
Hardware Trojans in eNVM Neuromorphic Devices
Lingxi Wu*,1, Rahul Sreekumar†,1, Rasool Sharifi*, Kevin Skadron*, Mircea R. Stan†, and Ashish Venkat*

1(equal contributors to this work)
*Department of Computer Science, University of Virginia

†Department of Electrical and Computer Engineering, University of Virginia

Email: {lw2ef, rs2xd, as3mx, skadron, mircea, venkat}@virginia.edu

Abstract—Fast and energy-efficient execution of a DNN on
traditional CPU- and GPU-based architectures is challenging
due to excessive data movement and inefficient computation.
Emerging non-volatile memory (eNVM)-based accelerators that
mimic biological neuron computations in the analog domain
have shown significant performance improvements. However, the
potential security threats in the supply chain of such systems
have been largely understudied. This work describes a hardware
supply chain attack against analog eNVM neural accelerators
by identifying potential Trojan insertion points and proposes a
hardware Trojan design that stealthily leaks model parameters
while evading detection. Our evaluation shows that such a
hardware Trojan can recover over 90% of the synaptic weights.

I. INTRODUCTION

Deep neural networks have been extensively employed in

several applications. However, their execution on traditional

architectures has shown to be inefficient due to their inherently

memory-bounded nature, a problem that has been exacerbated

by rapidly growing model and input data sizes. For example,

data movement in GoogLeNet accounts for roughly 70% of

the overall energy consumption [1]. In recent years, emerging

non-volatile memory (eNVM)-based neuromorphic computing

systems that emulate biological computing with artificial neu-

rons in the analog domain, have gained traction, due to their

high energy efficiency and throughput advantages [2]. Their

security implications, however, remain largely unexplored.

The process of setting up a trusted end-to-end production

line for eNVM-based neuromorphic accelerators can be pro-

hibitively expensive, especially considering frequent algorith-

mic updates and tuning of models. This has paved the way for

a decentralized design-manufacturing approach that involves

a coordinated effort among multiple stakeholders. However, it

also inevitably invites exploitation from bad actors to stealthily

inject malicious hardware Trojans into the product [3]. Semi-

conductor supply chain attacks are critical threats that can

disrupt the operations of high-value mission-critical systems

such as military, financial, and medical infrastructure.

This work is the first to demonstrate the feasibility of

carrying out a hardware supply chain attack against ana-

log eNVM neural accelerators to leak IP-sensitive synaptic

weights. We discuss potential Trojan insertion points within

the supply chain and due to the lack of openly available

commercial implementations, we dissect a generic eNVM

accelerator derived from recent works to identify vulnerable

probe points. The crux of this work is the design and stealthy

placement of a neuron-suppressing hardware Trojan that can

be reliably triggered by a colluding adversary. The findings

from this research are expected to foster the design of such

eNVM neural accelerators with a security focus.

C
ro

ss
ba

r W
L

D
ec

od
er

SL Switch Matrix

BL
 S

w
itc

h
M

at
rix

Mux

Pseudo-Crossbar
Memristor Array

(Synaptic Weight Matrix)

ADC ADC ADC

N
eu

ro
n

Pe
rip

he
ra

ls

N
eu

ro
n

Pe
rip

he
ra

ls

N
eu

ro
n

Pe
rip

he
ra

ls

M
ux

D
ec

od
er

...

Sy
na

pt
ic

C
or

e

Access
Transistor

WL

SL
BL

Memristor
(d). Individual Cell

(b). Synaptic Core Block Diagram (c). Sample Synaptic Core Layout(a). NN Layer to Synaptic Array

Fig. 1: Synaptic Core layout [6] and Neuron Architecture.

There are two major motivations for such a model extraction

attack that aims at cloning a victim model of similar perfor-

mance without going through the expensive training process.

First, the synaptic weights of a neural network are considered

core IP as they separate a properly trained network with high

accuracy from a poorly trained one. Second, stealing weights is

increasingly more economical than training. To obtain a model

with competitive performance, typically, a large set of high-

quality labeled data and proprietary training algorithms are

required [4]. Further, even with access to proprietary training

data, the process of training can take weeks and is likely to

worsen with model sizes, affecting the time-to-market [5].

