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Abstract 

 It is essential to understand both the static and 

dynamic aspects of existing software for performance 

analysis. Software reverse engineering reestablishes the 

structure and behavior of software and helps with that 

understanding. Researchers in reverse engineering, 

however, have focused on identifying components and on 

static relationships.  Efforts on performance engineering 

are being made to represent software behavior and 

simulate it. However, no one has tried to extract a 

simulated model from existing software automatically. 

We introduce SAAT, a tool developed at our research 

center. SAAT analyzes the dynamic aspects of software 

and creates a simulated model for performance analysis. 

We explain how the model can be generated, using a case 

study of UPnP middleware. This paper contributes to the 

bridge between performance analysis and reverse 

engineering 

1. Introduction 

Performance analysis is a process that analyzes 

dynamic execution flow, estimates the time and resources 

consumed, discovers potential bottleneck points, and 

predicts the performance in a real environment.  In order 

to analyze software performance, information for such 

analysis should be provided by software architecture 

models and design specifications.  This information is 

required to help understanding and predict time-

dependent behaviors during performance analysis by 

dividing software into modules and by displaying time, 

intercommunication, data access frequencies, data 

transfer capacity of communication channels and other 

data. 

 If the existing software’s design specifications are 

incomplete or incompatible with the current software 

version, the design specifications may not be used in the 

performance analysis.  Additionally, development team 

members are sometimes too busy to participate in 

performance improvement work.  In that scenario, a 

reverse engineering methodology will analyze the 

performance of the software.  However, past studies in 

reverse engineering have concentrated on static aspects, 

which extract relationships among components through 

source code analysis.  To date, fields of performance 

analysis and reverse engineering have not been directly 

related.  

In this paper, we introduce the SAAT tool that will 

analyze and represent the dynamic structures of software 

visually for performance analysis. In Section 2, we 

introduce previous studies for software performance 

analysis and dynamic reverse engineering.  In Section 3, 

we explain the basic concepts of SAAT.  In Section 4, we 

explain the technological considerations to implement and 

the architecture of SAAT.  In Section 5, we present a 

sample case of UPnP middleware. In Section 6, we 

discuss our results up to this point and any remaining 

problems and recommend tasks for future study.  

2. Previous Studies 

Researchers in performance engineering are studying 

how to integrate software architecture with performance 

information.  In the realm of reverse engineering, 

dynamic reverse engineering to extract software 

execution models from existing systems is also being 

tried.  In this section, we discuss the progress of research 

in these two areas, sharing the common factor of software 

modeling.  We will survey research related to the 

software performance model (2.1) and we will cover the 

reverse engineering research status for existing system 

analysis (2.2). 

2.1. Software Performance Model 

The software performance model enables one to 

measure the detailed performance of software.  In 

addition, the performance model allows quick and 

convenient structural investigation when problems are 

found.  To allow this solution, the performance model 

shall precisely describe the system to be improved. 

Related researches including the following: 

Smith [3,4] pointed out that there is no software 

architecture specification documented enough for  

performance analysis in general, and proposed the PASA 

(Performance Assessment of Software Architecture) 



methodology, which extracts architecture information 

from developer interviews and work products.  PASA has  

10 stages.  In Stages 1 to 6, performance analysts examine 

software architecture and review the important use cases 

and scenarios with the development team. In Stages 7 to 

10, the performance analysts construct and analyze the 

performance model, and announce the result.  The PASA 

method requires dedicated cooperation from developers 

because the accuracy of the performance model depends 

on information provided by the developers.  

Woodside [5,6] assumed that the contents that were 

not dealt with in software architecture documents, were 

omitted either because everyone understood the contents 

or they were something that didn’t need to be described.  

He then presented the PASD (Performance Aware 

Software Development) methodology that produces and 

analyzes performance models from the design documents.  

The PASD has 7 stages.  In Stages 1 to 3, performance-

related information is added to the function-oriented 

specifications to make the specifications more complete.  

In Stages 4 to 5, the scenario model in the complete 

specification is transformed into a performance model.  In 

Stages 6 to 7, performance is evaluated, and feedback is 

provided.  In the PASD method, the performance model 

is created according to the specification’s scenario model, 

and the accuracy of the specification affects the 

performance analysis.  

