
I See Dead µops: Leaking Secrets via Intel/AMD
Micro-Op Caches

Xida Ren
University of Virginia

renxida@virginia.edu

Logan Moody
University of Virginia
lgm4xn@virginia.edu

Mohammadkazem Taram
University of California, San Diego

mtaram@cs.ucsd.edu

Matthew Jordan
University of Virginia
mrj3dd@virginia.edu

Dean M. Tullsen
University of California, San Diego

tullsen@cs.ucsd.edu

Ashish Venkat
University of Virginia
venkat@virginia.edu

Abstract—Modern Intel, AMD, and ARM processors translate
complex instructions into simpler internal micro-ops that are
then cached in a dedicated on-chip structure called the micro-
op cache. This work presents an in-depth characterization study
of the micro-op cache, reverse-engineering many undocumented
features, and further describes attacks that exploit the micro-
op cache as a timing channel to transmit secret information.
In particular, this paper describes three attacks – (1) a same
thread cross-domain attack that leaks secrets across the user-
kernel boundary, (2) a cross-SMT thread attack that transmits
secrets across two SMT threads via the micro-op cache, and
(3) transient execution attacks that have the ability to leak
an unauthorized secret accessed along a misspeculated path,
even before the transient instruction is dispatched to execution,
breaking several existing invisible speculation and fencing-based
solutions that mitigate Spectre.

I. INTRODUCTION

Modern processors feature complex microarchitectural
structures that are carefully tuned to maximize performance.
However, these structures are often characterized by observ-
able timing effects (e.g., a cache hit or a miss) that can
be exploited to covertly transmit secret information, bypass-
ing sandboxes and traditional privilege boundaries. Although
numerous side-channel attacks [1]–[10] have been proposed
in the literature, the recent influx of Spectre and related
attacks [11]–[19] has further highlighted the extent of this
threat, by showing how even transiently accessed secrets can
be transmitted via microarchitectural channels. This work
exposes a new timing channel that manifests as a result of
an integral performance enhancement in modern Intel/AMD
processors – the micro-op cache.

The x86 ISA implements a variety of complex instructions
that are internally broken down into RISC-like micro-ops at
the front-end of the processor pipeline to facilitate a simpler
backend. These micro-ops are then cached in a small dedicated
on-chip buffer called the micro-op cache. This feature is
both a performance and a power optimization that allows the
instruction fetch engine to stream decoded micro-ops directly
from the micro-op cache when a translation is available,
turning off the rest of the decode pipeline until a micro-
op cache miss occurs. In the event of a miss, the decode
pipeline is re-activated to perform the internal CISC-to-RISC

translation; the resulting translation penalty is a function of
the complexity of the x86 instruction, making the micro-op
cache a ripe candidate for implementing a timing channel.

However, in contrast to the rest of the on-chip caches, the
micro-op cache has a very different organization and design;
as a result, conventional cache side-channel techniques do not
directly apply – we cite several examples. First, software is
restricted from directly indexing into the micro-op cache, let
alone access its contents, regardless of the privilege level.
Second, unlike traditional data and instruction caches, the
micro-op cache is designed to operate as a stream buffer,
allowing the fetch engine to sequentially stream decoded
micro-ops spanning multiple ways within the same cache
set (see Section II for more details). Third, the number of
micro-ops within each cache line can vary drastically based
on various x86 nuances such as prefixes, opcodes, size of
immediate values, and fusibility of adjacent micro-ops. Finally,
the proprietary nature of the micro-op ISA has resulted in
minimal documentation of important design details of the
micro-op cache (such as its replacement policies); as a result,
their security implications have been largely ignored.

In this paper, we present an in-depth characterization of
the micro-op cache that not only allows us to confirm our
understanding of the few features documented in Intel/AMD
manuals, but further throws light on several undocumented
features such as its partitioning and replacement policies, in
both single-threaded and multi-threaded settings.

By leveraging this knowledge of the behavior of the micro-
op cache, we then propose a principled framework for au-
tomatically generating high-bandwidth micro-op cache-based
timing channel exploits in three primary settings – (a) across
code regions within the same thread, but operating at dif-
ferent privilege levels, (b) across different co-located threads
running simultaneously on different SMT contexts (logical
cores) within the same physical core, and (c) two transient
execution attack variants that leverage the micro-op cache to
leak secrets, bypassing several existing hardware and software-
based mitigations, including Intel’s recommended LFENCE.

The micro-op cache as a side channel has several dangerous
implications. First, it bypasses all techniques that mitigate

caches as side channels. Second, these attacks are not detected
by any existing attack or malware profile. Third, because the
micro-op cache sits at the front of the pipeline, well before
execution, certain defenses that mitigate Spectre and other
transient execution attacks by restricting speculative cache
updates still remain vulnerable to micro-op cache attacks.

Most existing invisible speculation and fencing-based solu-
tions focus on hiding the unintended vulnerable side-effects of
speculative execution that occur at the back end of the proces-
sor pipeline, rather than inhibiting the source of speculation
at the front-end. That makes them vulnerable to the attack
we describe, which discloses speculatively accessed secrets
through a front-end side channel, before a transient instruction
has the opportunity to get dispatched for execution. This eludes
a whole suite of existing defenses [20]–[32]. Furthermore, due
to the relatively small size of the micro-op cache, our attack
is significantly faster than existing Spectre variants that rely
on priming and probing several cache sets to transmit secret
information, and is considerably more stealthy, as it uses the
micro-op cache as its sole disclosure primitive, introducing
fewer data/instruction cache accesses, let alone misses.

In summary, we make the following major contributions.
• We present an in-depth characterization of the micro-

op cache featured in Intel and AMD processors, reverse
engineering several undocumented features, including its
replacement and partitioning policies.

• We propose mechanisms to automatically generate exploit
code that leak secrets by leveraging the micro-op cache
as a timing channel.

• We describe and evaluate four attack variants that exploit
the novel micro-op cache vulnerability – (a) cross-domain
same address-space attack, (b) cross-SMT thread attack,
and (c) two transient execution attack variants.

• We comment on the extensibility of existing cache side-
channel and transient execution attack mitigations to
address the vulnerability we expose, and further suggest
potential attack detection and defense mechanisms.

II. BACKGROUND AND RELATED WORK

This section provides relevant background on the x86 front-
end and its salient components, including the micro-op cache
and other front-end features, in reference to Intel Skylake and
AMD Zen microarchitectures. We also briefly discuss related
research on side-channel and transient execution attacks.

A. The x86 Decode Pipeline
Figure 1 shows the decoding process in an x86 processor.

In the absence of any optimizations, the instruction fetch
unit reads instruction bytes corresponding to a 16-byte code
region from the L1 instruction cache into a small fetch buffer
every cycle. This is then read by the predecoder that extracts
individual x86 instructions, also called macro-ops, into a
dedicated FIFO structure called the macro-op queue, which
in the Skylake microarchitecture consists of 50 entries. The
predecoding process is highly sensitive to composition of the
fetch buffer (number and type of macro-ops it constitutes),
and in some cases it may also incur an additional penalty

BPU: predicts
next-instruction address

16 Bytes / Cycle

Instruction Fetch Unit Micro-Op Cache

Predecoder
(Length Decode)

Macro-Op
Queue

6 Macro-Ops / Cycle

5 fused
 macro-ops / cycleDecoders

1
↓
1

1
↓
1

1
↓

1 ~ 4

 4 micro-ops / cycle

5 fused
 micro-ops / cycle

 6 micro-ops / cycle

8 ways

32
 s

et
s

Instruction Decode Queue (IDQ)

 4 micro-ops / cycle

In
st

ru
ct

io
ns

 F
ro

m
C

ac
he

 H
ie

ra
rc

hy

MSROM

Fig. 1: x86 micro-op cache and decode pipeline

of three to six cycles when a length-changing prefix (LCP)
is encountered, as the decoded instruction length is different
from the default length. As the macro-ops are decoded and
placed in the macro-op queue, particular pairs of consecutive
macro-op entries may be fused together into a single macro-op
to save decode bandwidth.

Multiple macro-ops are read from the macro-op queue
every cycle, and distributed to the decoders which translate
each macro-op into internal RISC (Reduced Instruction Set
Computing)-like micro-ops. The Skylake microarchitecture
features: (a) multiple 1:1 decoders that can translate simple
macro-ops that only decompose into one micro-op, (b) a
1:4 decoder that can translate complex macro-ops that can
decompose into anywhere between one and four micro-ops,
and (c) a microsequencing ROM (MSROM) that translates
more complex microcoded instructions, where a single macro-
op can translate into more than four micro-ops, potentially in-
volving multiple branches and loops, taking up several decode
cycles. The decode pipeline can provide a peak bandwidth of
5 micro-ops per cycle [33]. In contrast, AMD Zen features
four 1:2 decoders and relegates to a microcode ROM when
it encounters a complex instruction that translates into more
than two micro-ops.

The translated micro-ops are then queued up in an Instruc-
tion Decode Queue (IDQ) for further processing by the rest of
the pipeline. In a particular cycle, micro-ops can be delivered
to the IDQ by the micro-op cache, or if not available, the more
expensive full decode pipeline is turned on and micro-ops are
delivered that way.

