BBBB, CCCC) – also a win for Player1.

41

Generalize

• We want a way of evaluating nim heaps to see
who is going to win (if you play optimally).

• Intuitively ...
• Two equal subparts cancel each other out

– (AA, BB) is the same as the empty board (,)

• Win plus Loss is Win
– (CC) is a win for me, (A,B) is a loss for me,

(A,B,CC) is a win for me.

• What do we know that's kind of like addition
but cancels out equal numbers?

42

The Trick!

• Exclusive Or
– XOR, ⊕, vector addition over GF(2), or nim-sum

• If the XOR of all of the heaps is 0, you lose!
– empty board = 0 = lose
– (AAA,BBB) = 3⊕3 = 0 = lose

• Otherwise, goal is to leave opponent with a
board that XORs to zero
– (AAA,BBB,C) = 3⊕3⊕1 = 1, so move to

• (AAA,BBB) or (AA,BBB,C) or (AAA,BB,C)

43

Real-Life Nim Demo II

• I played Nim against audience members.
• Starting Board: 3, 4, 7

– AAA, BBBB, CCCCCCC

• The nim sum is 3⊕4⊕7 = 0
– A loss for the first player!

• This time, I'll go first.

• You, the audience, must beat me. Muahaha!

44

Hackenbush

• Hackenbush is a two-player impartial game
played on any configuration of line segments
connected to one another by their endpoints
and to a ground.

• On your turn, you “cut” (erase) a line
segment of your choice. Line segments no
longer connected to the ground are erased.

• If you cannot cut anything (empty board) you
lose.

45

Hackenbush Example

• Each is a line segment. Ignore color.
• Let's play! I'll go first.

Ground

House of Blue Jeans ...

46

Hackenbush Subsumes Nim

• Consider (AAA, BBB, C) = (3,3,1) in Nim
• Who wins this completely unrelated

Hackenbush game?

Ground

47

A Thorny Problem

• What about that Hackenbush tree?
• What value (nim-sum) does it have? Who wins?

Ground

48

A Simple Twig

• Consider a simpler tree ...
• What moves do you have?

Ground

49

Twig Analysis

• Consider a simpler tree ...
• What moves do you have?

Ground

(empty)

50

Maximum Excluded
• You can move to “2”, “2” or “0”.
• The minimal excluded of (2,2,0) is 1

– mex(2,2,0) = 1 = value of that twig

Ground

(empty)

Yes, this mex thing
came out of nowhere.

(empty)

51

Generalized Pruning
• Can replace any subtree above a single

branch point with the XOR of those branches
– Via similar game-equivalence argument

Ground

pruning

1⊕2=3

pruning

4⊕1⊕1=4

The whole tree has value “5”.

52

Door Analysis

• What about cycles?
• What is the value (nim-sum) of this door?

Ground

53

Door Analysis

• Well, what moves can you take from here?

Ground

54

Door Analysis
• You can move to “0”, “2” or “2”.

– mex(2,2,0) = 1 (recall: minimal excluded)
– Value of door = 1

Ground

55

Fusion Principle
• We may replace any cycle with an equivalent

subgraph where all of the non-ground vertices
of that cycle are fused into one vertex and all
of the ground vertices of that cycle are fused
into another vertex.

Ground

Fusing Done

56

Fusion Principle
• We may replace any cycle with an equivalent

subgraph where all of the non-ground vertices
of that cycle are fused into one vertex and all
of the ground vertices of that cycle are fused
into another vertex.

Ground

Fusion Result

You can't stop in the middle!

57

Cold Fusion

• Let's boil the house down to something
simple!

Ground

Fusion Fusion
Is Just

The whole house has value 1⊕1=0.

How would I check that?

58

Hackenbush Example

• This board has value 5⊕0⊕1=4.
• You go first. Beat me. (Time permitting.)

GroundTree=5 House=0 Door=1

59

Why Do We Care?

• ... about Nim and
Hackenbush?

• Theorem (Sprague-
Grundy, '35-'39).
Every impartial
game is equivalent
to a nim sum.

• Proof by induction.

• Universality!

http://en.wikipedia.org/wiki/Hackenbush
http://en.wikipedia.org/wiki/Winning_Ways_for_your_Mathematical_Plays
http://en.wikipedia.org/wiki/Nim

http://en.wikipedia.org/wiki/Hackenbush
http://en.wikipedia.org/wiki/Winning_Ways_for_your_Mathematical_Plays
http://en.wikipedia.org/wiki/Nim

60

Final Topic – Genetic Algorithms

• Genetic Algorithms are a search
technique used to find exact or
approximate solutions to search or
optimization problems. Inspired by
evolutionary biology, they maintain a
population of individuals, subject them to
random mutations, evaluate their fitness,
and allow the fittest to survive and breed
to form the next generation.

61

Magically Delicious

• Genetic algorithms are competitive with
humans at tasks like synthesizing
(inventing) audio amplifiers, electronic
thermometers, or robot soccer players.

• Our research: use genetic algorithms to
evolve your programs to fix bugs in them!
– Automatically repaired 18 defects in 180,000

lines of code; takes about 3 minutes on
average. Fun stuff, but ...

62

Fun Stuff: Let's Do Music Instead

• Creativity is typically viewed as uniquely human.

• Let's use genetic algorithms to make music.
– In particular, we'll use GA to add accompaniment to

music; this is tricky because existing tracks are a
scaffold upon which the accompaniment is built, and
the accompaniment must carry the global structure.

• The work I'll describe was done by:

• Amy K. Hoover, Michael P. Rosario, and Kenneth O.
Stanley from the School of Electrical Engineering and
Computer Science at the University of Central Florida
– Amy did this as a third-year undergraduate.

63

High School Musical

• Example: “Johnny Cope”
More samples and comparisons: http://eplex.cs.ucf.edu/neatmusic

http://eplex.cs.ucf.edu/neatmusic

64

I'm Not A Musician
(But I Play One On TV)

• Barry Taylor (the original musician)
comments on the results:
“Those samples were amazing! … I have heard some
‘auto drum’ software in the past and the result, at least
when applied to old traditional tunes, is usually
appalling. I must confess that I was a little wary of
listening to the results of your application applied to
my sequences, but your work gives me renewed
hope that great quality can indeed be achieved! Keep
up the superb work! I wish you continued success in
your project...and I'm thrilled to contribute in this small
way!”

65

Motivation

• Games such as Guitar Hero and Rock Band, as
well as programs like Garage Band, are
amazingly popular these days.
– Why not harness some of that enthusiasm for

class projects?

– Non-musical approaches:
– http://jite.org/documents/Vol6/JITEv6p249-261Venables263.pdf

http://jite.org/documents/Vol6/JITEv6p249-261Venables263.pdf

66

You Survived!

Questions? Anyone? Bueller?
I will answer questions on any topic until we run out of time.

	Programming Languages Topic of Ultimate Mastery
	Reasonable Initial Skepticism
	Slide 3
	Slide 4
	Final Goal: Fun
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	This Shall Be Avoided

