Hardware Trojans in eNVM Neuromorphic Devices

Lingxi Wu, **Rahul Sreekumar** (joint 1st author), Rasool Sharifi, Mircea Stan, Kevin Skadron, Ashish Venkat

> University of Virginia EE,CS Dept April 2023

Context

Fig. Neuromorphic Computing using eNVM memory arrays

- Emerging non-volatile memory (**eNVM**) is a memory technology that stores bits/values in the form of conductance
- eNVM-based accelerators that mimic biological neuron computations (neuromorphic) in the **analog** domain are gaining considerable traction for DNN acceleration
- But their security implications remain largely unexplored
- Designed and manufactured in a **decentralized** way
- Motivate the **supply-chain attack**: stealthy injection of hardware Trojans

Security Threat: Bad Actors in the Supply Chain

- Setting up an end-to-end IC factory is expensive and time-consuming (\$20 billion in 2020)
- IC supply chain is **distributed**
- Frequent algorithm update and tuning
- IC supply chain is susceptible to hardware Trojan insertion
 - Tainted 3rd party IP blocks or CAD tools
 - Rogue engineers insert Trojans to RTL
 - Malicious foundry tamper with the mask layout ...

Neuromorphic Chips Deployment & Use Case

Fig. Neuromorphic devices product life cycles & parties involved

Development stage:

- SW algorithm/model selection
- HW teams implement model structure (VGG, ResNet, etc.)
- Manufacturing (fab)

Post-deployment stage:

- Transfer to clients
- Individual users, cloud provider, ML service providers (ML-as-a-service e.g., BigML)
- Train the model (configure weights)
- Prediction using the model

Neuromorphic Chips Deployment & Use Case w/ Vulnerability (Threat Model)

chair

Fig. Trojan-infected neuromorphic devices product life cycles & parties involved

• Vulnerable to Trojan insertion at the design and fab stage

- Colluding malicious entities: embed + activate Trojan
- Or simply publish Trojan code

Either way, even if the synaptic weights are programmed into the device by a trusted entity, neuromorphic chips would still remain vulnerable to a Trojan placed in the supply

Vulnerabilities in the neuromorphic systems?

- Identify exploitable vulnerabilities in the eNVMbased neuromorphic devices
- **Opportunities** for the supply chain attackers

Need to understand neuromorphic architecture

Exploitable Vulnerability – Analog Current

Fig (d): one eNVM cell that holds weight in the form of conductance/resistance

Fig (a): mapping of one MLP layer to eNVM cell array \rightarrow incoming weights ($W_{0,1}, W_{1,1}, W_{2,1}$) are coded as conductance ($G_{0,1}, G_{1,1}, G_{2,1}$)

Weighted sum produces an analog current & **Strength** of the current **depends** on the **weights** → **larger weights** = higher conductance level = **larger current**

Fig. Synaptic Core and Neuron Peripheral Circuits

Exploitable Vulnerability – ADC

Integrate-and-fire ADC generate **spike train** → larger current = more spikes = transient power switching activity fluctuate

Popular design due to energy efficiency

ADCs consumes 80% power and are time-shared

Fig. Synaptic Core and Neuron Peripheral Circuits

<u>Key insight</u>: larger weights result in more intensive transient power switching activity \rightarrow **power side-channel**

Power Side-channel Model Extraction Attack

Model extraction: stealing synaptic weights

We devise an attack scheme that leaks model parameters, i.e., neural network synaptic weights from a neuromorphic system through a power side-channel Why steal the weights?

- 1. Synaptic weights are the core IP
- 2. Stealing weights is increasingly more economical
 - a. Needs a large set of **high quality** labeled data
 - b. Needs a **proprietary training** algorithm
 - c. Slow

Challenges

Synaptic arrays compute weighted sum in parallel

- Each ADC receives current produced by multiple eNVM cells
- Multiple ADCs work concurrently

Needs to attribute the power signal to a particular eNVM cell (weight)

Unknown hyper parameters:

- Number of layers
- Size of each layer

Colluding adversaries can insert a hardware Trojan in the supply chain

HW Trojan selectively suppresses the ADC

Current related to input → **input** image with malicious content can **trigger** the Trojan and **select** target row of eNVM cells to activate

Malicious entities along the supply chain has the knowledge of the model structure

Well-known NN models are documented (VGG, ResNet, etc.)

Attack Procedure & Results

Attack Procedure & Results

Attack Results

Recover more than **90%** of the weights

Attack improves with ADC resolution→ > 30% ↑ recovery for 2-bit↑ in resolution

Recovered Accuracy is comparable (~ ±2.65% Δ) even for low precision ADC's.