In Intel architectures, the macro-op queue, IDQ, and the
micro-op cache remain partitioned across different SMT
threads running on the same physical core, while AMD allows
the micro-op cache to be competitively shared amongst the co-
located SMT threads, as are the rest of the structures in the
decode pipeline, including the decoders and the MSROM.

B. The Micro-Op Cache Organization and Functionality

The inherent complexity of the x86 decoding process has
a substantial impact on the overall front-end throughput and

D
ecoded

M
icro-O

ps

0xffffa040

Set0
Set1
Set2
Set3

Set31
32-Byte
Region

Micro-Op Cache
Way1 Way2 Way3 Way4 Way5 Way6 Way7Way0

Single
Micro-Op From Decoders

Jump
Micro-Op

From
Branch

Predictor

#µop<18Fetch Address
(32-Byte Aligned)

In
de

x=
Bi

ts
(5

-1
0)

=2

Fig. 2: Micro-Op Cache Organization and Streaming Func-
tionality

power consumption. In fact, the x86 instruction decoding
pipeline was shown to consume as much as 28% [34] of
the overall processor power in the 1995 P6 architecture Pen-
tiumPro, and die shots of more recent processors including
Skylake [35] indicate that the decoders and the MSROM
continue to consume a significant chunk of the core area.

Modern Intel and AMD processors cache decoded micro-
ops in a dedicated streaming cache, often called the decoded
stream buffer or the micro-op cache, in order to bypass
the decoder when a cached micro-op translation is already
available. More specifically, it allows the front-end processing
of hot code regions to be made faster and more energy efficient
by sourcing micro-ops from the cache and powering down
the decode pipeline [36]. In fact, when the micro-op cache
was first introduced in Intel’s Sandy Bridge microarchitecture,
it was shown to provide a hit rate of 80% on average and
close to 100% for “hotspots” or tight loop kernels [37],
[38], resulting in large overall performance improvements and
energy savings.

Figure 2 shows the Skylake micro-op cache that is organized
as an 8-way set-associative cache with 32 sets. Each cache line
is capable of holding up to 6 micro-ops, providing a maximum
overall capacity of 1536 micro-ops. As decoded micro-ops
arrive at the micro-op cache from one of the decoders or
the MSROM, they are placed at an appropriate set identified
using bits 5-9 of the x86 (macro-op) instruction address. This
means any given cache line always contains micro-ops that
correspond to macro-op instructions hosted within the same
aligned 32-byte code region. Further, the following placement
rules are observed.

• A given 32-byte code region may consume a maximum
of 3 lines in the set (i.e., up to 18 micro-ops).

• Micro-ops delivered from the MSROM consume an entire
line in the micro-op cache.

• Micro-ops that correspond to the same macro-op instruc-
tion may not span a micro-op cache line boundary.

• An unconditional branch (jump) instruction, if it appears,
is always the last micro-op of the line.

• A micro-op cache line may contain at most two branches.
• 64-bit immediate values consume two micro-op slots

within a given cache line.
In Section IV, we describe mechanisms to automatically

generate code that exploits these placement rules to create
arbitrary conflicts in the micro-op cache.

In contrast to traditional data and instruction caches, the
micro-op cache is implemented as a streaming cache, allowing
micro-ops that correspond to a 32-byte code region to be
continuously streamed, from one way of the set after another,
until an unconditional branch (jump) is encountered or a
misprediction of a conditional branch interrupts the streaming
process. Once all micro-ops of a 32-byte code region have
been streamed, the appropriate way in the next set of the
micro-op cache is checked for streaming the next statically
contiguous 32-byte code region in the program. If the lookup
fails (i.e., a micro-op cache miss occurs), a switch is made
to the x86 decode pipeline to trigger the two-phase decoding
process. This switch entails a one-cycle penalty. Therefore,
the micro-op cache miss penalty is a combination of this one-
cycle switch penalty and the variable latency of the 2-phase
instruction decoding process that is highly sensitive to the
composition of the 32-byte code region (number and type of
macro-ops) being decoded, providing a sufficiently large signal
to implement a timing channel.

Due to their high performance and energy savings potential,
micro-op caches have been steadily growing in size. It is 1.5X
larger in the latest Intel Sunny Cove microarchitecture, and the
more recent AMD Zen-2 processors feature micro-op caches
that can hold as many as 4K micro-ops.

Finally, the micro-op cache is inclusive with respect to
the instruction cache and the instruction translation lookaside
buffer (iTLB), which implies that any cache line evicted out
of the instruction cache would also trigger an eviction in the
micro-op cache, but not vice-versa. In the event of an iTLB
flush, such as in the case of an SGX enclave entry/exit, the
entire micro-op cache is flushed, and as a result, information is
not leaked via the micro-op cache across enclave boundaries.

C. Other Front End Optimizations

To maximize code density in structures beyond the instruc-
tion cache, Intel and AMD processors implement a bandwidth
optimization called micro-op fusion. This feature allows de-
coded micro-ops that adhere to certain patterns to be fused
together into a single micro-op. A fused micro-op takes up
only one slot while being buffered in the micro-op cache and
the micro-op queue, saving decode bandwidth and improving
the micro-op cache utilization. However, it is later broken
down into its respective component micro-ops at the time of
dispatch into the functional units for execution.

In addition to the micro-op cache, Intel processors feature
a loop stream detector (LSD) that is capable of identifying
critical loop kernels and lock them down in the IDQ such
that decoded and potentially fused micro-ops are continuously
issued out of the IDQ, without even having to access the
micro-op cache. While it is straightforward to violate these
requirements for LSD operation and ensure that the micro-
op cache is always operating, we did not need to use these
techniques as it is already disabled in Skylake due to an
implementation bug (erratum SKL150).

1 %macro UOP_REGION(lbl)
2 lbl:
3 nop15; 15 bytes +
4 nop15; 15 bytes +
5 nop2 ; 2 bytes
6 ; = 32 bytes
7 %endmacro
8

9 for samples in 1..3000{
10 ; line 0
11 UOP_REGION(region_0)
12 ; line 1
13 UOP_REGION(region_1)
14 ...
15 ; line n
16 UOP_REGION(region_n)
17 }

Listing 1: Microbenchmark for determining the µop cache
size.

D. Microarchitectural Covert and Side Channels

The literature describes several covert- and side-channel
attacks that use shared microarchitectural resources as their
medium of information leakage [1]–[5]. The most prominent
are the ones that exploit stateful resources such as the data
cache [1]–[5], instruction cache [39], TLB [6], [7], and branch
predictors [8], [9]. These stateful resources offer persistence
over time, allowing attackers to periodically probe them to
monitor the activity of a potential victim. While stateless
resources [40]–[42] have also been exploited for side-channel
leakage, the attack model on stateless resources are mostly
limited to the scenarios that involve two co-located threads
continuously contending for the shared stateless resource.
Execution ports [41], functional units [42], [43], and memory
buses [40] are among the stateless resources that are used as
covert communication channels.

E. Transient Execution Attacks

Transient execution attacks [11]–[15] exploit the side-effects
of transient instructions to bypass software-based security
checks, and further leak sensitive information to the attacker
via a microarchitectural side channel. These attacks typically
include four salient components [44] – (1) a speculation
primitive that allows the attacker to steer execution along a
misspeculated path, (2) a windowing gadget that sufficiently
prolongs execution along the misspeculated path, (3) a dis-
closure gadget comprised of one or more instructions that
transmit the transiently accessed secret to the attacker, and
(4) a disclosure primitive that acts as the covert transmission
medium. While most existing attacks mostly use data caches
as their primary disclosure primitives [11]–[15], attacks like
SMoTherSpectre [45] have shown that stateless resources such
as execution ports are viable alternatives. The micro-op cache-
based transient execution attack that we describe exploits a
novel and a powerful disclosure primitive that is not easily
blocked by existing defenses, as the information disclosure
occurs at the front end of the pipeline, even before a transient
instruction gets dispatched for execution.

1 %macro UOP_REGION (lbl, target)
2 .align 1024
3 lbl:
4 jmp target
5 %endmacro
6

7 for samples in 1..3000{
8 ; set 0, way 0
9 UOP_REGION (region_0, region_1)

10 ; set 0, way 1
11 UOP_REGION (region_1, region_2)
12 ...
13 ; set 0, way n
14 UOP_REGION (region_n, exit)
15 exit:
16 }

Listing 2: Microbenchmark for determining the µop cache
associativity.

III. CHARACTERIZING THE MICRO-OP CACHE

In this section, we perform a detailed characterization of the
micro-op cache. We describe mechanisms and microbench-
marks we use to study its timing effects under different
execution scenarios. The importance of this characterization
study is two-fold. First, it allows us to reverse-engineer several
important micro-op cache features that are not documented
in the manuals, in addition to throwing further light on the
timing effects of various documented features and nuances
such as the placement rules. Second and more importantly,
it enables the development of a principled framework for
automatically generating code that produces certain timing
effects, which could then be exploited for constructing high-
bandwidth timing channels.