The key to our attack is the fact that synaptic weights

are encoded as conductances of eNVM devices in the analog

eNVM device array, and the total current representing a dot-

product result depends on the synaptic weights. This allows

for the isolation of the switching activity of a single neuron,

enabling the sequential extraction of all the synaptic weights

using power side-channel analysis while evading detection.

II. BACKGROUND AND RELATED WORK

Analog eNVM Neuromorphic Devices. Fig. 1a illustrates

the mapping of an MLP layer onto an eNVM device. All

incoming synaptic weights of the highlighted output neu-

ron (W 0,1,W 1,1,W 2,1) are stored as distinct conductances

(G0,1, G1,1, G2,1) of the eNVM cells along the same column.

Suppose the inputs to this neuron are encoded as voltage

levels applied to the wordlines (V 0, V 1, V 2), then each cell

contributes a small current of V i ×Gi,1 Ampere to the bitline.

By Kirchoff’s Law, the total current passed to the neuron

circuit at the end of the bit line is the sum of the three partial

currents generated at each cell, representing the dot product

of the input vector and the weight vector of a single neuron.

Synaptic cores (SC) are the fundamental building blocks

of a neuromorphic architecture (Fig. 1b). They consist of a

2D synaptic device array that stores a weight matrix in the

Fig. 2: Schematics and waveforms that depict (a). Generic

Integrate and Fire Neuron model; transient signals that

exhibit (b). current integration, and (c). spiking pattern.

form of conductance levels and supporting peripheral circuits.

An additional access transistor is inserted per eNVM cell to

mitigate the current sneak-path problem (Fig. 1d). During the

weighted sum operation, wordlines (WLs) are switched on in

parallel, thereby selecting multiple rows of eNVM cells. Inputs

are provided as serial bit vectors to the memory cell and the

generated currents on the selectline (SLs) represent weighted

sums that propagate toward the neuron peripherals. The results

of the matrix-vector multiplication are first converted by a

series of ADCs (described next) to digital values, then sent

to the neuron peripherals for activation, in turn producing the

results bit vector to be sent to the next SC to select a set

of BLs, subsequently activating neurons of the next layer. To

save area, both ADC and neuron peripherals are shared among

artificial neurons through a multiplexer [2], [7].

Neuron ADC. Fig. 2a shows a generic Integrate-and-Fire

ADC, which consists of a thermometer code generator and

a Thermometer-to-Binary encoder. Such a design is popular

as it provides good energy efficiency [2], [6], [8]. Since the

resulting cumulative current is to be integrated as a potential

that represents the weighted sum, the integration is carried

out as a potential buildup on a capacitor (Ccolmn), and as the

potential crosses a threshold value (Vthr), the neuron fires in

the form of a spike, causing an instantaneous discharge of the

potential buildup to a predetermined base potential (Vb). The

circuit designed for generating spikes is highlighted within the

dashed lines and involves an inverter with a reset element that

allows for instantaneous discharge and regeneration of a spike

potential. Fig. 2b depicts the transient waveform showing the

potential buildup on the capacitor up to Vthr and discharge to

Vb. Fig. 2c shows the resulting train of spikes.

Hardware Trojans. A hardware Trojan consists of a trigger

circuit that activates it on a specific condition and a payload

circuit that causes functional perturbations, carries out failures,

or covertly leaks private information. They typically ought

to be stealthy, meaning the underlying malicious circuitry

occupies a small area, consumes negligible power, and remains

dormant until triggered by rare events. Every stage in the

distributed IC supply chain is susceptible to the insertion of

hardware Trojans by any of the entities involved. The design

team might unintentionally use tainted third-party IP blocks or

tools, resulting in Trojan-infected netlist or layout files [9]. A

rogue engineer in the design team can insert a Trojan directly

at the RTL level [10]. Even if the chip specifications are

correctly implemented by the design house and verified by

Neuromorphic
Chip Production

NN Training &
Inference

using MNCS

Synaptic
Weights

Recovery

Attack Phase 1:
Trojan Embedding

Untrusted parties
. Hardware IP vendors
. Design teams
. Foundry

Trusted parties
. ML service providers
. Individual end-users

Untrusted parties
. Rogue employees at ML
service providers
. 3rd parties w/ malicious intent
. Any parties from phase 1

