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Figure 1: Overview of ProxyVM

I. INTRODUCTION

Cloud providers invest in specific hardware archi-
tectures to optimize emerging workloads. Due to the
private nature of such workloads’ algorithms and pri-
vacy concerns over potentially sensitive user data, the
cloud hardware supply chain has increasingly relied
on synthetic benchmarks to guide application-specific
hardware design.

We propose ProxyVM, a scalable, retargetable com-
piler system that generates synthetic workloads with
great performance predictability. The key to ProxyVM
is a privacy-preserving performance outline, a rich
intermediate representation implemented with MLIR
[1], generated by a performance characterizing front-
end deployed at the customer site. This allows the
performance characteristics of a sensitive workload
to be seamlessly shared with hardware vendors, with
the guarantee that proprietary algorithms and sensi-
tive user data remain invulnerable to disclosure. This
privacy-preserving performance blueprint allows work-
loads to be classified as computational chunks or algo-
rithms of variable granularity, parameterizable by dei-
dentified/obfuscated input data properties. ProxyVM’s
backends can use this outline to generate synthetic
workloads and guide application-specific hardware de-
sign.

This research is expected to benefit key stakeholders
in the machine learning (ML) supply chain by stream-
lining the hardware design process and minimizing
vendor clearing expenses. This research should also
boost ML supply chain resilience as privacy-based
regulations change over time.

II. TECHNICAL APPROACH

A. Need for Unified Performance Characterization
The literature offers several characterization method-

ologies that allow us to make compromises based on
workloads and hardware platforms to be supported.
Top-down, motif-based techniques [2], [3] break down
domain-specific algorithms into motifs such as sparse

matrix operations, sorting, and fourier transformations,
allowing workloads to be characterized as mixes of mo-
tifs parameterized by input data properties. This tends
to work well when detailed information on the workload
is available, but the specific hardware architecture is
unknown. In contrast, when limited workload informa-
tion is available but the hardware platform is known
bottom-up, performance trace-based proxy workload
generation [4] may be used. Here, the proxy workload
is often generated by tracing trace-based proxy work-
loads based on traces that characterize performance
aspects such as instruction mixes, memory access, and
branching patterns.

However, existing techniques have limitations. Top-
down approaches don’t scale with new, emergent, and
rapidly evolving workloads, and bottom-up approaches
don’t scale with exotic and accelerator-rich hardware
platforms. Also, neither technique allows fine-grained
privacy and performance tradeoffs, underscoring the
need for a unified approach that supports diverse work-
loads and hardware architectures.
B. Overview of ProxyVM

One of the major goals of our approach is to provide
scalability, catering to diverse workloads and hardware
architectures. To this end, we design our privacy-
preserving performance outline as a rich, MLIR/TVM-
based [1], [5] intermediate representation that allows
us to securely encapsulate the performance character-
istics of a wide range of applications without divulging
proprietary information and support seamless and effi-
cient code generation for a variety of target platforms
from multicore processors to specialized accelerators.

We define our IR to be similar to TensorFlow’s com-
putation graph [6], allowing workloads to be repre-
sented as graphs where nodes represent algorithms
(e.g., sorting, pattern matching, matrix multiplication,
etc.) along with their associated states and parameters
and directed edges represent data flow. Our compila-
tion workflow based on MLIR [1] and TVM [5] then pro-
gressively lowers the intermediate representation to the



appropriate hardware target, applying both machine-
independent and machine-dependent optimizations as
needed. Further, the compilation workflow is also
equipped with privacy-preserving data and code trans-
formations to remove proprietary and sensitive informa-
tion, while retaining intimate performance characteris-
tics of the workload. Figure 1 provides an overview.

C. Privacy-Preserving Data Transformations
To capture data-induced performance effects, at-

tributes of the real workload’s dataset need to be
encoded into the IR as metadata. For example, the
same ML algorithm may have vastly different cache
effects depending upon the network configuration, size
and composition of the weight matrices, and other
hyperparameters. However, it is important to ensure
that such metadata and other input-dependent prop-
erties are properly anonymized and obfuscated before
inclusion to protect proprietary and sensitive data from
getting accidentally leaked. This work explores several
privacy-preserving data transformations to generate
synthetic data that accurately captures data-induced
performance effects, while also simultaneously ensur-
ing that the original data may not be recreated using
the synthetic data. To exemplify the need for such
transformations, we highlight key properties of modern
ML workloads that impact their performance.