We perform our characterization study on the Intel i7-8700T
processor that implements the Coffee Lake microarchitecture
(which is a Skylake refresh). We use the nanoBench [46]
framework for our initial analysis, which leverages perfor-
mance counters exposed by Intel. We use those to understand
the structure, organization, and policies of the micro-op cache.
However, we are also able to repeat our findings on purely
timing-based variances alone, as measured by Intel’s RDTSC
instruction, which is available in user space.

Size. To infer the size of the micro-op cache, we use a
microbenchmark shown in Listing 1 that executes loops of
varying lengths, in increments of 32 byte code regions. We
then use performance counters to measure the number of
micro-ops being delivered from the decode pipeline (and thus
not the micro-op cache). Note that the microbenchmark is
crafted such that each 32-byte region in the loop consumes
exactly one line in the micro-op cache, and exactly three
micro-op slots within each line. The result of this experiment is
shown in Figure 3a. Clearly, we observe a jump in the number
of micro-ops delivered from the decode pipeline as the size
of the loop increases beyond 256 32-byte code regions (each
consuming one cache line in the micro-op cache), confirming
our understanding that the micro-op cache contains 256 cache
lines and no more. Note that the curve has a gradual slope and
that we consistently observe a spike at around 288 regions. We

0 64 128 192 256 320 384

Number of 32 Byte Regions in the Loop

0
64

128
192
256
320
384
448
512
576

N
um

be
r

of
M

ic
ro

-O
ps

fr
om

D
ec

od
e

Pi
pe

lin
e

(a) Cache Size.

0 2 4 6 8 10 12 14

Number of 32 Byte Regions in the Loop

0

2

4

6

8

N
um

be
r

of
M

ic
ro

-O
ps

fr
om

D
ec

od
e

Pi
pe

lin
e

(b) Cache Associativity

Fig. 3: (a) Measuring µop cache size by testing progressively
larger loops. (b) Measuring the size of one set in the µop cache
to determine its associativity.

1 %macro
UOP_REGION(
lbl,target)

2 ; X nops + 1 jmp
3 ; = 32 bytes
4 .align 1024
5 lbl:
6 nop; one byte
7 nop
8 ...
9 nop

10 jmp target
11 %endmacro

12 for samples in 1..3000
13 {
14 ; set 0, way 0
15 UOP_REGION (region_0, region_1)
16 ; set 0, way 1
17 UOP_REGION (region_1, region_2)
18 ...
19 ; set 0, way n
20 UOP_REGION (region_n, exit)
21 exit:
22 }

Listing 3: Microbenchmark for Determining Placement Rules.

hypothesize that this is an artifact of a potential hotness-based
replacement policy of the micro-op cache, which we study in
detail later in this section.

Associativity. We next turn our attention to associativity.
Attacks on traditional caches rely heavily on knowledge of
associativity and replacement policy to fill sets. Listing 2
shows our microbenchmark that allows us to determine the
associativity of a micro-op cache, by leveraging regularly
spaced jumps hopping between regions that all map to the
same set, again within a loop of variable size. In this case,
the size of the loop targets the number of ways in a set rather
than the number of lines in the cache.

More specifically, all regions in the loop are aligned in
such a way that they get placed in the same cache set
(set-0 in our experiment), and each region only contains an
unconditional jump instruction that jumps to the next aligned
region. Recall that the micro-op cache’s placement rules forbid
hosting micro-ops beyond an unconditional jump in the same
cache line; thus in our microbenchmark, each region within
the loop consumes exactly one cache line and exactly one
micro-op slot in that cache line. Figure 3b shows the result
of this experiment. The number of micro-ops being delivered
from the decode pipeline clearly rises as the number of
ways within each set increases beyond eight. This confirms
our understanding that the micro-op cache has an 8-way set
associative organization (and thus contains 32 sets).

Placement Rules. To understand the micro-op cache place-
ment rules, we use a variant of the microbenchmark described
above, as shown in Listing 3, where we jump from one aligned

0 6 12 18 24

Micro-Ops per Region

0

6

12

18

24

30

36

42

48

M
ic

ro
-O

ps
fr

om
D

SB

2 Regions

0 6 12 18 24

Micro-Ops per Region

4 Regions

0 6 12 18 24

Micro-Ops per Region

8 Regions

Fig. 4: Micro-Op Cache Placement Rules: Each 32-byte code
region maps to a maximum of 3 micro-op cache lines (18
micro-ops). Note that in Intel’s performance counter documen-
tation the micro-op cache is called the DSB.

region (different way of the same set) to another in a loop.
The difference here is that we not only vary the number of
32-byte code regions in the loop, but we also vary the number
of micro-ops within each region. Since we only use one-byte
NOPs and an unconditional jump instruction, the number of
micro-ops in a given region can vary anywhere between 0 and
31. By varying these parameters, we are able to infer (1) the
maximum number of cache lines (ways per set) that can be
used by any given 32-byte code region and (2) the number of
micro-op slots per cache line.

Figure 4 shows our findings in three scenarios – when the
number of regions within the loop are 2, 4, and 8. Note that, in
this experiment, we report the number of micro-ops delivered
from the micro-op cache rather than the decode pipeline. We
make the following major inferences. First, when we constrain
the loop to contain only two 32-byte code regions, we observe
that the number of micro-ops being delivered from the micro-
op cache rises steadily as the code regions get larger, up
until the point where it is able to host 18 micro-ops per
region. Beyond 18 micro-ops, this number drops suddenly,
indicating that the micro-op cache is unable to host 32-byte
code regions that take up more than 18 micro-op slots. Second,
when we constrain the loop to contain four or eight regions,
we observe that the micro-op cache is able to host and steadily
deliver micro-ops for four regions consuming 12 micro-op
slots each or eight regions consuming 6 micro-op slots each.
This confirms our understanding that the 8-way set-associative
micro-op cache in Skylake allows at most 6 micro-ops to be
held in any given cache line, and that a given 32-byte code
region may consume a maximum of 3 ways per set (i.e., 18
micro-op slots). If it exceeds that, the line is not cached at all.

Replacement Policy. We next extend our characterization
study to reverse-engineer undocumented features of the micro-
op cache. We begin with identifying the replacement policy/e-
viction criteria used in Skylake’s micro-op cache design.

In the absence of any information about the replacement
policy, we would expect it to be similar to that of either
a traditional cache (LRU-like policy), where the decision to
evict a cache line is based on recency, or a trace cache [47]
where this decision is more hotness-driven. To gain insight
into the replacement policy used in the micro-op cache, we
leverage a variant of the microbenchmarks we use to determine

0 1 2 3 4 5 6 7 8 9 10 11 12
Iterations of the Evicting Loop

1
2

3
4

5
6

7
8

9
10

11
12

It
er

at
io

ns
 o

f t
he

 M
ai

n
Lo

op
45 23 0 0 0 0 0 0 0 0 0 0 0

47 39 18 18 0 0 0 0 0 0 0 0 0

47 40 40 20 2 2 2 3 2 2 2 2 2

47 43 42 21 6 7 5 5 5 4 5 5 4

47 44 44 37 27 13 6 6 6 6 6 6 6

48 44 44 39 34 20 8 8 8 8 8 9 8

47 45 45 40 33 19 15 10 10 10 10 10 10

48 45 45 41 38 31 31 11 11 11 11 11 11

48 46 45 42 39 32 32 13 13 13 13 13 13

48 43 46 42 40 34 34 19 20 15 15 15 15

48 46 46 43 41 35 35 30 21 16 16 16 17

48 46 46 43 41 36 36 31 21 21 18 18 18

Fig. 5: Number of micro-ops from micro-op cache when
measuring one loop and evicting it with another.

the associativity and placement rules of the micro-op cache.
However, in this case, we interleave two loops – a main loop
and an evicting loop that each jump through eight ways of the
same set (set 0 in this experiment), for a controlled number
of iterations. We then use performance counters to measure
the number of micro-ops being delivered from the micro-op
cache for the main loop, while varying the number of iterations
executed by both loops.

Note that each 32-byte code region used here maps to
exactly 6 micro-ops, taking up all micro-op slots in the cache
line it occupies. Since we jump through eight ways of the
same set within each loop iteration, in the absence of any
interference (and thus, micro-op cache misses), we should
observe a total of 48 micro-ops being streamed through the
micro-op cache, per loop iteration. Figure 5 shows the result
of our experiment. In this figure, the iterations of the two loops
are on the axes, and the value/intensity at each x-y coordinate
represents the number of micro-ops delivered by the micro-
op cache. As expected, we find that the number of micro-ops
delivered from the micro-op cache stays at about 48 when
there is no interference, but this quickly drops as we increase
the number of iterations in the evicting loop, while executing
four or fewer iterations of the main loop. However, when the
main loop executes eight or more iterations, we observe that
this degradation is gradual, tending to retain micro-ops from
the main loop in the micro-op cache.

These results show that the eviction/replacement policy is
clearly based on hotness (how many times the interfering lines
are accessed in the loop, relative to the target code) rather than
recency (where a single access would evict a line). We see this
because lines are only replaced in significant numbers when
the interfering loop count exceeds the targeted loop count.