Attack Phase 2:
Trojan Activation

Chip
Delivery

Weight
Extraction

Potentially colluding with each other

Normal use by
trusted parties Activate

Trojan

Fig. 3: Trusted and untrusted parties in the supply chain.

the backend design house, the malicious foundry can tamper

with the mask layout during fabrication [3], [9].

Related Work. An adversary with physical access to an

eNVM device can probe it to extract the weights directly [11]–

[13]. However, such an attack is destructive as probing one

cell could damage adjacent ones [11]. Moreover, encrypting

data before the system powers down is an effective coun-

termeasure [11], [13]. On the other hand, stealing weights

online is superior as it is non-destructive and cannot be

mitigated by encryption because, at any time, there is at least

one layer of synaptic weights remaining in plaintext [13].

Rajamanikkam et al. [12] outline two attacks to compromise

the availability of neuromorphic devices. The first makes use

of current sneak paths to mount a fault injection attack by

sending malicious inputs and leveraging leakage currents to

alter synaptic weights, resulting in incorrect inference outputs.

This can be mitigated by inserting gating transistors. The

other attack embeds hardware Trojans to degrade classification

accuracy, as opposed to our attack which steals IP-sensitive

model weights, which is of greater interest because properly

trained weights are usually hard to obtain due to lack of high-

quality and proprietary training data and algorithms [4].

III. THREAT MODEL

Attacker Intent. The attacker intends to extract the synaptic

weights of a neural network from an analog neuromorphic

system in two phases. First, a Trojan is inserted at the hardware

design or fabrication stage. Second, the synaptic weights are

extracted at the NN inference stage by activating the Trojan

such that the resulting power trace can be attributed to the

requested synaptic weight. The attacker at each of these phases

might not necessarily be a single entity, but could involve

two separate colluding malicious parties. A detailed overview

that depicts a product development life-cycle and the potential

parties involved in the two phases of the threat model is

shown in Fig. 3. The malicious entities in the supply chain do

not possess the intricate details of the NN models (including

weights) but have the ability to embed a Trojan, given the

distributed nature of modern IC supply chains. A colluding

entity could then trigger the Trojan post-deployment using a

known activation code and then steal sensitive IP informa-

tion. Alternatively, a rogue engineer in the supply chain can

cause damage by simply publishing the Trojan activation code

without explicitly colluding with another player. Either way,

even if a trusted entity is tasked with securely programming

the synaptic weights into the device, it would still remain

vulnerable to a Trojan placed in the supply chain.

Trojan Insertion Points. We consider three possible in-

sertion points. First, the Trojan could be injected at a very

early stage (e.g., in the HDL code). However, this might stand

out under scrutiny during post-design verification. Second,

the Trojan could be placed in open spaces in the GDSII

layout file after the circuits have been placed and routed

following the model described in [3]. Third, an attacker from

an untrusted fab house could inject the Trojan, which entails

reverse engineering the victim wires to tap into, leveraging the

knowledge of algorithms used in floor-planning, placement,

and layout tools, which has been shown to be feasible [14].

Grey-box Model. As is common with conventional grey-

box models [15], we assume that the attacker is aware of the

neural network structure, such as the number of layers, but not

the IP-sensitive model parameters, i.e., synaptic weights. Many

production ML services leverage well-known neural networks

whose structures are publicly available (e.g., ResNet, VGG-

16/19, etc.) [4], due to which, all entities along the supply

chain would have access to the model structures. However, the

weights learned during the training process is often proprietary.

