
Pair	Programming	in	the	Classroom	

Mark	Sherriff	

University	of	Virginia	
	

June	29,	2016	

	

	
Some	material	courtesy	of	Laurie	Williams,	NCSU	

	

Tapestry	2016	

Tapestry	2016	

Overview	

• What	exactly	is	Pair	Programming?	

•  The	Case	for	Pair	Programming	

•  The	Costs	
•  Guidelines	for	a	successful	pairing	experience	
• Myths	and	Legends	

•  Resources	

2

Tapestry	2016	

Pair	Programming	DefiniQon	

•  "Pair	programming	is	a	style	of	programming	in	

which	two	programmers	work	side-by-side	at	

one	computer,	conQnuously	collaboraQng	on	

the	same	design,	algorithm,	code,	or	test."	

			–	Laurie	Williams	

3

Tapestry	2016	

Slightly	Altered	DefiniQon	

•  "Pair	programming	is	a	style	of	programming	in	

which	two	programmers	work	side-by-side	at	

one	computer,	conQnuously	collaboraQng	on	

the	same	design	or	algorithm."	
			(emphasis	mine)	

•  Basic	idea:	IDE’s	help	
us	code	–	people	help	

us	design!	

4

Tapestry	2016	

Why	Pair	Programming?	

•  Pair	programming	students	tend	to:	

– Make	it	through	the	first	class	

–  Improves	retenQon	

–  Increases	programming	confidence	

–  Perform	comparably	or	be`er	on	exams	and	

projects	

–  Perform	just	fine	in	future	solo	programming	

– Help	create	peer	groups	

5

Tapestry	2016	

Why	Pair	Programming?	

•  An	instant	support	system	

– We	have	found	that	pairing	cuts	down	on	a	large	

number	of	the	"trivial"	quesQons	(syntax,	

assignment	clarificaQon,	etc.)	and	a	fair	number	of	

the	more	complex	quesQons	(debugging,	etc.)	

– We	have	been	able	to	reduce	the	number	of	TAs	

for	some	courses	

–  Instructor	office	hours	are	much	quieter,	and	the	

instructor	can	spend	more	Qme	with	students	that	

need	more	help	

6

Tapestry	2016	

Why	Pair	Programming?	

•  SomeQmes	it	is	a	numbers	game	

•  In	a	lab	of	40	students…		
–  having	20	pairs	makes	it	easier	for	TAs	to	get	to	

everyone	

–  20	assignments	are	easier/faster	to	grade	than	40	

•  Our	main	CS1	course	has	on	average	500	

students	a	semester…	

7

Tapestry	2016	

The	Roles	

•  The	Driver	
–  The	person	with	"control"	of	the	computer	

– Does	the	bulk	of	the	typing	
•  The	Navigator	

– AcQvely	follows	along	with	the	driver	with	
comments	

–  Can	take	over	at	any	Qme	

•  How	does	this	translate	to		
pair	design?	

8

Tapestry	2016	

Partners	vs.	Pair	Programming	

•  How	is	Pair	Programming	different	than	just	

having	partner	assignments?	

– Mentality	of	how	to	approach	the	assignment	

•  Partnering:		
–  "You	go	do	this	part	and	I’ll	go	do	this	part	and	
then	we’ll	put	it	back	together."	

•  Pair	Programming:	

–  "Let’s	first	do	this	part	together,	then	we’ll	tackle	
the	rest."	

9

Tapestry	2016	

Partners	vs.	Pair	Programming	

•  The	disQncQon	ma`ers!	

•  It	ma`ers	to:	

–  Instructors	
–  Teaching	Assistants	/	Tutors	
–  Students	

•  Call	it	framing,	percepQon,	spin…	whatever	

•  It’s	all	about	ajtude!	

10

Tapestry	2016	

It’s	All	About	Ajtude	

•  How	do	you	get	the	ajtude	going?	

•  How	do	I	start	using	pair	programming?	

•  Things	to	consider:	
–  Teaching	the	Technique	
– Assignments	

–  Pair	CreaQon	
–  Pair	EvaluaQon	
– Assessment	

11

Tapestry	2016	

Teaching	the	Technique	

•  Start	with	the	instrucQonal	staff	
•  Pair	programming	HAS	to	be	incorporated	into	

the	class	(or	lab)	in	some	structured	way	

•  Students	do	not	naturally	work	as	a	“pair”	
when	given	a	“partner”	

• What	happens	when	you	tell	students	they	can	

work	with	a	“partner”?	