Hotness as a replacement policy potentially leaks far more
information than traditional cache replacement policies, which
always evict lines on first miss, and represents a dangerous
attack vector. That is, a traditional cache attack can only detect
whether an instruction block was accessed. The micro-op
cache potentially reveals exactly how many times a conflicting

0 200 400 600 800 1000 1200 1400
T1's Static Instructions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ic

ro
-O

ps
 fr

om
 L

eg
ac

y
D

ec
od

e
Pi

pe
lin

e

1e5

SMT -- T1 with T2
SMT -- T2 with T1

Single-Thread T1
Single-Thread T2

(a) T2 Executes Pause

0 200 400 600 800 1000 1200 1400
T1's Static Instructions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ic

ro
-O

ps
 fr

om
 L

eg
ac

y
D

ec
od

e
Pi

pe
lin

e

1e5

SMT -- T1 with T2
SMT -- T2 with T1

Single-Thread T1
Single-Thread T2

(b) T2 Executes Pointer Chas-
ing

Fig. 6: Micro-Op Cache Usage of Sibling Threads in SMT-
Mode in Intel Processors. T1 executes Listing 1, while T2
executes (a) PAUSE or (b) pointer chasing loads.

0 5 10 15 20 25 30
Index Bits (5-9) of T1 Blocks

0

2

4

6

8

10

M
ic

ro
-O

ps
 fr

om

 L
eg

ac
y

D
ec

od
e

Pi
pe

lin
e

(a) One 8-Block Region

0 5 10 15 20 25 30 35
Number of 8-Block Regions

0.0

0.2

0.4

0.6

0.8

1.0

M
ic

ro
-O

ps
 fr

om

 L
eg

ac
y

D
ec

od
e

Pi
pe

lin
e

1e5

SMT Single-Thread

(b) Multiple 8-Block Regions

Fig. 7: Deconstruction of SMT Sharing Mechanism of Intel
Processors: (a) an 8-way region (all blocks within a region are
mapped to the same set) is moved across different sets to detect
a possible contention or the lack thereof, (b) determining the
number of potential 8-way sets in SMT mode

instruction block was accessed.
Partitioning Policy. We next devise an experiment where

two logical threads running on the same SMT core contend for
the micro-op cache. The threads each execute varying number
of 8-byte NOP instructions, to measure the size of the micro-
op cache. We observe in Intel (Sandy Bridge, Ivy Bridge,
Haswell, and Skylake) processors that there is no measurable
interference between threads, and in fact, we find that the
effective size visible to each thread is exactly half the physical
size.

To confirm if the micro-op cache is indeed statically parti-
tioned, we examine a scenario where the threads contending
for the micro-op cache execute the same number of micro-ops,
but one thread is inherently slower than the other; if this results
in unequal sharing of the micro-op cache, we conclude that it
is dynamically partitioned. We examine two different options
to slow down a thread: (1) using Intel’s PAUSE instruction and
(2) using a pointer chasing program that frequently misses in
the data cache. More specifically, in these experiments, one
of the threads, T1, continues to execute the NOP sequence,
while the other thread, T2 executes a fixed number of pause
(Figure 6a) or pointer chasing loads (Figure 6b). Clearly, from
the figures, we observe that, in SMT mode, T1 always gets

allocated exactly half of the micro-op cache, regardless of
the instructions being executed by T2. Interestingly, we also
find that PAUSE instructions don’t get cached in the micro-
op cache. This indicates that, in Intel processors, the micro-op
cache is statically partitioned between the threads, and no lines
are dynamically shared.

We next deconstruct the partitioning mechanism used by In-
tel processors by devising an experiment in which both threads
try to fill set zero of the micro-op cache by repeatedly fetching
and executing regions with 8 micro-op cache blocks that are
aligned to a 1024-byte address, similar to the microbenchmark
in Listing 3. During this experiment, the threads monitor the
number of micro-ops being delivered from the decode pipeline.
The somewhat surprising result of this experiment is that
both partitions of the cache remain 8-way set associative. To
analyze this further, we have T1 shift through different sets
of the micro-op cache by aligning its code to addresses with
different index bits, while T2 continues to fetch code mapped
to set zero, as shown in Figure 7a. We observe that both
threads deliver all of their micro-ops from the micro-op cache
regardless of the set being probed by T1, still showing 8-
way associative behavior. Further, when T1 accesses multiple
such 8-way regions mapped to consecutive sets (as shown in
Figure 7b), we observe that it is able to stream exactly 32 such
regions in single-threaded mode and exactly 16 such regions in
SMT mode. Thus, we hypothesize that the micro-op cache is
not way-partitioned [48] into 32 4-way sets for each thread, but
is rather divided into 16 8-way sets available to each thread.

Note that we use performance counters to obtain measure-
ments throughout this characterization study to gain insights
about the various features and nuances of the micro-op cache.
However, we are able to extend our microbenchmarks to craft
exploits that rely only on timing measurements, as shown in
Section V. This is important because those experiments use
techniques very similar to those an attacker, who may not
have access to these performance counters, will use to covertly
transmit secrets over the micro-op cache.

IV. CREATING AND EXPLOITING CONTENTION IN THE
MICRO-OP CACHE

In this section, we leverage and extend the microbenchmarks
from our characterization study to create a framework for
automatically generating exploit code that can create arbitrary
conflicts in the micro-op cache. Our goal is to exploit the
timing effects associated with conflicting accesses in the
micro-op cache to construct a timing channel that (1) can
covertly transmit secrets through the micro-op cache and (2)
cannot be detected by performance counter monitors unless
they specifically target the micro-op cache. To accomplish
this, we craft an attack such that strong signal is observed
through the micro-op cache, but no noticeable perturbation
is observed in instruction cache activity, data cache activity,
or backend resource-related stalls (including those from the
load/store buffers, reservation stations, ROB, BOB, etc.) [49].

In particular, for any given code region, we want to be able
to automatically generate two types of exploit code – one

Micro-Op Cache

NOP Micro-Op Jump Micro-Op

Set31

Set28

Set0

Set1
Set2

Set3

Set4
Set5

Zebra Blocks Tiger Blocks

8 Ways

Set6

Fig. 8: Striping occupation of the micro-op cache. Zebras and
Tigers are devised to be mapped into mutually exclusive sets
in the micro-op cache. Jump targets are shown by arrows.

that can evict a given code region by replicating its micro-
op cache footprint (by occupying the same sets and ways),
generating a clear timing signal, and another that is able to
occupy a mutually exclusive subset of the micro-op cache such
that no conflicts occur and consequently no timing signals are
observed. Henceforth, we will refer to the former as tiger and
to the latter as zebra. Thus, two tigers contend for the same
sets and ways, but a zebra and a tiger should never contend
with each other, always occupying the cache in a mutually
exclusive manner.

Although the microbenchmark in Listing 3 is designed to
determine the associativity of the micro-op cache, it also
provides us with the requisite framework for creating code
that can arbitrarily jump from any given cache line to another,
where each cache line hosts a set of NOPs followed by an
unconditional jump instruction. Thus, given a code region, we
can automatically generate the corresponding tiger and zebra
code by ensuring that they jump through the micro-op cache,
touching the appropriate set of cache lines. Figure 8 shows an
example of a striped occupation of the micro-op cache, where
the zebra and the tiger jump through four ways of every fourth
set of the micro-op cache; the zebra starts at the very first set,
while the tiger starts at the third set, thereby interleaving each
other by one set.

We found that our best tigers and zebras (1) occupy evenly
spaced sets across the 32-sets of the micro-op cache, (2) leave
two ways of each set empty to allow subsequent code to enter
the micro-op cache without obfuscating the signal, and (3) are
made of long sections of code that include as few micro-ops as
possible by padding no-ops and jumps with length-changing
prefixes (LCP). The instruction composition described in point
(3) facilitates creating a sharp timing signal: the lack of back-
end execution, combined with the heavy use of LCP, ensures
that the bottleneck is in the decode pipeline and creates a
observable difference between micro-op cache hits and misses.
This allows us to obtain a clearly distinguishable a binary
signal (i.e., hit vs. miss) with a mean timing difference of
218.4 cycles and a standard deviation of 27.8 cycles, allowing
us to reliably transmit a bit (i.e., one-bit vs. zero-bit) over the
micro-op cache.

TABLE I: Bandwidth and Error Rate Comparison

Mode Bit Bandwidth Bandwidth with
Error Rate (Kbit/s) error correction

Same address space* 0.22% 965.59 785.56
Same address space (User/Kernel) 3.27% 110.96 85.20
Cross-thread (SMT) 5.59% 250.00 168.58
Transient Execution Attack 0.72% 17.60 14.64

*results are taken over 32 samples, with standard deviation of 6.91Kbit/s

1 2 4 8 16

Number of Sets

0.0

0.1

0.2

0.3

E
rr

or
R

at
e

4 5 6 7 8

Number of Ways

E
rr

or
R

at
e

0 4 8 12 16 20

Number of Samples Taken

E
rr

or
R

at
e

1 2 4 8 16

Number of Sets

400

500

600

B
an

dw
id

th
(K

bp
s)

4 5 6 7 8

Number of Ways

B
an

dw
id

th
(K

bp
s)

0 4 8 12 16 20

Number of Samples Taken

B
an

dw
id

th
(K

bp
s)

Fig. 9: Tuning Set/Way Occupancy and Sample Count for
Transmission Accuracy and Bandwidth. We vary one pa-
rameter while keeping the other two constant. The constant
parameters are (nways=6, nsets=8, samples=5).