We also assume that a malicious entity with access to the

Trojan trigger code has the ability to buy such a device from

the market and activate the Trojan by sending arbitrary inputs

to covertly extract the synaptic weights through a power side-

channel attack [3], [15]. We note that leaking synaptic weights

in the absence of a Trojan is likely more challenging as it

entails attributing signal leakage to particular weights.

IV. ATTACK OVERVIEW

A. Feasibility of Exploitation

The key insight to this attack is that the dot-product results

are represented as analog currents, and the strengths of those

currents are directly correlated to the synaptic weights, i.e.,

larger weights (conductances) produce larger currents. As this

current is converted into a train of spikes by the Neuron ADC

(described in Sec. II), it results in dynamic switching transients

within the power trace, allowing the attacker to approximate

weights by intercepting the power trace. Even if an alternative

ADC is chosen, the generation of spikes would lead to a certain

amount of switching activity, exposing it as a possible target

for exploitation. Furthermore, ADCs consume over 80% of

the total system power, allowing the attacker to estimate the

power of ADCs using the global power trace [15]. Finally,

since the ADCs are time-shared due to their large area, the

attacker can target each ADC individually using our novel

neuron suppression scheme that allows a malicious Trojan

to isolate a particular neuron ADC, ultimately correlating the

switching activity of the architecture to a single eNVM cell.

B. Attack Procedure

Online Weight Recovery. Fig. 4 illustrates the proposed

Trojan-assisted power side-channel attack. The key idea is

to attribute the observed power activity to a single ADC by

sending specially-crafted input images containing Trojan codes

(certain pixel patterns) to the device, which triggers the Trojan

to iteratively select only one ADC to be functional and forces it

to process a current generated by a weighted sum operation of

one eNVM cell. An attacker can then collect power traces from

a Trojan-infected chip using off-the-shelf instruments such as

oscilloscopes [3], to deduce the weights by comparing it to a

library of reference power traces obtained offline (described

below). It is preferred that the attacker use a high sampling

rate (≥ 10GS/s) to capture sufficient sampling points within a

read cycle. Once the conductance values associated with the

currently functioning ADC are recovered, the attacker sends

a reset signal using the same malicious image that activates

the Trojan (toggle trigger), putting all ADCs back in working

order. A different activation code is needed to target a different

ADC. The attacker applies the above procedure repeatedly to

cycle through all ADCs to recover all synaptic weights. The

Trojan design and activation process are detailed in Sec. V.

Offline Characterization. The offline characterization step

(highlighted in Fig. 4 dashed line) allows the attacker to build a

library of reference traces used for comparison during online

weight recovery. This is possible since: (1) the operational

states of an ADC are finite, and (2) each conductance value

generates a unique ADC output spiking pattern, allowing

the attacker to thoroughly sweep through an ADC’s current

resolution steps and collect a library of distinct power traces.

The development of such a characterization portfolio involves

the generation of a step response chart (ADC step resolution

graph in Fig. 4) that allows the attacker to map a unique

spike pattern to a deterministic range of input current values

during the Trojan embedding phase. Next, for each distinct

ADC input current, its frequency domain signature (FFT) is

extracted, which is used to approximate the synaptic weights.

C. Establishing Power-to-Weight Correlation

Signal Processing (FFT). The attacker can infer the ADC

input current based on the decomposed frequency components

of the power trace, as the frequency domain allows for a

significantly higher fidelity comparison than the time domain.

As a result, a Fast Fourier transform (FFT) is performed

on both the victim and reference traces to compare and

identify key frequency components, increasing the visibility of

individual sub-components within the trace, thereby isolating

unique signatures. The strongest signals within the spectrum

can be attributed to the static (DC) energy costs, clock

tree consumption, and spiking signature. The FFT analysis

reveals that, (1) larger the input current, higher the frequency

signature, and (2) each current step resolution emits a unique

frequency signature. This allows the attacker to examine the

frequencies extracted from the victim traces and match them

against the signature frequencies within the library.