12

Tapestry	2016	

Teaching	the	Technique	

•  The	environment	ma`ers!	

13

Tapestry	2016	

Teaching	the	Technique	

• What	are	you	actually	teaching	them	to	do?	

•  1.	Take	turns	being	the	one	coding	(“driver”)	
•  2.	Whoever	is	not	coding,	comment	acQvely	

•  3.	Whoever	is	coding,	talk	through	what	you	

are	doing	

•  4.	Switch	at	regular	intervals	
•  5.	Nothing	is	done	independently	from	the	

other	partner	

14

Tapestry	2016	

Teaching	the	Technique	

•  Switching	roles	can	be	problemaQcs	

•  Some	ideas:	

– Go	around	and	tap	people	on	the	shoulder	
– Have	a	audio	cue	
– Have	a	visual	cue	

•  Try	to	enforce	even	roles	as	much	as	possible	

•  Try	to	enforce	no	“splijng	up	work”	as	much	

as	possible	

15

Tapestry	2016	

Assignments	

•  Do	I	have	to	totally	change	my	course	material	

to	do	pair	programming?	

•  Answer:	Probably	not,	but	some	changes	might	

make	things	go	be`er	

16

Tapestry	2016	

Assignments	

•  Biggest	problem:	assignment	scope	

•  If	you	use	your	current	assignments	with	no	

modificaQon	at	all,	it’s	possible	that	no	

switching	will	occur	and/or	the	point	of	pairing	

won’t	be	obvious	

•  Example:	Convert	Fahrenheit	to	Celsius	

•  Counter	Argument:	Two	novices	learning	

together	from	the	very	beginning	could	help	

with	self-confidence	

17

Tapestry	2016	

Assignments	

•  If	the	assignment	scope	is	too	large	or	if	there	

is	an	obvious	“split	point”,	divide	and	conquer	

becomes	more	tempQng	

•  Example:	Write	a	Student	and	Course	class	that	

work	together	to	keep	up	with	course	

enrollment		

18

Tapestry	2016	

Assignments	

•  An	assignment	I	like	for	pair	programming:	

•  Email	Hunt	

– Given	a	website	that	has	a	bunch	of	email	

addresses	on	it,	write	a	program	that	can	read	the	

website	and	extract	the	email	addresses	

–  h`p://cs1110.cs.virginia.edu/emails.html	

•  Things	I	like:	
– No	one	way	to	do	it	(in	fact,	it	takes	more	than	one	

idea	to	get	all	the	emails	out)	

– Allows	for	some	creaQvity	

19

Tapestry	2016	

Pair	CreaQon	

•  How	do	you	create	partners?	
•  Big	philosophic	quesQon:	

– Do	you	assign	partners	or	do	you	let	students	pick	
their	own	partners?	

– Advantages	and	disadvantages	to	both	

20

Tapestry	2016	

Pair	CreaQon	–	Assigned	Pairs	

•  How	can	you	assign	pairs?	
–  Randomly	

–  Based	on	programming	experience	/	confidence	

–  Personality	/	friendships	
– Other	interests	/	survey	results	

21

Tapestry	2016	

Pair	CreaQon	–	Assigned	Pairs	

•  Randomly	

–  Easiest	to	setup	
– Good	if	you	have	no	other	informaQon	to	work	

from	

– Has	potenQal	to	lead	to	problems	(but	not	as	many	

as	you	might	think)	

–  Consider	“random	with	replacement”	for	

subsequent	assignments	(no	one	can	work	with	

same	person	twice)	

22

Tapestry	2016	

Pair	CreaQon	–	Assigned	Pairs	

•  Based	on	programming	experience	/	

confidence	

–  Research	indicates	this	has	the	highest	likelihood	of	
producing	good	partnerships	

– Hard	to	setup	unQl	you	have	data	
–  Even	then,	it	can	be	difficult	because	research	

shows	that	percep)on	of	partner’s	ability	(not	
actual	ability)	is	a	higher	indicator	of	a	good	match	

23

Tapestry	2016	

Pair	CreaQon	–	Assigned	Pairs	

•  Personality	/	Friendships	
– Most	likely	to	have	the	fewest	personality	conflicts	

–  Enforcing	cliques	
•  Other	survey	results	

–  I	haven’t	used	anything	else,	but	could	imagine	

using	things	like:	