Sparsity-induced effects. Tensor sparsity could
drastically affect the performance characteristics of a
workload, as many accelerators tend to skip zero val-
ues in MAC operations to save power and time [7]–[9].
To accurately capture the performance of workloads on
such hardware, it is crucial that the generated data has
similar sparsity at nodes of the data-flow graph where
sparsity matters, and further ensure that the input
data distribution is preserved since the product of two
dense matrices could have arbitrary sparsity, impacting
the composition of future compute nodes. In addition,
our data transformation passes take into account the
distribution of input tensors and their impact on sparsity
as those values propagate through the compute graph,
where tensors are multiplied, aggregated, run through
activation functions, and subjected to sparsity-inducing
regularization schemes. While it is possible to generate
synthetic data that preserve data-induced performance
effects by simply retaining broadly derived statistical
measures such as data distribution and sparsity, we
may still need to apply appropriate differential privacy
techniques when computing these measures.

Precision-induced effects. Recent work on low-
precision accelerators, including IBM’s RaPiD [10] and
Google’s BFloat16 tensors [11], [12], has not only
shown that it is viable to train neural networks us-
ing low-precision integer and floating-point values for
weights and activations, but that it could result in
substantial savings in energy and hardware cost, while
sustaining a minor loss in inference accuracy and train-
ing efficiency. However, synthetic workloads that solely
rely on replicating input data characteristics without
taking into account the increased number of epochs to
train models and the decreased accuracy of the trained
model on such low-precision accelerators may not com-
pletely capture the characteristics of the original work-

load. Thus, it is important that our data transformation
passes not only capture the data-induced performance
effects, but also mimic the training efficiency and the in-
ference accuracy of the original workload when running
on reduced-precision hardware.

Data-dependent memory access patterns. Several
modern machine learning workloads are increasingly
characterized by data-dependent memory access pat-
terns that heavily influence their execution behavior
and accelerator design requirements. For example,
consider GNNs that are characterized by a mix of
regular and data-dependent irregular access patterns.
The data-dependent irregular accesses occurs in the
aggregation stage at the beginning of each layer in the
GNN, where every vertex receives an aggregation of
features from vertices in its neighborhood. The regular
accesses occur right after aggregation in the trans-
formation stage, as the aggregated features of each
neighborhood are run through various neural networks
to produce input features for the next layer [13], [14].
The composition of such a regular/irregular mix is
highly dependent upon the input graph, and running
the same algorithm on different datasets can produce
vastly different performance characteristics [13]. To this
end, our privacy-preserving passes allow generating
shadow loads and stores that mimic the access pat-
terns of the original workload, while ensuring that the
access patterns do not reveal the structure of the graph
itself if it is considered sensitive/proprietary.

D. Privacy-Preserving Code Transformations
To protect confidential algorithmic details, certain

segments of the computation graph may need to be
obfuscated. This involves performance-sensitive node
substitutions (e.g., substituting hash table lookups with
sorting) and/or edge permutations, since they entail
irregular memory accesses. This involves marking sen-
sitive nodes on the graph and then running novel
privacy-preserving passes that randomly substitutes
nodes and permutes edges while attempting to pre-
serve performance characteristics such as memory
access patterns (for node substitution) and inherent
parallelism (for edge permutations).

To support non-traditional workloads that may not be
represented as computation graph nodes, our work-
flow grafts the performance profile-based bottom-up
approach into our generally motif-based top-down com-
putation graph. In particular, the nodes in our com-
putation graph typically correspond to a standard al-
gorithm and are parameterized with algorithm-specific
parameters. If the behavior of certain phases cannot
be correlated to any algorithm/motif, it is still possible
to extend our library to include shadow motifs using
existing proxy workload generation techniques, such as
our work on [15], albeit enhanced with data/control
dependency information, and fine-grained differential
privacy techniques. A key challenge here is that such
shadow motifs may not easily be ported across radi-
cally different architectures, but we want to be able to
design accelerators or functional units to target emerg-
ing code behaviors. To this end, this work features
a design space exploration of workloads to fine-tune
our proxy workload generation process such that the



performance of the generated motif when ported and
optimized for a new architecture is predictive of the
performance of the original code ported/optimized for
that architecture.