Synaptic Weights Recovery. There are two factors that

determine the precision of recovered weights. First, the ADC

can only respond to a set of discrete current ranges (i.e., ADC

resolution steps) rather than continuous current values. This

means two conductances (i.e., weights) with small differences

could produce similar currents that lead to a similar switching

activity (ADC power traces). The larger the step count, the

more “sensitive” the ADC is to differentiate between input

currents, and thus increase the resolution of the stolen weights.

FFT FFT Pattern search

Transient
Power
Trace

Image w/
Trojan code

Trojan
triggered

Image w/
one dark

pixel

Fast Fourier
transform

Image w/
Trojan code

Trojan
untriggered

Identify current range

...
FFT (current) to

conductance
mapping

Identify Weight

Conductance to
weights
mapping

Suppress neurons Terminate Attack

Power Trace Collection Signal Denoise & Analysis Synaptic Weights Recovery

Collect Pwr Traces

ADC step
resolution graph

Fig. 4: Synaptic weights recovery through a Trojan-created power side-channel.

BL400

BL2

BL1

B1

B1

B1

B2

B2

B2

B1

B2

B3

B4

B400

B399B400

B400

B400

VDD

VSS

n

Tr igger
3

Tr igger
2

Tr igger
1

BL2 BL4 BL i BL400

BL2

BL4

BL i

BL400

Trigger1

CLK

T
F/F

Tr igger Ci r cu i t

To payload
cir cui t

 Icolmn

Tr igger 1

Rshor t

Tr igger 1

Tr igger 1

Ccolmn

I&F
Neuron

ADC

Payload Ci r cu i t

Fig. 5: Trojan trigger module and payload circuit

Seconds, ADCs are typically calibrated to work with the cumu-

lative current produced by multiple eNVM cells. The current

generated from one eNVM cell might be too small to excite

the ADCs thermometer circuits, as a result of which the power

trace might not yield meaningful leakage information for the

attacker to extract weights. We assign minimal conductance

values to those that are not recoverable through the power side

channel. While this results in a small loss in the overall model

inference accuracy, in some cases, it results in the cloned

network outperforming the original (Sec. VII-B).

V. TROJAN DESIGN

The suppression of the neuron is achieved through the

design of an analog Trojan that consists of a trigger and a

payload module. The trigger circuit determines the operating

condition of the payload, i.e., if the trigger state is high, the

payload is active. If the payload is activated, the neuron circuit

is suppressed through bypassing the current generated by the

synaptic array away from its signal path, thereby depriving it

of a valid input. Fig. 5, shows the circuit for a switched leakage

short-circuit path (highlighted in red), that deviates the current

flow from its normal path (highlighted in blue). As long as the

trigger state is high, the cumulative current leaks through this

path and prevents any switching activity. The possibility of

current leakage creeping into the neuron ADC is prevented

using a DC blocking capacitor CDC and the average sizing of

the transistors ensures minimal charge leakage.

The functioning of the payload can be observed by ana-

lyzing the transient signal characteristics of the neuron ADC

between two trigger states (see Fig. 6). When the Trojan

is inactive (shown as Trojan:Inactive), the cumulative input

current triggers a train of spikes. However, when the Trojan is

active (shown as Trojan:Active) and an input current stimulus

is provided, it can be seen that the neuron is ”suppressed”.

Fig. 6: Transient waveforms of payload circuit.

The deviation of current by the payload element can be

confirmed by analyzing the build-up of potential on the

capacitor, Vc. Hardware Trojans typically use combinational or

sequential elements to monitor internal states within a system

and trigger a payload based on a predefined condition [16].

Since the attacker is capable of sending specific input image

vectors, combinational logic can be used, where the input

vector contains a unique combination of pixels to activate

a trigger circuit. We prefer complementary pull-up and pull-

down network (PUN/PDN)-based combinational circuit over

a standard cell-based logic tree circuit, to enable microscopic

design corruption. Fig. 5 depicts the schematic diagram of the

trigger circuit that implements a NAND function that directly

taps the inputs from the BL switch matrix and the inclusion

of a Toggle flip-flop allows for the state of the trigger circuit

to switch between the two operational conditions.