V. THE MICRO-OP CACHE DISCLOSURE PRIMITIVE

In this section, we leverage the framework described above
to demonstrate two information disclosure methods that rely
solely on exploiting the timing effects of the micro-op cache to
covertly transmit secrets – (a) across the user/kernel privilege
boundary within the same thread, and (b) across different SMT
threads that are co-located on the same physical core, but
different logical cores. These make no observable modifica-
tions to any data/instruction cache in the traditional L1/L2/L3
cache hierarchy, and are therefore not only far less detectable,
but have the ability to bypass several recently proposed cache
side-channel defenses that rely on deploying randomized cache
indexing mechanisms. We describe and evaluate each of these
in detail.

A. Cross-Domain Same Address Space Leakage

The goal of this attack is to establish a communication
channel between two code regions within the same address
space. We first describe a proof-of-concept attack that is able to
leak information over the micro-op cache, across code regions
within the same address space and the same privilege levels.
We further discuss techniques to improve the bandwidth and
the error rate of this channel, and then extend this attack to
detect secrets across different privilege levels.

Proof-Of-Concept Implementation. This section describes
a proof-of-concept implementation that exploits the timing
effects due to conflicting micro-op cache accesses in two
different code regions, albeit operating at the same privilege
level. To this end, we leverage three distinct functions made
available from our framework described in Section IV – two
versions of tiger and one zebra. Recall that two tiger functions

contend with each other in the micro-op cache as they occupy
the same sets and ways, while the tiger and the zebra occupy
mutually exclusive cache lines in the micro-op cache. This
then allows us to mount a conflict-based attack where the
receiver (spy) executes and times a tiger loop, while the sender
(Trojan) executes its own version of the tiger function to send
a one-bit or the zebra function to send a zero-bit.

We verify that the information transmitted through this
timing channel is indeed a manifestation of the timing effects
of the micro-op cache (i.e., not the instruction cache, which
would also create measurable performance variation) by prob-
ing performance counters that show a jump in the number of
instructions delivered from the decode pipeline rather than the
micro-op cache and further indicate that there is no noticeable
signal due to misses in the L1 (data/instruction), L2, and L3
caches during execution.

Bandwidth Optimization. To improve the bandwidth and
accuracy of our timing channel, we tune a number of different
parameters, including the number of micro-op cache sets and
ways probed by the tiger and zebra functions, and the number
of samples gathered for measurements.

Figure 9 shows the impact on bandwidth and error rate as we
vary sets occupied, ways occupied, and the number of samples
taken. We make several observations. First, as expected, the
covert channel bandwidth increases as we reduce the number
of samples and the number of set and ways we probe. We
reach the highest bandwidth of over 1.2 Mbps, while incurring
an error rate of about 15%, when we only probe four ways
of just one set and gather only five samples. Second, the
number of ways probed do not have a significant impact on the
accuracy, which means we are able to create conflicts in the
micro-op cache that produce noticeable timing effects when
our tiger functions contend for just four ways of a set. Third,
the error rate drastically drops to less than 1% as we increase
the number of sets probed to eight.

We reach our best bandwidth (965.59 Kbps) and error rates
(0.22%) when six ways of eight sets are probed, while limiting
ourselves to just five samples. We further report an error-
corrected bandwidth by encoding our transmitted data with
Reed-Solomon encoding [50] that inflates file size by roughly
20%, providing a bandwidth of 785.56 Kbps with no errors
(shown in Table I).

Leaking Information across Privilege Boundaries. We
next extend the proof-of-concept attack described above to
enable information disclosure across the user-kernel boundary.
We leverage the same functions as described above, where the
spy makes periodic system calls to trigger a kernel routine
that makes secret-dependent call to another internal kernel
routine. The secret can then be inferred by the spy in a probe
phase, by executing and timing a corresponding tiger version
of that internal routine. This timing channel has a bandwidth
of 110.96 Kbps with an accuracy of over 96%, or 85.2 Kbps
with error correction. This experiment not only confirms that
the micro-op cache is not flushed across privilege boundaries,
but shows that our channel is tolerant to noise and interference
due to the additional overhead of making a system call.

TABLE II: Tracing Spectre Variants using Performance Coun-
ters

Attack Time LLC LLC µop Cache
Taken References Misses Miss Penalty

Spectre (original) 1.2046 s 16,453,276 10,997,979 5,302,647 cycles
Spectre (µop Cache) 0.4591 s 3,820,847 3,756,310 74,689,315 cycles

B. Cross-SMT Thread Leakage

We also examine cross thread micro-op cache leakage in
SMT processors. Since the threads of an SMT processor share
the same micro-op cache, they may be vulnerable to micro-
op cache attacks, depending on how they share it. However,
since our characterization study suggests that the micro-op
cache in Intel processors is statically partitioned, we turn our
attention to the AMD Zen processor, where the micro-op cache
is competitively shared among the threads.

In particular, on AMD Zen processors, micro-ops of one
thread could evict the micro-ops of another thread as they
compete for the micro-op cache. Based on this observation,
we construct a cross-thread covert channel on AMD Zen
processors. The Trojan (sender) thread encodes “one" by
executing a large number of static instructions that contend
for a wide number of micro-op cache sets. The spy (receiver)
thread constantly executes and times a large number of static
instructions that touch all the sets of the micro-op cache.
Since we choose instructions whose execution time is sensitive
to their micro-op cache hit rate, the spy’s execution time
considerably increases when the Trojan sends “one". This
enables us to achieve a covert channel with a high bandwidth
of 250 Kbps with an error rate of 5.59% or 168.58 Kbps with
error correction, as shown in Table I.

VI. I SEE DEAD µOPS: TRANSIENT EXECUTION ATTACK

In this section, we describe and evaluate two transient
execution attack variants that exploit the novel micro-op cache
vulnerability we expose. The first attack is similar to Spectre-
v1 [11] in that it bypasses a bounds check to perform an
unauthorized read of secret data, but leverages the micro-op
cache side channel as its disclosure primitive. The second
attack also bypasses a software-based authorization check,
but performs a secret-dependent indirect function call that
automatically triggers a micro-op cache access to the predicted
target of that function call, thereby leaving an observable
footprint in the micro-op cache even before the instructions at
the predicted target are renamed and dispatched for execution.
The proof-of-concept attacks described in this section were
carried out on an Intel i7-8700T processor that implements
the Coffee Lake microarchitecture.

A. Variant-1: The µop Disclosure Primitive

Attack Setup. Listing 4 shows the code for a vulnera-
ble library that contains a secret in its memory space (in
this case, a character array secret) and exposes an API
victim_function to read an element of a non-secret
array. The victim_function performs a bounds check on
the index, and if the index is within bounds of the public

1 char array[1024];
2 int array_size = 1024;
3 ...
4 char secret[1024];
5 extern uint8_t victim_function(size_t i) {
6 // bounds check:
7 if (i >= 0 && i < array_size) {
8 // misspeculation of this branch
9 // bypasses the bounds check

10 return array[i];
11 }
12 return -1;
13 }

Listing 4: Victim Method for our Variant-1 Attack

array, it returns the non-secret value at the index. However, as
described in the Spectre-v1 attack, the bounds check can be
bypassed by mistraining the branch predictor such that it is
always predicted to land on the in-bounds path. This can be
accomplished by repeatedly calling the victim_function
with in-bounds indices so the predictor gets sufficiently trained
to emit a predicted taken outcome.

The next step is to set up the micro-op cache for covert
transmission. Again, the attacker leverages three distinct func-
tions from our framework described in Section IV – two
versions of tiger (one used by the sender and the other used by
the receiver) and one zebra. The attacker first primes the appro-
priate sets in the micro-op cache using the receiver’s version of
the tiger function and then invokes the victim_function
with a maliciously computed out-of-bounds index i such that
the transient array access, array[i], actually evaluates to
a target location in the secret array. This results in the
victim_function() returning the speculatively accessed
secret byte to the caller.

Secret Transmission. The attacker is then able to infer this
secret via the micro-op cache side-channel as follows. The at-
tacker first extracts each bit of the byte using bit manipulation
(masking logic), and then calls a zebra to transmit a zero-bit
or a tiger (the sender’s version) to transmit a one-bit.

Side-Channel Inference. In the next step, the attacker waits
until after the transiently executed instructions get squashed
and the victim_function returns, throwing an out-of-
bounds error. At that point, it executes and times the receiver’s
version of tiger. Timing will show whether it is read from L1
ICache and decoded, or if it is streamed directly from the
micro-op cache, allowing the attacker to infer the secret bit.
The process is repeated until all bits of the secret are inferred.