III. PRELIMINARY RESULTS

A. Top-Down Exploration
As a preliminary exploration of top-down modeling

of performance and privacy, we chose to examine
the relationship between convolunional neural network
hyperparameters and a set of standard performance
counters that focused on three aspects of execution:
branching, caching, and throughput. We chose covol-
unional neural network workloads as our “model work-
load class” for two reasons. First, they’re ubiquitous
in computer vision and many other ML settings. Sec-
ond, convolutional neural networkloads have model-
structure hyperparameters such as filter stride and
filter size that directly influence their branch and cache
behavior.

For this preliminary exploration, we compiled our
workloads into vectorized and optimized x86 binary
with ONNX-MLIR. While we ran them on a Intel(R)
Core(TM) i7-8700T CPU @ 2.40GHz CPU under the
coffee lake architecture, we are ready to switch to
GPUs and even FPGAs and ASICs as the ONNX and
MLIR ecosystems have support for direct translation
into CUDA and other domain specific codes.

We consider the neural network hyperparameters
as secrets, and explore the information gain a po-
tential adversary can achieve by querying the perfor-
mance counter data for an unknown workload. In Sec-
tion III-A1, we demonstrate that performance counter
measurements can have nonlinear dependencies on
workload hyperparameters. In Section III-B, we show
some factors that play into the difficulty at which hy-
perparameters can be inferred based on performance
counters.

1) Relationship Between ML Workload Hyper-
paramters and Hardware Performance

Figure 2 showcases possible relationships between
performance counter measurements and hyperparam-
eter values. The relationship could be a simple linear
one, as row 1 in Figure 2 indicates. Here, linear classi-
fier (logistic regression) based on cache miss rate and
branch miss rate can produce a good separation be-
tween workloads with different hyperparameter values
(in this case, number of convolutional filters).

Nonlinear Relationships. Contrast that with row
2 in Figure 2, where a nonlinear model produces
significantly higher classification accuracy. Here, the
hyperparameter convolutional kernal size can be pre-
dicted with high accuracy from the performance coun-
ters given, but a more sophisticated model has to be
applied.

Some hyperparamters are difficult to predict from
performance counters. For example, in colume 3 of
Figure 2, the activation function does not significantly
affect cache or branch behavior, so neither linear clas-
sifiers nor SVM produces good separation between the
possible values. When only these hyperparameters are
considered secret, it would be safe to share perfor-
mance counter data.

param activation 0.57
param kernel size 0.81
param layer count 0.53
param filters 0.84
param strides 0.98
param batch size 0.54
param pool strides 0.66
param pool size 0.55

Table I: SVM prediction accuracy by Hyperparameter using
branch miss rate, cache miss rate, and instruction count per
batch; Average accuracy over 4-fold cross validation

However, this comes caveats. For example, in col-
ume 3 of Figure 2, there is a cluster of ReLU activation
workloads to the lower far right part. If an interested
party knows this as a general trend with real world
workloads, they could infer the hyperparameter values
for specific workloads with high confidence even if they
remain unable to do so for the average workload.

Adding Performance Counters can Dramatically
Increase Predictability. Also, we must consider the
possibility that adding a performance counter may yield
signals that cause massive leakage. For example, in
colume 4 of Figure 2, even the nonlinear classifier
has only an accuracy of 72% over the performance
counters given, adding the per-batch instruction count
gives an accuracy above 90% for just the linear model,
as increasing the convolutional strides dramatically
reduces the number of instructions needed for each
batch.

2) Inferring Hyperparameters from Performance
Counters

As shown in Table I, directly sharing performance
counters will allow potential attackers to infer workload
secrets via different methods with varying successes,
with incredible accuracy for hyperparameters with high
performance impact (e.g. convolutional strides). Sur-
prisingly, some performance-impactful hyperparame-
ters (e.g. layer count) do not have high prediction
accuracies, perhaps due to how other hyperparameters
can have a confounding effect (in this case, while layer
count increases instruction count per batch, so does
batch size and pool strides, and the SVM has trouble
distinguishing between the effects of the three).

B. Preliminary Results: Obfuscating ML Hyperparam-
eters via Collisions

In this preliminary study, we explore potential for
hiding sensitive hyperparameters. Unless otherwise
stated, this study uses the same setup as the one on
hyperparameter inference/stealing.