• Schedule	
• Outside	interests	
• Common	friends	

24

Tapestry	2016	

Pair	CreaQon	–	Self-Selected	Pairs	

•  Self-selected	pairs	open	have	elements	of	the	

assigned	pairings	with	similar	experience	and	

friendships	

•  So	it	has	similar	benefits	and	drawbacks	

•  However,	you	HAVE	to	monitor	closely	for	the	

“last	student	picked”	problem	

•  Probably	should	enforce	replacement	for	later	

assignments	

25

Tapestry	2016	

Pair	Replacement	

•  Reassign	several	Qmes	per	semester	

•  Good	for	students	
– Get	to	meet	new	people,	learn	about	working	with	

new	people	

–  If	they	don’t	like	their	partner,	they	know	they	will	
get	a	new	one	soon	

•  Good	for	instructor	
– MulQple	forms	of	feedback	

– Natural	handling	of	dysfuncQonal	pairs	

26

Tapestry	2016	

Pair	Management	and	EvaluaQon	

•  Auto-Assign	Pair	CreaQon	
–  CATME	–	h`p://www.catme.org	

– Data	needed	to	auto-create	pairs	varies	
•  Self-Reported	Pairs	

– Google	Forms	

27

Tapestry	2016	

PairEval	

28

Tapestry	2016	

PairEval	

29

Tapestry	2016	

Pair	EvaluaQon	

• With	or	without	a	tool,	it	boils	down	to	a	few	

quesQons:	

– Did	the	pair	get	along?	
– Did	you	get	the	work	done?	
– Do	you	feel	like	you	“did	your	fair	share?”	

• More	data	is	nice/interesQng,	but	this	is	all	you	

really	need	

•  Reliable	feedback	system	is	needed	(both	for	

you	and	the	students)	

30

Tapestry	2016	

Pair	EvaluaQon	

•  NCWIT	resources	have	surveys	you	can	use!	

•  Example	in	your	packet	

•  h`p://www.ncwit.org/pairprogramming	

31

Tapestry	2016	

Pair	EvaluaQon	and	Assessment	

•  If	there’s	no	problem…	then	great!	

•  If	there	is…	
–  If	possible,	ask	the	students	one	at	a	Qme:	“If	100%	

effort	is	you	doing	exactly	what	you	should	have	

been	doing,	what	percentage	did	you	actually	do?”	

–  95%	of	the	Qme,	this	works!	

–  For	the	other	5%,	you	have	to	use	your	best	
judgement	

32

Tapestry	2016	

Assessment	

•  For	other	class	assessments,	I	do	not	adjust	

anything	

•  All	tests/exams,	pop	quizzes,	etc.	all	stay	the	

same	as	if	it	were	a	solo	programming	only	

course	

33

Tapestry	2016	

The	Biggest	Cost	

•  Training!	
•  Instructors,	TAs,	and	students	need	to	be	
taught	how	to	do	effecQve	pair	programming	in	

a	controlled	environment!	

•  The	controlled	environment	could	be	a	closed	

lab	or	lecture-lab	system	

34

Tapestry	2016	

But	we	don’t	have	a	closed	lab?	

•  CS1:			
–  Assigned	pairs	not	advisable	if	they	don’t	know	the	partners	
Try	to	introduce	in	guided	labs	/	in-class	acQviQes	first	

•  CS2:			
–  Proceed	with	cauQon	for	assigned	pairs	for	first	assignment	

–  Works	be`er	aper	first	month	or	so	

–  At	least	bond	in	lab	+	some	outside	work		

•  CS2+:	
–  Aper	at	least	one	paired	class 		
–  Bonding	sQll	beneficial,	outside	work	fine	

35

Tapestry	2016	

Gejng	Involved	

•  Instructors	and	Teaching	Assistants	have	to	
take	an	acQve	role	in	lab	

– Must	monitor	and	approach	pairs	if	they	seem	to	

be	dysfuncQonal	

–  Should	"strongly	encourage"	drivers	and	navigators	
to	switch	

•  Instructors	also	must	understand	that	some	

pairings	are	just	not	going	to	work		

– Don’t	let	it	discourage	you!	

36

Tapestry	2016	

How	Many	Pairings	Fail?	

37

Class Very
compatible

OK Not
compatible

CS1 64% 32% 4%

SE-P1 60% 33% 7%

SE-P2 56% 35% 9%

OO 76% 15% 9%

Total 60% 33% 7%

Tapestry	2016	

Problem	Pairs	

• Will	problem	pairs	happen?		Yes.			