Bandwidth and Stealthiness of the Attack. Note that the
attack is similar in spirit to Spectre-v1 in that both attacks
exploit transient execution to bypass bounds checks and gain
unauthorized access to secret information. However, there are
two key differences in the way our attack uses the micro-
op cache to transmit that information to non-speculative,
committed attacker code, instead of transmitting it over the
LLC.

First, our attack is much faster. Table II shows both time
measured in seconds and a few other relevant performance

counter measurements taken while running our attack and the
original Spectre-v1 attack, both reading the same number of
samples and revealing the same secret data. Notice that the
timing signal has clearly shifted from the LLC to the micro-
op cache – the number of LLC references and misses have
decreased significantly (by about 5X and 3X respectively),
whereas the micro-op cache miss penalty (the decode overhead
and the switch penalty) has substantially increased (by about
15X). Overall, our attack is 2.6X faster than the original
Spectre-v1 attack. This difference is even more dramatic
considering the fact that our attack leaks a secret on a bit-
by-bit basis while the Spectre-v1 attack leaks it on a byte-by-
byte basis, leaving significant additional room for bandwidth
optimizations (for example, using a jump table) that could
further expand this gap. Furthermore, our attack is more
stealthy and far less detectable by traditional cache monitoring
techniques [51], [52], given that we make fewer references to
not just the LLC, but to data and instruction caches across the
hierarchy.

Second, and likely more significantly, the gadgets for our
attack occur more naturally than those of Spectre-v1 as they
only involve looking up a single array access with an untrusted
index that is guarded by a security check. In fact, a value-
preserving taint analysis on the LGTM security analysis web
platform counts 100 of our gadgets in the torvalds/linux
repository, compared to only 19 for Spectre-v1.

We also identify 37 gadgets in the Linux kernel (ver-
sion 5.11-rc7) that also have the ability to perform a bit
masking operation on the retrieved secret followed by a
dependent branch, to trigger a micro-op cache access. To
demonstrate the exploitability of such gadgets, we replace
the gadget in our proof-of-concept exploit code with one of
these gadgets (specifically, a gadget in the PCI driver routine
pci_vpd_find_tag), and further automatically generate the
appropriate tiger functions for side-channel inference. We
observe that our attack is able to reliably leak bits of the
transiently accessed secret, and our measurements indicate a
clear signal from the micro-op cache. Further, by combining
our attack with Spectre-v2 (Branch Target Injection) [11], we
are also able to arbitrarily jump to these gadgets while we
are in the same address space. More comprehensive gadget
analysis and chaining experiments are subject of future work.

B. Variant-2: Bypassing LFENCE
In this section, we describe a novel transient execution

attack variant that not only leverages the micro-op cache as a
disclosure primitive, but exploits the fact that indirect branches
and calls trigger a micro-op cache access to fetch micro-
ops at a predicted target. If these micro-ops are transmitter
instructions (that carry secrets and further transmit them via
a suitable disclosure primitive), they would leave a footprint
in the micro-op cache, even before they get dispatched to
execution.

This not only breaks existing invisible speculation-based
defenses [20], [21], [28] that track potential transmitter in-
structions in the instruction queue and prevent them from
leaking information, but also bypasses a restrictive solution

1 char secret;
2 extern void victim_function(ID user_id) {
3 // authorization check bypassed by mistraining
4 if (user_id is authorized) {
5 asm volatile("lfence");
6 // LFENCE: stall the execution of
7 // younger instructions
8

9 // transmitter: indirect call
10 fun[secret]();
11 }
12 }

Listing 5: Victim Method for our Variant-2 Attack

recommended by Intel – the LFENCE [53], a synchroniza-
tion primitive that forbids younger instructions from being
dispatched to execution. This is the first transient execution
attack to demonstrate that a transmitter instruction can produce
observable microarchitectural side-effects before a hardware-
based defense strategy gets the opportunity to decode its
operands, analyze information flow, and prevent the instruction
from executing.

Proof-Of-Concept Attack. The goal of our proof-of-
concept attack is to consistently leak a secret bit-by-bit across
the LFENCE. To demonstrate this, we consider a victim
function (shown in Listing 5) that contains a gadget guarded
by an authorization check, similar to the one used in Spectre-
v1 [11]. However, the key difference is that our gadget relies
on a transmitter instruction that performs a secret-dependent
indirect jump/function call, rather than a secret-dependent data
access. This allows for the implicit transmission of secret
information at fetch rather than execute, if the indirect branch
predictor is sufficiently well-trained to accurately predict the
outcome of the transmitting indirect branch instruction. This
training is possible via previous legitimate invocations of the
victim function by an authorized user passing the security
check, essentially encoding the secret implicitly in the indirect
branch predictor.

In the setup phase, we sufficiently mistrain the authorization
check guarding our Spectre gadget similar to Spectre-v1.
Note that, this step is specifically targeted at bypassing the
authorization check and this does not influence the outcome
of the secret-dependent indirect jump in our experiments. We
then prime the entire micro-op cache to ensure that our timing
measurements are not attributed to lingering data in the micro-
op cache.

In the next step, for each potential target of the indirect
jump, we automatically generate and re-prime appropriate
micro-op cache sets using a corresponding tiger version of the
code at the predicted target using the methodology described
in Section IV. We then invoke the victim by providing an
untrusted input that would otherwise result in the authorization
check to fail. However, due to our mistraining step above,
execution proceeds speculatively beyond the authorization
check, essentially bypassing it, similar to Spectre-v1.

Once execution reaches the LFENCE, all younger instruc-
tions, including our transmitter, are prevented from being

0 10 20 30
Time

0.5

1.0

M
ic

ro
-O

ps
 D

ec
od

ed 1e7

No Fence
LFENCE
CPUID

Fig. 10: Micro-Op Cache Timing Signal (with CPUID,
LFENCE, and no fencing at the bounds check)

dispatched to functional units, until the LFENCE is committed.
However, this does not prevent younger instructions, including
those at the predicted target of our secret-dependent indirect
branch, from being fetched, thereby allowing them to leave
a trace in the micro-op cache. Note that the secret-dependent
indirect branch does not need to be evaluated, it only needs
to be accurately predicted so we fetch the instructions at
the appropriate target, filling appropriate sets in the micro-
op cache. Once execution recovers from misspeculation and
control is transferred back to the attacker, the secret bit can be
inferred by probing the micro-op cache with the appropriate
tiger routines. The timing signal will reveal if they were
evicted by the victim function or if they remained untouched,
ultimately disclosing the secret.

Results. To evaluate the effectiveness of our attack in
the presence of different synchronization primitives, we con-
sider three different victim functions where the authorization
check and the transmitter instructions are separated by – (1)
no synchronization primitive, (2) an LFENCE that prevents
younger instructions from being dispatched to execution, and
(3) a CPUID that prevents younger instructions from being
fetched. Figure 10 shows the results of this experiment. We
observe a clear signal when execution is not protected by
any synchronization primitive. We also don’t observe any
signal when speculation is restricted via CPUID. However,
we continue a observe a signal when an LFENCE is deployed
to serialize execution, unlike the case of Spectre-v1 that is
completely mitigated by LFENCE.

VII. DISCUSSION

In this section, we discuss the effectiveness of our attacks
in the presence of existing mitigations and countermeasures
proposed in the literature against side channel and transient-
execution attacks. We also discuss the extensibility of these
mitigations to defend against our attack. We begin by cate-
gorizing recently proposed mitigations for Spectre and other
related transient execution attacks into two major classes that
– (1) prevent the covert transmission of a secret, and (2)
prevent unauthorized access to secret data. We discuss the
effectiveness of our attack in the presence of each of these
classes of defenses below.

Prevention of Covert Transmission of Secrets. Most
existing defenses that focus on blocking covert transmission
of secrets have primarily targeted the cache hierarchy rather
than other side channels within the processor architecture.

Partitioning-based solutions [54]–[59] that defend against
conflict-based side-channel attacks typically ensure isolation
by organizing the cache (or any other microarchitectural
structure) into multiple per-thread independent partitions, pre-
venting conflicting accesses within the same partition. While
this works well for a cross-core or a cross-SMT thread attack,
it does not prevent attacks where information may be leaked
across privilege levels, albeit within the same process. In fact,
although the micro-op cache is partitioned in Intel processors,
it remains vulnerable to most of our attacks, including our
Spectre variants.

Encryption and randomization-based solutions [54], [60]–
[64] randomize the indexing and cache filling procedure to im-
pede eviction set construction. These defenses are specifically
targeted at traditional caches, and don’t directly apply to our
attack. First, our attack does not cause any additional misses
in the ICache or other levels of the cache hierarchy, and we
confirm this through performance counter measurements. This
is because micro-op cache misses only trigger a fetch from
the ICache. As a result, randomized indexing of the ICache
neither affects how the micro-op cache is accessed nor affects
how it gets filled. Second, extending the randomized indexing
process to the micro-op cache would not only provide very
low entropy due to fewer sets, but can be extremely expensive
as, unlike traditional caches, micro-op caches are implemented
as streaming caches and the filling procedure is governed by
numerous placement rules as described in Section II. Doing so
in a cost-effective way while providing high levels of entropy
is a challenge that needs to be addressed as part of future
work.