VI. EXPERIMENTAL SETUP

Due to the lack of openly available commercial eNVM

neuromorphic implementations, we customize a high-fidelity

simulation environment representative of several recently pub-

lished designs (Fig. 1), using Neurosim [6]. A 3-layer MLP

(400-neuron input layer, followed by a 100-neuron hidden

layer, and a 10-neuron output layer corresponding to 10 digits)

is mapped to such architecture for training using 60,000 black-

and-white images in 125 epochs until its inference accuracy

stabilizes (∼93%). We then collect a set of output currents

making up the dot-product operations by opening different

rows. Neurosim faithfully models an analog synaptic device

with many non-ideal device properties such as variations

within Long-Term Potentiation/Depression (LTP/LTD), cycle-

to-cycle conductance variation, and, spatial variations across

a memory array. This ensures that a realistic weight-to-

conductance mapping is implemented, and the generated cur-

rent traces encompasses both temporal and spatial variations.

Fig. 7: (a) SNR comparison, (b) Offline characterization

Note that, since this is an initial foray into this field, we

limit the scope of this work to target eNVM accelerators

with limited hyperparameter reconfigurability (e.g., number

of layers and dimension of each layer). We leave the secret

extraction of more complex models for future work. However,

the key insight of this work, namely that the spiking activity

of the neuron ADC can leak sensitive model parameters, is

expected to hold for other architectures.

The overall neuron microarchitecture is designed and eval-

uated in Cadence Virtuoso and Calibre tool using the TSMC

65nm Low Power(LP) flavor PDK. Transistor-level simula-

tions are carried out to generate power traces and other

relevant transient signals that allow for generating the offline

characterization power traces, as well as mimicking conditions

for triggering the payload. Process, Voltage, and Temperature

(PVT) variations within the neuron ADC design are considered

during the offline characterization phase of the attack. These

variations result in a deviation in the step response mapping,

which is visualized as a mismatch in step width and height

in comparison to ideal characteristics (Fig.7b). We inject

stochastic noise sources that replicate the average switching

activities that potentially occur in a co-processor [17].

The switching transients are monitored over the power rail

trace, and by denoising the baseline power trace from the

monitored signals, a higher SNR trace can be deduced upon

which the FFT transform is applied. The trace is sampled at a

100ps sampling interval and a 4096 FFT bin trace is generated,

which translates to approximately a 250 kHz resolution. To

build the characterization portfolio, the dynamic input current

range is generated based on the parameters of selected eNVM

characteristics. The most prominent large signal frequency

bins from each step of the sweep are collected and assigned to

an input current value. The relevance of their magnitude can

be deduced from their unique frequency signatures, as they

share a similar spectral magnitude characteristic.

VII. EVALUATION

A. Trojan Stealth

Design and Verification Time Detection. To remain

stealthy, it is imperative that the Power Spectral Density

(PSD) of the Trojan-infected malicious unit under normal

operating conditions must not significantly deviate from the

average PSD of unaffected hardware. The PSD of unaffected

hardware (victim) is visualized by extracting the switching

current trace from the power rail across 400 read cycles under

normal operating conditions. The resulting spectrogram is then

compared with that of a Trojan-infected (clone) malicious

unit, where the payload circuits are deactivated to mimic

normal operating conditions. As seen in Fig. 7 the Signal-

to-Noise Ratio (SNR) deviation is under 1.75 dB, with both

spectrograms exhibiting a similar fingerprint.

To ensure the undetectability of the trigger and payload

circuits through test pattern generation techniques, we stipulate

that the area overhead is under a margin of 0.5% [18]. The

area overhead of the trigger element is a function of the

synaptic core area. The number of input bits that map to the

payload element controls the length of the Trojan code and

hence the size of the PUN/PDN network. Every neuron ADC

must be embedded with a payload element, resulting in a fixed

overhead. A similar trend can be observed with the average

leakage power dissipated by the Trojan (Fig. 9a and Fig. 9b).