Pooley [7] asserted that integration of performance 

factors with design methods shall precede the 

performance analysis framework and made efforts to 

integrate performance factors with UML notations.  He 

also proposed simulation methods of the designmodels 

described in UML and performance analysis methods.  

The method presented by Pooley analyzes performance 

by producing simulation models with sequence diagrams, 

etc., used in dynamic modeling of UML or by changing 

using Petri-net models. Additionally, in Pooley’s method, 

the accuracy of information given affects the performance 

analysis results of the model.  

Similarly, researchers have made efforts to integrate 

the software performance model with software 

development methodologies and design models.  If such 

efforts are connected with dynamic reverse engineering; 

more substantial effects can be achieved.  First, it is 

possible to automate the creation of a performance model 

based on existing software.  Accordingly, analysts might 

reduce time working with development team.  In addition, 

the performance model does not need to rely on an 

incomplete design specification. 

2.2. Software Reverse Engineering 

 In order to understand software, reverse engineering 

is used to identify software components and their 

interdependence and produces software design-level 

abstractions [8].  Software reverse engineering is being 

researched for various purposes, such as how to add new 

functions to existing software, maintain and improve 

system efficiency, and recycle modules in new systems. 

Recently, so-called dynamic reverse engineering has been 

started in an effort to discover software component 

interaction using software traces and records. The 

following discusses research related to the dynamic 

reverse engineering. 

Systa[9,10] proposed the Shimba tool that 

automatically produces sequence diagrams of Java 

programs.  With the Shimba tool, trace information is 

acquired while such programs are executed, and the 

information is then used to create a state diagram and a 

scenario diagram. Systa’s papers give a lesson that 

dynamic aspects of software can be generated from 

monitoring software execution, but it does not propose to 

link the information to a performance model.  Also, 

considering the fact that not many existing systems are 

constructed in Java, additional research is required for 

other languages.  

Walker and Murphy [11,12] proposed an abstraction 

method, recognizing the fact that event trace information 

at the functional level presents  a wide gap from the 

subsystem level of developers’ interests. This method 

uses a visualization tool and a path query tool.  The 

visualization tool shows a series of drawings according to 

system execution.  The path query tool supports the 

analyze event flow information, using normal expressions 

that map the source codes to components of the 

developer’s choice.  The method presents the basic 

techniques in abstracting event trace information.  

However, the method seems to require some more time 

for field use, considering that it is limited to object-

oriented languages, and no real application case has yet 

been presented.  

 Bengtsson and Bosch [13] pointed out that there was 

no research on architectural reengineering methodology, 

and if any, quality attributes were not considered.  They 

defined a reengineering methodology based on scenarios.  

In this methodology, explicit and objective evaluation 

methods, such as simulations, mathematical model rings, 

etc., are adopted.  

These efforts to produce architecture-level execution 

models from software execution flow have indeed begun 

[8,9,10,11,12,13].  The researches have presented many 

fundamental and useful results, but further efforts are 

required to make them practical such as expanding to the 

languages mainly used in real development. Also, there is 

still no attempt to connect the result to a simulation. 

3. Concept of SAAT 

The Software Architecture Analysis Tool was 

developed for performance analysis at the Software 



Center, Samsung Electronics Co., Ltd. Since most of 

software programs are implemented in C language in 

Samsung electronics Co, Ltd., SAAT targets software 

constructed in C language. Our purpose was to overcome 

delays that accompanied performance analysis. Our 

activities of performance analysis are as follows:  When a 

performance analyst is requested to analyze software 

performance, the analyst first has to understand the 

software’s structure and its dynamic behaviors. Then, the 

analyst finds the component that unnecessarily consumes 

much time and resources. Finally, the analyst identifies 

improvement issues and solutions using a simulation tool. 

We hoped to shorten the time of the performance analysis 

in order to make the analyst’s work more efficient.  We 

tried to automate the analysis process. 