More recent defenses against transient execution attacks
prevent leaking secrets accessed along a misspeculated path.
These fall into two major categories – (a) invisible specu-
lation techniques, and (b) undo-based techniques. Solutions
that leverage invisible speculation [20], [21], [24], [28] delay
speculative updates to the cache hierarchy until a visibility
point is reached (e.g., all older branches have been resolved).
On the other hand, undo-based solutions rely on reversing
speculative updates to the cache hierarchy once misspeculation
is detected.

Our attack is able to completely penetrate all of these
solutions as they primarily prevent covert transmission of
information over traditional caches (and in some cases, arith-
metic units, albeit with high performance overhead). More
specifically, we never evict our tiger and zebra functions out
of the ICache or any other lower-level cache, and thus we are
able to send and receive information while leaving no trace in
any of those caches.

Prevention of Unauthorized Access to Secret Data. The
literature contains a vast amount of prior work on memory
safety solutions [65]–[68] that prevent unauthorized access
to secret data – these range from simple bounds checks to
more sophisticated capability machines [69]–[74]. Transient
execution attacks have the ability to successfully bypass
software bounds checks by mistraining a branch predictor
to temporarily override them. The remaining hardware-based

solutions including capability machines that provide more fine-
grained memory safety remain as vulnerable to our attack as
they are to Spectre, since the offending instructions that make
such unauthorized accesses get squashed in the pipeline, before
an exception can be handled.

More recently, many hardware and software-based fenc-
ing solutions [23], [75], [76] have been proposed to inhibit
speculation for security-critical code regions to prevent the
unauthorized access of secret information. These solutions
typically rely on injecting speculation fences before a load
instruction that may potentially access secret data, thereby
ensuring that the load instruction gets dispatched to execution
only after all older instructions are committed. These defenses
are particularly effective in preventing the unauthorized access
of secret data in case of existing transient execution attacks.
However, they do not defend against the transient attack
variant-2 that we describe.

While taint analysis can detect data flow turning into
control flow, existing defenses [21], [77], [78] prevent secret-
dependent instructions from being dispatched to execution, but
continue to allow them to be speculatively fetched, renamed,
and added into the instruction queue, thereby leaving a foot-
print in the micro-op cache.

STT [21] and DOLMA [78] prevent instructions along a
misspeculated path from updating the branch predictor, but
they still allow instructions accessed along correctly speculated
paths (those that eventually get committed) to update the
branch predictor, as they consider tracking the information
flow of non-transiently accessed secrets out of scope. However,
as noted in our variant-2 attack, those instructions essen-
tially implicitly encode the secret in the branch predictor.
In general, we believe that this is hard to avoid without
incurring a significant performance penalty, unless secret-
dependent instructions are annotated as unsafe (either by the
programmer or through an automatic annotation mechanism),
so they don’t accidentally get encoded in the predictor or any
other microarchitectural structure.

Once the secret gets encoded in the predictor, our attack is
able to leverage a single transient indirect branch instruction
to first implicitly access the secret by reading the predicted
target address from the predictor and then transmit it via the
micro-op cache.

VIII. POTENTIAL MITIGATIONS

This section discusses potential attack mitigations that could
block information leakage over the micro-op cache.

Flushing the Micro-Op Cache at Domain Crossings.
Cross-domain information leakage via this side channel may
be prevented by flushing the micro-op cache at appropriate
protection domain crossings. This can be simply accomplished
with current hardware by flushing the instruction Translation
Lookaside Buffer (iTLB), which in turn forces a flush of the
entire micro-op cache. Intel SGX already does this at enclave
entry/exit points, and as a result both the enclave and the non-
enclave code leave no trace in the micro-op cache for side-
channel inference.

However, frequent flushing of the micro-op cache could
severely degrade performance. Furthermore, given that current
processors require an iTLB flush to achieve a micro-op cache
flush, frequent flushing of both structures would have heavy
performance consequences, as the processor can make no
forward progress until the iTLB refills. While it is possible to
selectively flush cache lines in the micro-op cache by flushing
the corresponding lines in the instruction cache at appropriate
protection domain crossings, that may not be tractable for two
reasons. First, by flushing the cache lines in both the ICache
and the micro-op cache, we would significantly slow down the
fetch and decode process for hot code regions, making protec-
tion domain switches considerably more expensive than they
already are. Second, selective flushing necessarily requires the
continuous monitoring and attribution of micro-op cache lines
in hardware, which may not be tractable as the number of
protection domains increase.

Performance Counter-Based Monitoring. A more light-
weight alternative to disabling and flushing the micro-op
cache is to leverage performance counters to detect anomalies
and/or potential malicious activity in the micro-op cache. For
instance, sudden jumps in the micro-op cache misses may
reveal a potential attack. However, such a technique is not
only inherently prone to misclassification errors, but may also
be vulnerable to mimicry attacks [79], [80] that can evade
detection. Moreover, to gather fine-grained measurements, it
is imperative that performance counters are probed frequently,
which could in turn have a significant impact on performance.

Privilege Level-Based Partitioning. Intel micro-op caches
are statically partitioned to allow for performance isolation of
SMT threads that run on the same physical core, but different
logical cores. However, this does not prevent same address-
space attacks where secret information is leaked within the
same thread, but across protection domains, by unauthorized
means. A countermeasure would be to extend this partition-
ing based on the current privilege-level of the code, so for
example, kernel and user code don’t interfere with each other
in the micro-op cache. However, this may not be scalable as
the number of protection domains increase, and considering
the relatively small size of the micro-op cache, such a parti-
tioning scheme would result in heavy underutilization of the
micro-op cache, negating much of its performance advantages.
Moreover, it does not prevent our variant-1 attack, as both
the priming and the probing operations are performed in user
space, even though they might be triggered by a secret that is
returned by kernel code.

IX. CONCLUSION

This paper presents a detailed characterization of the micro-
op cache in Intel Skylake and AMD Zen microarchitectures,
revealing details on several undocumented features. The paper
also presents new attacks that exploit the micro-op cache to
leak secrets in three primary settings: (a) across the user-kernel
boundary, (b) across co-located SMT threads running on the
same physical core, but different logical cores, and (c) two
transient execution attack variants that exploit the micro-op

cache timing channel, bypassing many recently proposed de-
fenses in the literature. Finally, the paper includes a discussion
on the effectiveness of the attack under existing mitigations
against side-channel and transient execution attacks, and fur-
ther identifies potential mitigations.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their many helpful suggestions and comments. The authors
would also like to thank Paul Kocher for his insightful
feedback and encouraging comments. This research was sup-
ported by NSF Grant CNS-1850436, NSF/Intel Foundational
Microarchitecture Research Grants CCF-1823444 and CCF-
1912608, and a DARPA contract under the agreement number
HR0011-18-C-0020.

REFERENCES

[1] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA,” in Journal of Cryptographic
Engineering, 2016.

[2] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Symposium,
2014.

[3] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+Abort:
A Timer-Free High-Precision L3 Cache Attack using Intel TSX,” in
USENIX Security Symposium, 2017.

[4] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The Spy in the Sandbox: Practical Cache Attacks in JavaScript and
Their Implications,” in ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[5] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks Are Practical,” in IEEE Symposium on Security
and Privacy, 2015.

[6] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security Symposium, 2018.

[7] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in IEEE Symposium on Security
and Privacy (SP), 2013.

[8] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking Branch Predictors to Bypass ASLR,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

[9] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018.

[10] M. Taram, A. Venkat, and D. Tullsen, “Packet Chasing: Spying on Net-
work Packets over a Cache Side-Channel,” in International Symposium
on Computer Architecture (ISCA), 2020.

[11] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution ,” Tech. Rep., 2019.

[12] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” Tech. Rep.,
2018.

[13] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2019.

[14] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in in IEEE Symposium on Security and Privacy (SP), 2019.

[15] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2019.

[16] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How
SGX fails in practice,” https://sgaxeattack.com/, 2020.

[17] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in USENIX Security Symposium, 2018.

[18] A. Bhattacharyya, A. Sánchez, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer, “Specrop: Speculative exploitation of ROP
chains,” in International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2020.

[19] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” 2018.

[20] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy,” in International Symposium on Microarchitecture (MICRO),
2018.

[21] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in International Symposium on Microar-
chitecture (MICRO), 2019.

[22] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An "Undo" Approach
to Safe Speculation,” in International Symposium on Microarchitecture
(MICRO), 2019.

[23] M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing: Se-
curing Speculative Execution via Microcode Customization,” in Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

[24] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of
a Meltdown with Leakage-Free Speculation,” in Design Automation
Conference (DAC), 2019.

[25] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
Shield: Shielding Speculative Data from Microarchitectural Covert
Channels,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2019.

[26] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing Cross-Domain
Spectre-Like Attacks by Capturing Speculative State,” 2020.

[27] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison,
D. Marinov, and J. Torrellas, “Speculation Invariance (InvarSpec): Faster
Safe Execution Through Program Analysis,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020.