While our ability to evaluate against verification-time de-

tection frameworks is limited, as they are not open source, we

offer a qualitative discussion. Frameworks such as FANCI [19]

that operate at the RTL level would not be able to detect

our Trojan, owing to its form factor and its ability to embed

the Trojan at the GDS-II levels and polygon pattern etching

foundry stages. Methods such as UCI [20] mainly apply for

digital Trojans, as they rely on analyzing switching activity.

Run-time Detection. By exploiting the input vector to en-

code the necessary bits, it is possible to generate an extremely

large set of combinations for the trigger code (there are 2400

possible codes that can be uniquely assigned to each ADC).

Our analysis shows that a 50-75 bit long trigger code results in

a false activation of a single Trojan, only once in 1000 random

input test patterns. Furthermore, a trigger code that is at least

35 bits long can ensure the prevention of two simultaneous

false activations of Trojans across 1000 input test patterns,

significantly enhancing our ability to evade run-time detection.

B. Sensitivity Study

We sweep the ADC resolution from 8 to 256 steps and

vary the device conductance levels, thereby simulating a

wide array of neuromorphic design choices. Fig. 8 shows

the inference accuracy of the original (victim) model, the

cloned model using the stolen weights, and the percentage of

weights recovered by the attacker for accelerators implemented

using multiple eNVM technologies (EpiRAM(Ag:SiGe), HZO

FeFET, TaOx/HfOx , and GST PCM). We draw four ma-

jor conclusions. First, regardless of the underlying eNVM

technology, we are able to recover more than 90% of the

weights. The remainder of the weights do not build a sufficient

input impulse to generate a spike train. Second, as the ADC

resolution improves, more weights can be recovered, because

the ADC resolution becomes more sensitive to the small

current generated by a single eNVM cell. The overall weight

extraction of our attack improves from 94.4% → 97.8%

and 64.1% → 97.1% for a 2-bit improvement in ADC

resolution, when the hardware is simulated in EpiRAM and

HZO FeFET, respectively. The greater improvement in the case

of HZO FeFET is attributed to the larger conductance density

characteristics offered by the device. Third, in many cases,

even an ADC with a lower resolution, poses a serious threat,

as the attacker can reliably clone a model with comparable

performance. For instance, when evaluating the attack strategy

for a 5-bit resolution ADC, the worst case performance delta

Fig. 8: Sensitivity to Conductance Levels and ADC Resolutions for add references for devices.

(a) (b)

Fig. 9: (a). Area overhead and (b). Pleak in comparison to

the noise floor, as a function of the input Trojan vector.
between the original and recovered inference accuracy across

the four memory flavors is under 2.65%. Fourth, a higher per-

centage of weights recovered by the attacker does not always

translate to higher inference accuracy of the cloned model.

This is because ADCs are calibrated to segment continuous

current ranges to resolution steps and the current generated

from a single cell may be mapped to a current value that is

slightly off compared to the true current. In some cases, we’re

able to obtain a cloned network with higher accuracy than the

victim model. We suspect that this is because the weights of

the victim models are sometimes stuck at local minimums.

VIII. DISCUSSION ON MITIGATIONS AND CHALLENGES

Trojan detection. Several techniques have been proposed to

prevent the insertion of a hardware Trojan into ICs. Waksman

et al. [19] propose FANCI, a framework for profiling activities

of wires inside a chip, and flagging nearly unused ones as

possible Trojan paths. Their insight stems from the fact that

Trojan functionalities are mostly dormant until triggered by

external malicious inputs. This can potentially catch the Trojan

logic embedded in an eNVM device. However, FANCI, as

described in the paper, examines the hardware implementation

at the RTL level, such as a netlist file, while the Trojan we

describe can also be placed inside a layout GDSII file, thereby

circumventing it. Extending detection frameworks to enable

more comprehensive detection is interesting future work.

Trojan insertion prevention. To prevent insertion at the

layout level, a potential countermeasure that can be used is

layout masking [21]. However, this is expected to prohibitively

increase the power and area overhead (by ∼ 10%). If an

eNVM device is deployed as an IoT or a wearable device that

is power/area-constrained, layout masking may not be ideal.

