
Hardware Trojans in 
eNVM Neuromorphic 

Devices

Lingxi Wu, Rahul Sreekumar (joint 1st author), Rasool Sharifi, 
Mircea Stan, Kevin Skadron, Ashish Venkat

University of Virginia
EE,CS Dept
April 2023



Context

● Emerging non-volatile memory (eNVM) is a memory technology that 
stores bits/values in the form of conductance 

● eNVM-based accelerators that mimic biological neuron computations 
(neuromorphic) in the analog domain are gaining considerable traction 
for DNN acceleration

● But their security implications remain largely unexplored
● Designed and manufactured in a decentralized way
● Motivate the supply-chain attack: stealthy injection of hardware 
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Fig. Neuromorphic 
Computing using eNVM 

memory arrays



Security Threat: Bad Actors in the Supply Chain
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Fig. Major milestones and deliverables of the IC design and manufacturing process

● Setting up an end-to-end IC factory is expensive and time-consuming ($20 billion in 2020) 
● IC supply chain is distributed
● Frequent algorithm update and tuning 
● IC supply chain is susceptible to hardware Trojan insertion

○ Tainted 3rd party IP blocks or CAD tools
○ Rogue engineers insert Trojans to RTL 
○ Malicious foundry tamper with the mask layout …



Neuromorphic Chips Deployment & Use Case 

Development stage:
● SW algorithm/model selection
● HW teams implement model structure 

(VGG, ResNet, etc.)
● Manufacturing (fab)

Post-deployment stage:
● Transfer to clients
● Individual users, cloud provider, ML 

service providers (ML-as-a-service e.g., 
BigML)

● Train the model (configure weights)
● Prediction using the model

Fig. Neuromorphic devices product life 
cycles & parties involved



Neuromorphic Chips Deployment & Use Case w/ Vulnerability 
(Threat Model)

● Vulnerable to Trojan insertion at 
the design and fab stage

● Colluding malicious entities: 
embed + activate Trojan

● Or simply publish Trojan code

Fig. Trojan-infected neuromorphic 
devices product life cycles & parties 
involved

Either way, even if the synaptic weights are 
programmed into the device by a trusted entity, 
neuromorphic chips would still remain 
vulnerable to a Trojan placed in the supply 
chain



Vulnerabilities in the neuromorphic systems?

● Identify exploitable vulnerabilities in the eNVM-

based neuromorphic devices

● Opportunities for the supply chain attackers 

Need to understand neuromorphic architecture



Exploitable Vulnerability – Analog Current 
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Fig. Synaptic Core and Neuron Peripheral Circuits

Fig (d): one eNVM cell that holds 
weight in the form of 
conductance/resistance

Fig (a): mapping of one MLP layer 
to eNVM cell array → incoming 
weights (W0,1, W1,1, W2,1) are coded 
as conductance (G0,1, G1,1, G2,1)

Weighted sum produces an 
analog current & Strength of the 
current depends on the weights 
→ larger weights = higher 
conductance level = larger 
current 



Exploitable Vulnerability – ADC 
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Fig. Synaptic Core and Neuron Peripheral Circuits

Fig. Integrate-and-fire Neuron ADC Circuit

Integrate-and-fire ADC generate 
spike train → larger current = more 
spikes = transient power switching 
activity fluctuate 
Popular design due to energy 
efficiency
ADCs consumes 80% power and are 
time-shared

Key insight: larger weights result in more intensive 
transient power switching activity → power side-channel



Power Side-channel Model Extraction Attack  

Model extraction: stealing synaptic 
weights

We devise an attack scheme that leaks
model parameters, i.e., neural network 
synaptic weights from a neuromorphic 
system through a power side-channel

Why steal the weights?

1. Synaptic weights are the core IP
2. Stealing weights is increasingly more 

economical
a. Needs a large set of high quality labeled 

data
b. Needs a proprietary training algorithm
c. Slow 
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Challenges

Synaptic arrays compute weighted sum in parallel

● Each ADC receives current produced by 
multiple eNVM cells

● Multiple ADCs work concurrently

Needs to attribute the power signal to a particular 
eNVM cell (weight)

Unknown hyper parameters:

● Number of layers
● Size of each layer

Colluding adversaries can insert a hardware 
Trojan in the supply chain

HW Trojan selectively suppresses the ADC

Current related to input → input image with 
malicious content can trigger the Trojan and 
select target row of eNVM cells to activate

Malicious entities along the supply chain has 
the knowledge of the model structure

Well-known NN models are documented 
(VGG, ResNet, etc.)



Attack Procedure & Results 
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Trojan Embedding Phase: 
● Malicious party embeds Trojan
● Distribute Trojan code (trigger)

Offline Characterization:
● Build a reference FFT trace lib
● One weight → one trace 

Program Activation 
Code: 
● Assigning unique 

activation code for 
each trojan



Attack Procedure & Results 
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Online Weight Stealing:
● Trigger Trojan
● Collect power trace
● Signal analysis (FFT)
● Deduce weights by searching FFT 

pattern against a library

Trojan Activation Phase:
● Malicious party triggers Trojan
● Create a power-side channel

Key insight: Different spiking 
outputs→ unique FFT 
signature



Attack Results 
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Recover more than 90% of the weights

Attack improves with ADC resolution→
> 30% ↑ recovery for 2-bit↑ in resolution

Recovered Accuracy is comparable        
(~ ±2.65% Δ) even for low precision ADC’s. 

Trojan Stealth analysis highlights: 

● Noise contribution from Trojan << overall noise floor 
(~150µV2/Hz)

● % Area overhead is a scalable knob. (o.28 - .87% total 
overhead)

● False triggering of trojan << 1 in 104 input sequences



Q&A



Backup Slides: Trigger + Payload Design
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Fig. Transient behavior of Trojan Fig. Trojan trigger module and payload circuit

Trigger ckt. determines payload operating 
condition
Trigger (HIGH): payload active (neuron suppressed)

Trigger (LOW): payload inactive (neuron active)

Trigger state value ⇒ unique pixel combination
Custom PUN/PDN circuit preferred over 
standard cells due to area constraints

Key insight: # of input pixel combination for 
unique Trigger code correlates to probability of 
false triggering



Backup Slides: Trace Denoising + benefits of FFT 
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Fig. Power Trace A and corresponding FFT spectral signature

Fig. Power Trace 
Denoising 

Differential signal denoising:
● lowers noise floor
● improves detection of frequency 

signature
Dominant signature components: Clock 

routing/ DC power costs

(spike rate in trace  A > B) Key insight: Intensity/Spike 
rate of neuron has direct impact on amplitude and 
frequency component within FFT signature 

Fig. Power Trace B and corresponding FFT spectral signature



Backup Slides: Trojan Stealth Performance 

17

Fig. Area overhead as a function of trojan bits(pixel 
combination) for trigger

Fig. Spectral comparison depicting noise 
contribution by embedded Trojan

Trojan Stealth analysis highlights: 

● Noise contribution from Trojan << overall noise floor 
(~150µV2/Hz)

● % Area overhead is a scalable knob. (o.28 - .87% total 
overhead)

● False triggering of trojan << 1 in 104 input sequences

Fig. Pleak as a function of trojan bits 



Backup Slides: MNCS Architecture + Attack strategy algorithm
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