[28] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient Invisible Speculative Execution through Selective Delay and
Value Prediction,” in International Symposium on Computer Architec-
ture (ISCA), 2019.

[29] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing Speculative Execution Attacks at Their Source,” in
International Symposium on Microarchitecture (MICRO), 2019.

[30] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“I-SPY: Context-Driven Conditional Instruction Prefetching with Coa-
lescing,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

[31] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander, “Under-
standing Selective Delay as a Method for Efficient Secure Speculative
Execution,” IEEE Transactions on Computers, 2020.

[32] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. Zhao, X. Zou, T. Unterlug-
gauer, J. Torrellas, C. Rozas, A. Morrison, F. Mckeen, F. Liu, R. Gabor,
C. W. Fletcher, A. Basak, and A. Alameldeen, “Speculative interference
attacks: Breaking invisible speculation schemes,” 2020.

[33] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar, L. Rap-
poport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation intel
core: New microarchitecture code-named skylake,” International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2017.

[34] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen,
“Micro-operation Cache: a Power Pware Front-end for Variable Instruc-
tion Length ISA,” in International Symposium on Low Power Electronics
and Design (ISLPED), 2001.

[35] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rap-
poport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-Generation Intel
Core: New Microarchitecture Code-Named Skylake,” 2017.

[36] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: Speculation
Control for Energy Reduction,” in International Symposium on Com-
puter Architecture (ISCA), 1998.

[37] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual, March 2009.

https://sgaxeattack.com/

[38] I. Corporation, “Intel® 64 and IA-32 Architectures Optimization
Reference Manual,” Tech. Rep., 2019. [Online]. Available: http:
//www.intel.com/design/literature.htm.

[39] O. Aciiçmez, “Yet Another Microarchitectural Attack:: Exploiting I-
cache,” in ACM Workshop on Computer Security Architecture (CSAW),
2007.

[40] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-Space: High-
Bandwidth and Reliable Covert Channel Attacks inside the Cloud,” in
USENIX Security Symposium (USENIX Security), 2015.

[41] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García, and
N. Tuveri, “Port Contention for Fun and Profit,” in IEEE Symposium on
Security and Privacy (SP), 2019.

[42] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On Subnormal Floating Point and Abnormal Timing,” in
IEEE Symposium on Security and Privacy(SP), 2015.

[43] Z. Wang and R. B. Lee, “Covert and Side Channels Due to Processor
Architecture,” in Annual Computer Security Applications Conference
(ACSAC), 2006.

[44] M. SWIAT, “Mitigating speculative execution side
channel hardware vulnerabilities,” Mar 2018. [On-
line]. Available: https://msrc-blog.microsoft.com/2018/03/15/mitigating-
speculative-execution-side-channel-hardware-vulnerabilities/

[45] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in Conference on
Computer and Communications Security (CCS), 2019.

[46] A. Abel and J. Reineke, “nanoBench: A Low-Overhead Tool for Running
Microbenchmarks on x86 Systems,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2020.

[47] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace Cache: a Low Latency
Approach to High Bandwidth Instruction Fetching,” in International
Symposium on Microarchitecture (MICRO), 1996.

[48] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches,” in International Symposium on Microarchitecture (MICRO),
2006.

[49] Intel Corporation, Intel® 64 and IA-32 Architectures Performance Mon-
itoring Events, March 2009.

[50] V. Guruswami, Decoding Reed–Solomon Codes. Springer US, 2008,
pp. 222–226.

[51] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisenbarth, “CacheShield:
Detecting Cache Attacks through Self-Observation,” in Conference on
Data and Application Security and Privacy (CODASPY), 2018.

[52] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A Real-Time Side-
Channel Attack Detection System in Clouds,” in Research in Attacks,
Intrusions, and Defenses (RAID), 2016.

[53] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume
2B, Intel Corporation, August 2007.

[54] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting Software
Cache-Based Side Channel Attacks,” 2007.

[55] K. T. Nguyen, “Introduction to Cache Allocation Technology
in the Intel® Xeon® Processor E5 v4 Family,” 2016, https:
//software.intel.com/content/www/us/en/develop/articles/introduction-
to-cache-allocation-technology.html.

[56] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating Last-level Cache Side Channel Attacks in
Cloud Computing,” in International Symposium on High Performance
Computer Architecture (HPCA), 2016.

[57] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-Monopolizable Caches: Low-Complexity Mitigation of Cache
Side Channel Attacks,” 2012.

[58] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“Secdcp: secure dynamic cache partitioning for efficient timing channel
protection,” in Design Automation Conference (DAC), 2016.

[59] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors,” in International Symposium on Microarchitecture
(MICRO), 2018.

[60] M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping,” in International Symposium
on Microarchitecture (MICRO), 2018.

[61] M. K. Qureshi, “New Attacks and Defense for Encrypted-Address
Cache,” in International Symposium on Computer Architecture (ISCA),
2019.

[62] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in International
Symposium on Computer Architecture (ISCA), 2014.

[63] F. Liu, H. Wu, and R. B. Lee, “Can randomized mapping secure
instruction caches from side-channel attacks?” in Fourth Workshop on
Hardware and Architectural Support for Security and Privacy (HASP),
2015.

[64] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” 2016.

[65] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic Memory Safety
for Unsafe Languages,” in SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2006.

[66] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna, “HeapHopper: Bringing Bounded Model Checking to Heap
Implementation Security,” in USENIX Security Symposium (USENIX
Security), 2018.

[67] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A Fast Address Sanity Checker,” in USENIX Annual Technical
Conference (USENIX ATC), 2012.

[68] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX Explained: A Cross-Layer Analysis of the Intel MPX System
Stack,” in Proceedings of the ACM on Measurement and Analysis of
Computing Systems (POMACS), 2018.

[69] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI Capability Model: Revisiting RISC in an Age of Risk,” in
International Symposium on Computer Architecture (ISCA), 2014.

[70] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W. Moore,
J. Baldwin, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka, A. Joannou,
B. Laurie, A. T. Markettos, J. E. Maste, A. Mazzinghi, E. T. Napierala,
R. M. Norton, M. Roe, P. Sewell, S. Son, and J. Woodruff, “CheriABI:
Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege
in the POSIX C Run-time Environment,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[71] N. W. Filardo, B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-Trifu,
B. Davis, H. Xia, E. T. Napierala, A. Richardson, J. Baldwin, D. Chis-
nall, J. Clarke, K. Gudka, A. Joannou, A. T. Markettos, A. Mazzinghi,
R. M. Norton, M. Roe, P. Sewell, S. Son, T. M. Jones, S. W. Moore,
P. G. Neumann, and R. M. Watson, “Cornucopia: Temporal Safety for
CHERI Heaps,” in IEEE Symposium on Security and Privacy (SP), 2020.

[72] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware Support for
Fast Capability-Based Addressing,” in ACM SIGOPS Operating Systems
Review, 1994.

[73] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, and A. DeHon, “Low-
Fat Pointers: Compact Encoding and Efficient Gate-Level Implementa-
tion of Fat Pointers for Spatial Safety and Capability-Based Security,”
in SIGSAC Conference on Computer & communications security (CCS),
2013.

[74] R. Sharifi and A. Venkat, “CHEx86: Context-Sensitive Enforcement
of Memory Safety via Microcode-Enabled Capabilities,” in Annual
International Symposium on Computer Architecture (ISCA), 2020.

[75] Intel, “Speculative Execution Side Channel Mitigations,” 2018. [Online].
Available: www.intel.com/benchmarks.

[76] G. Wang, “oo7: Low-Overhead Defense against Spectre Attacks via
Program Analysis,” Tech. Rep., 2019.

[77] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2004.

[78] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle of
transient non-observability,” in USENIX Security Symposium (USENIX
Security), 2021.

[79] D. Wagner and P. Soto, “Mimicry Attacks on Host-Based Intrusion
Detection Systems,” in Proceedings of the ACM conference on Computer
and communications security (CCS), 2002.

[80] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu,
“RHMD: Evasion-Resilient Hardware Malware Detectors,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2017.

[81] A. Fog, “The Microarchitecture of Intel, AMD and VIA CPUs: An
Optimization Guide for Assembly Programmers and Compiler Makers.”
[Online]. Available: https://www.agner.org/optimize/microarchitecture.
pdf

http://www.intel.com/design/literature.htm.
http://www.intel.com/design/literature.htm.
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
www.intel.com/benchmarks.
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

	Introduction
	Background and Related Work
	The x86 Decode Pipeline
	The Micro-Op Cache Organization and Functionality
	Other Front End Optimizations
	Microarchitectural Covert and Side Channels
	Transient Execution Attacks

	Characterizing the Micro-Op Cache
	Creating and Exploiting Contention in the Micro-Op Cache
	The Micro-Op Cache Disclosure Primitive
	Cross-Domain Same Address Space Leakage
	Cross-SMT Thread Leakage

	I See Dead Micro-ops: Transient Execution Attack
	Variant-1: The Micro-op Disclosure Primitive
	Variant-2: Bypassing LFENCE

	Discussion
	Potential Mitigations
	Conclusion
	References