First, we want to see whether there is any “colli-
sion”: models with different hyperparameters but sim-
ilar performance. Collision models provides protection
via “deniability”. That is, given a set of performance
counters, the attacker does not know which model it
is. Theoretically, we should be able to find collision
models if we limit the number of performance counters
the attacker could observe.

Towards this, our preliminary experiment explores the
effect of varying the dimensionality of hyperparameter
space and performance-counter space on the difficulty
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Figure 2: Linear classifiers works well for the number of convolutional filters, a nonlinear classifier works better for the kernel
size (SVM with RBF kernel), and neither classifiers can separate workloads with different activation functions based on the
performance counters given (branch and cache miss rates).
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Figure 3: Demonstration of hyperparameter obfuscation by measuring the number of models that share similar performance
counters but with different hyperparameters. From left to right, we first fix three covolutional hyperparameters (stride, layer-
count, and pool-strides) while varying others (e.g. filter count, pool size), and (within each panel, from left to right) consider
more and more performance counters. We then relax the 3 hyperparameters one by one. The number of workloads with
obfuscation candidates increase as more hyperparameters are allowed, and decreases as more performance counters are
measured.

of hyperparameter inference, and the possibility of
anti-inference obfuscation. For each workload w, we
computed its eight closest neighbors in performance-
counter space. If a closest neighbor n has a different
value for hyperparameter h, n is counted as an obfus-
cation candidate for w under h. The distribution of the
obfuscation candidate counters can also be interpreted
as a cluster-mixing metric: when the workloads with
the same hyperparameter values fall into disjoint clus-
ters in the performance-counter space, most workloads
should have no obfuscation candidates at all; in con-
trast, when the clusters overlap more, each workload
is expected to be closely adjacent to more workloads
with different hyperparameter values.

For each hyperparameter h, under a variety of sce-

narios, we computed the number of obfuscation can-
didates for every workload. In figure 4, note that the
number of obfuscation candidates increases as more
hyperparameters are added and performance-counter
space clusters get mixed up, while the number of
obfuscation candidates decrease as more performance
counters become available to separate the previously
mixed clusters.

Our preliminary results shows that larger sets of po-
tential workloads makes it hard to distinguish different
workloads based on performance counters. However,
as more performance counters are added, more infor-
mation is revealed. Accurate performance estimates re-
quire performance counter disclosure, and so tradeoffs
have to be made.



application binary

Step 1: Memory trace collection (up to sample_size)

Step 2: Filtering to find out top memory instructions

yes

no
Program ended?

Step 3: Building control-flow graph from memory trace

Step 4: Compressing control-flow graph

Step 6: Merging code fragments

Step 5: Code fragment generation

sampled memory instructions

top memory instructions

control-flow graph

compressed control-flow graph

code fragments

shadow workload

Figure 4: Overview of the proposed bottom-up proxy gener-
ation framework.

We explore methods for optimizing these tradeoffs in
the upcoming research.

C. Bottom-Up Exploration
Currently our bottom-up exploration framework fo-

cuses on accurately capturing the memory access
pattern. The memory access pattern of an application is
composed of thousands of inter-dependent load/store
instructions. To capture the pattern properly, we need
to make sure that: (a) The instructions are executed in
the correct order, and (b) When executed, the instruc-
tions are accessing the appropriate memory address.
The bottom-up framework we are proposing strives to
enforce these properties. The framework consists of six
steps, as shown in Figure 4. The first step profiles the
instrumented binary to collect up to a certain amount
(configurable) of memory trace. The second step filters
the trace to reduce the effective number of memory
instructions and select only the instructions that are
responsible for the majority of the accesses. This step
helps minimizing cloning noise while retaining high level
of accuracy. The third step processes the memory
access trace for these top instructions and builds a
statistical control-flow graph. The fourth step performs
several transformations on the control-flow graph to
reduce the number of basic blocks. This step also infers
loop structures from the flow graph. The fifth step takes
in the simplified control-flow graph and generates a
code fragment representing that particular execution
interval. The control-flow graph helps to enforce the
instruction ordering. This step also determines the
access pattern of each individual instruction from their
execution trace (i.e., preserves the memory access
address ordering of instructions). Steps one through
five are repeated to generate additional code fragments
for each execution interval until the program terminates

or a user-specified number of instructions are executed.
Afterward, the final step merges the code fragments to
generate the shadow workload.
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