•  ParQcular	cases:	
–  The	“I	don’t	care”	student	
–  The	special	needs	student	
–  The	absent	student	
–  The	“liberal	arts	vs.	engineering”	student	

•  These	problems	are	not	pair	programming	

related,	but	pair	programming	can	make	these	

come	to	the	surface	more	open	

38

Tapestry	2016	

Guidelines	To	Follow	

•  Strict	tardiness	/	absence	policy	must	be	

followed	for	pair	acQviQes	to	guard	against	lazy	

partners.	

–  Loss	of	partner,	points,	and	bad	evaluaQon	
•  There	must	be	a	reporQng	mechanism	for	

students	to	provide	feedback	on	partners	

–  CATME	or	a	simple	Google	Form	

–  "If	you	could	rate	your	effort	based	on	100%.."	

39

Tapestry	2016	

Guidelines	To	Follow	

•  Assignments	should	be	a	bit	more	challenging	

–  "Sopball"	assignments	tend	to	be	finished	by	a	

single	person	without	consulQng	their	partner	

•  The	environment	for	pairing	must	be	conducive	

to	pairing	

40

Tapestry	2016	

Guidelines	To	Follow	

•  Don’t	go	overboard!	
–  Everything	in	moderaQon	J	

–  Pairing	isn’t	for	every	assignment	

–  There	must	be	a	balance	(in	work	and	in	grade)	

41

Tapestry	2016	

Myths	and	Legends	

• Myth:	Half	the	students	will	learn	
–  "In	the	first	course,	students	need	some)me	to	absorb	the	
ideas	themselves."	

–  "My	inclina)on	is	to	allow	more	group	work	star)ng	in	the	
second	course."	

–  "We	want	to	be	sure	that	each	student	writes	enough	code	
him/herself	to	learn	the	introductory	concepts."	

–  "I	am	against	pair-programming	in	introductory	courses,	
where	students	need	to	develop	strong	programming	skills	
themselves."	

	

42

Tapestry	2016	

Myths	and	Legends	

•  In	fact,	all	the	students	learn	pre`y	well…	
–  Studies	at	NCSU	and	SDSU	showed	that	exam	

scores	were	comparable	or	improved	for	all	

students	in	introductory	classes	

– Also,	the	percentage	of	students	whose	grade	in	
CS2	went	down	by	over	1/3	of	a	grade	dropped	

once	pairing	was	used	in	CS1	

Williams,	L.,	Layman,	L.,	

Lab	Partners:	If	They’re	Good	Enough	for	the	Sciences,	Why	Aren’t	They	Good	Enough	for	Us?,	

Conference	on	Sopware	Engineering	EducaQon	and	Training	(CSEE&T	’07)	

43

Tapestry	2016	

Myths	and	Legends	

•  By	falling	for	this	myth,	you’re	perpetuaQng	

another	one	

–  “All	computer	scienQst	work	by	themselves	in	

cubicles	struggling	to	code.”	

• We	all	know	that	creaQng	sopware	is	HIGHLY	

collaboraQve!			

• Why	give	the	wrong	impression	in	the	first	

class	they	take!?	

44

Tapestry	2016	

Myths	and	Legends	

• Myth:	CheaQng	will	increase	
–  "With	loose	rules	about	who	partners	are,	people	will	just	
pass	code	around.		There	has	to	be	structure!"	

–  "Old	partners	may	feel	obliged	to	help	their	former	
teammates."	

	

45

Tapestry	2016	

Myths	and	Legends	

•  Think	about	it	a	li`le	differently…	
• When	we	provide	partners,	students	now	have	

a	support	system	they	can	turn	to	

– Anecdotal	evidence	from	students	indicated	that	

the	stress	of	feeling	alone	and	isolated	made	them	

consider	cheaQng	

•  Two	people	now	have	to	agree	on	cheaQng!	
– Well…	there	are	excepQons	to	this	one…	

– Moss	and	etector	are	valuable	tools		

	
46 Tapestry	2011	

Tapestry	2016	

Other	Guidelines	and	Myths	

•  Any	others	to	add?	
	

47 Tapestry	2011	

Tapestry	2016	

Resources	

•  h`p://www.realsearchgroup.org/pairlearning	
•  h`p://www.ncwit.org/pairprogramming	

• My	personal	website:	

h`p://www.cs.virginia.edu/~sherriff	

• My	email:	sherriff@virginia.edu	

48 Tapestry	2011	