Trojan Stealth analysis highlights:

- Noise contribution from Trojan << overall noise floor (~150µV²/Hz)
- % Area overhead is a scalable knob. (0.28 .87% total overhead)
- False triggering of trojan << 1 in 10⁴ input sequences

Backup Slides: Trigger + Payload Design

Fig. Trojan trigger module and payload circuit

- Trigger ckt. determines payload operating condition
- Trigger (HIGH): payload active (neuron suppressed)
- Trigger (LOW): payload inactive (neuron active)

Trigger state value ⇒ unique pixel combination Custom PUN/PDN circuit preferred over standard cells due to area constraints

Backup Slides: Trace Denoising + benefits of FFT

Differential signal denoising:

- lowers noise floor
- improves detection of frequency signature

Dominant signature components: Clock routing/ DC power costs

Fig. Power Trace ${\bf A}$ and corresponding FFT spectral signature

(spike rate in trace **A > B**) Key insight: <u>Intensity/Spike</u> <u>rate</u> of neuron has direct impact on <u>amplitude</u> and <u>frequency component</u> within FFT signature

Backup Slides: Trojan Stealth Performance

Fig. Spectral comparison depicting noise contribution by embedded Trojan

Fig. Area overhead as a function of trojan bits(pixel combination) for trigger

Trojan Stealth analysis highlights:

- Noise contribution from Trojan << overall noise floor (~150µV²/Hz)
- % Area overhead is a scalable knob. (0.28 .87% total overhead)
- False triggering of trojan << 1 in 10⁴ input sequences

Backup Slides: MNCS Architecture + Attack strategy algorithm

Algorithm 1: High-level phase two attack proce-				
dure.				
<pre>input :Trojan activation images - tro jan_imgs</pre>				
Row activation images for input layer - act_imgs				
output : Recovered weights - weights				
<pre>// Weights are recovered layer-by-layer</pre>				
1 for each synaptic_core do				
	<pre>// Iteratively suppress all ADCs except one</pre>			
2	for each ADC of synaptic_core do			
3	act_trojan(trojan_imgs[synptic_core_idx][ADC_idx]);			
	// Activate synaptic core row-by-row			
4	for each rows in synaptic_core do			
5	if first synaptic_core then			
	<pre>// Row activation using images</pre>			
6	$\[act_rows(act_imgs[ADC_idx]); \]$			
7	else			
	// Row activation leveraging Trojan			
8	act_rows (<i>synaptic_core_idx</i> , <i>ADC_idx</i>);			
9	<pre>pwr_trace = get_power_trace();</pre>			
	// Multiple columns per ADC			
10	for each SL connected to ADC do			
11	$fft = \mathbf{FFT}(pwr_trace[SL_idx]);$			
12	$conductance = search_ref_lib(fft);$			
13	<pre>weight = cond_to_weight(conductance);</pre>			
14	weights.add(weight);			
15	doort troion(troign imagementic core idr][ADC idr]).			
15				

TABLE I: MNCS Architectural Parameters

TABLE II: Memristor Device Characteristics

Synaptic Core One (400 rows x 100 columns)				
Component	Power (W)	Latency (s)	Area (m ²)	
Synaptic array	6.38e - 4	7.14e - 9	8.08e - 9	
WL decoder	1.11e - 4	6.21e - 10	1.12e - 9	
SL switch matrix	5.07e - 6	5.56e - 9	2.99e - 10	
BL switch matrix	2.01e - 5	2.59e - 10	1.49e - 10	
Mux and Mux decoder	5.64e - 7	4.48e - 11	2.20e - 10	
ADC	72.51e - 6	1.3e - 9	1.62e - 9	
Others	4.62e - 6	5.29e - 10	2.75e - 10	
Synaptic Core One Neuron Peripherals				
Adder	4.10e - 6	2.60e - 10	3.44e - 10	
dff	5.07e - 6	2.50e - 10	2.86e - 10	
Subtractor	5.79e - 6	6.50e - 10	3.44e - 10	
Synaptic Core Two (100 rows x 10 columns)				
Synaptic array	9.59e - 5	7.11e - 9	2.76e - 9	
WL decoder	8.91e - 6	1.58e - 10	2.75e - 10	
SL switch matrix	5.07e - 7	1.60e - 9	4.47e - 11	
BL switch matrix	5.07e - 6	2.53e - 10	3.49e - 10	
Mux and Mux decoder	5.64e - 7	4.45e - 11	1.01e - 10	
ADC	14.27e - 6	1.3e - 9	0.23e - 9	
Others	6.61e - 7	5.29e - 10	3.48e - 11	
Synaptic Core Two Neuron Peripherals				
Adder	5.86e - 7	2.49e - 10	4.36e - 11	
dff	5.07e - 7	2.50e - 10	4.36e - 10	
Subtractor	8.27e - 7	5.70e - 10	4.36e - 11	

Device Type EpiRAM (Ag:SiGe) **# of Conductance States** 64 Nonlinearity 0.5/-0.5R_{ON} $81K\Omega$ **ON/OFF** ratio 50.2Weight increase pulse $5V/5\mu s$ Weight decrease pulse -3V/5µs 2%Cycle-to-cycle variation