The weight recovery attack may also be defeated by integrating

an ultra-low resolution ADC with four or eight resolution

steps, preventing the successful extraction of most of the

weights. However, this would severely limit the capabilities

of such devices to scale to larger workloads.

Side-channel prevention. Masking the signal (EM, power,

thermal, etc.) signature, therefore, preventing the side-channel

attacks (SCA), usually requires dedicated SCA countermea-

sure hardware which can be impractical (power and area

overhead) to integrate for neuromorphic devices.

IX. CONCLUSION

We explore the feasibility of a novel supply-chain threat

against eNVM neuromorphic devices. We identify ADC as

the key element that exposes a vulnerability within the neuron

core and further deduce the weights by analyzing and isolating

the switching activities of the ADC. We also design a stealthy

hardware Trojan that allows the attacker to correlate the

transient system power consumption to the synaptic weight

and subsequently reconstruct a cloned model with high fidelity.

Acknowledgment: This work was supported by NSF

CCRI Grant CNS-2213700, NSF PPoSS Grant CCF-2217071,

NSF/Intel Foundational Microarchitecture Research (FoMR)

Grant CCF-1912608, Semiconductor Research Corporation

(SRC) contract 2019-NM-2875, and CRISP, one of six centers

in JUMP, an SRC program sponsored by DARPA.

REFERENCES

[1] T.-J. Yang et al., “A method to estimate the energy consumption of deep
neural networks,” ACSCC ’17.

[2] P.-Y. Chen et al., “Neurosim+: An integrated device-to-algorithm frame-
work for benchmarking synaptic devices and array architectures,” IEDM
’17.

[3] K. Yang et al., “A2: Analog malicious hardware,” in SP ’16.
[4] F. Tramèr et al., “Stealing machine learning models via prediction apis,”

USENIX Security ’16.
[5] IBM, “Ibm advances research in analog ai computing.”
[6] P.-Y. Chen et al., “Neurosim: A circuit-level macro model for bench-

marking neuro-inspired architectures in online learning,” ITCSDI ’18.
[7] A. Shafiee et al., “Isaac: A convolutional neural network accelerator

with in-situ analog arithmetic in crossbars,” ISCA ’16.
[8] D. Kadetotad et al., “Parallel architecture with resistive crosspoint array

for dictionary learning acceleration,” JETCAS ’15.
[9] S. Bhasin et al., “A survey on hardware trojan detection techniques,” in

ISCAS ’15.
[10] Y. Jin et al., “Experiences in hardware trojan design and implementa-

tion,” in HOST ’09.
[11] C. Yang et al., “Security of neuromorphic computing: Thwarting learn-

ing attacks using memristor’s obsolescence effect,” ICCAD ’16.
[12] C. Rajamanikkam et al., “Understanding security threats in emerging

neuromorphic computing architecture,” JHSS ’21.
[13] Y. Cai et al., “Enabling secure in-memory neural network computing by

sparse fast gradient encryption.,” ICCAD ’19.
[14] J. Rajendran et al., “Is split manufacturing secure?,” DATE ’13.
[15] L. Wei, B. Luo, et al., “I know what you see: Power side-channel attack

on convolutional neural network accelerators,” ACSAC ’18.
[16] M. Tehranipoor et al., “Power supply signal calibration techniques for

improving detection resolution to hardware trojans,” in ICCAD ’08.
[17] V. Tenentes et al., “Run-time protection of multi-core processors from

power-noise denial-of-service attacks,” TDMR ’20.
[18] R. S. Chakraborty et al., “Mero: A statistical approach for hardware

trojan detection,” CHES ’09.
[19] A. Waksman et al., “Fanci: Identification of stealthy malicious logic

using boolean functional analysis,” CCS ’13.
[20] M. Hicks et al., “Overcoming an untrusted computing base: Detecting

and removing malicious hardware automatically,” in 2010 IEEE Sympo-

sium on Security and Privacy, pp. 159–172, 2010.
[21] M. Montoya et al., “Adaptive masking: a dynamic trade-off between

energy consumption and hardware security,” ICCD ’19.