The process of analyzing the software performance of 

the existing system at Samsung Electronics Co., Ltd., can 

be automated as shown in Figure 1. First, the information 

of how software modules interact should be recorded 

(Software Trace Data). Second, the interaction should be 

represented as nodes and edges in drawing a diagram 

(Behavior Model). If one would like to understand the 

dynamic structure of the software, a composite diagram 

explaining several interactions should be drawn 

(Execution Model). Last, the composite diagram should 

be converted for modeling in a simulation tool 

(Simulation Model). In the following subsections, we 

review the concepts of each model in Figure 1 in more 

detail.  
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Behavior
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Trace Data

Simulation 
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Behavior
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Figure 1: Automating process for performance analysis 

3.1. Software Trace Data 

Software Trace Data is a record of the interaction 

between the software modules. Because our target 

software is written in a procedural language, a software 

module is a function. Interaction involves not only call-

relationships among several functions, but also 

information about the order of those functions. Hence, 

Software Trace Data includes function names, the calling 

relationship and execution order. Also, we add the 

function’s running time into the data for performance 

analysis. 

Software Trace Data is recorded as shown in Figure 2. 

The record consists of function name, time stamp, and 

flags according to the execution order. A line informing a 

function’s start has information about function name, start 

time, and start flag. A line informing a function’s end has 

information about function name, finish time, and finish 

flag. Also, lines of called functions are nested between 

the starting line and the finishing line of a calling function. 

As a result, both call-relationship and execution order can 

be represented in the Software Trace Data.  

Function Main()

{

call A();

call B();

call C();

}

Function A(parameter order)

{

if (order == first_sequence)

{

call a();

call b();

}

else

{

call c();

}

}

Function B()

{}

Function C()

{}

A node  Time      Start/Finish

Main    start  time of Main  start  flag

A     start  time of A     start  flag

a   start  time of a     start  flag

a   finish time of a     finish flag

b   start  time of b     start  flag

b   finish time of b     finish flag

A     finish time of A     finish flag

B     start  time of B     start  flag

B     finish time of B     finish flag

C     start  time of C     start  flag

C     finish time of C     finish flag

Main    finish time of Main  finish flag

Figure 2: A concept of Software Trace Data 

Software Trace Data is recorded while running the 

software. The easiest method for tracing software is to 

insert probing functions into functions of the target 

software. These probing functions write events of 

functions into a file when the functions start and finish. 

After compiling the software instrumented with probing 

functions, we can create a Software Trace Data file by 

running the software. 

3.2. Behavior Model 

The Behavior Model is a diagram representing 

Software Trace Data as nodes and edges. A node stands 

for a software module, namely, a function. Edges have 

two kinds of meaning. An edge directing below means 

the execution order between two connected functions. An 

edge directing to the right signifies a call-relationship 

between two linked functions. The Behavior Model is 

similar to a sequence diagram of UML, a design language 

for object-oriented programming.  Thus, the Behavior 

Model represents one instance of the software executions. 

Figure 3 shows an abstract presentation of the 

Behavior Model. Software modules are arranged 

according to their execution order and call relationship. In 

case “Main( )” calls “A( ),” The Behavior model places 

“Main( )” left, “A( )” right, and shows an arrow starting 

from “Main( )” and arriving at “A( ).” However, in 

another case, “Main( )” calls the second function, “B( ),” 

Behavior model applies another rule: The second called 

function is connected to the first called function. Hence, 

the Behavior Model places “B( )” below “A( )” and 

shows an arrow starting from “A( )” to “B( ).” The latter 



arrow stands for the execution order between “A( )” and 

“B( ).” 

Main() A() a()

B()

C()

Main() A() c()

B()

C()

b()

First Sequence Second Sequence

Figure 3: A concept of the Behavior Model 

Rules of creating the Behavior Model from the 

Software Trace Data are related to start and finish flags. If 

a line has a start flag and the previous line also has a start 

flag, the node for the former is placed left of the node for 

the latter. Meanwhile, if a line has a start flag and the 

previous line has a finish flag, the node for the former is 

placed below the node for the latter. Additionally, if a line 

has a finish flag, there is no action for arrangement. The 

activity of arrangement occurs when reading a line 

including a start flag. 

3.3. Execution Model 

The Execution Model is a composite of several 

Behavior Models to represent the dynamic structure of the 

software. Even if each Behavior Model calls for the same 

function, the function may have different flows, based on 

control conditions and values of the variables. The 

Behavior Model can be combined by considering the 

control conditions, such as the branch or loop. To 

represent these control conditions, the Execution Model 

has several shapes of nodes. For example, the branch 

condition is represented as a rhomboid and the loop 

condition as a circle. We borrowed the concept of the 

Execution Model from the Execution Model of PASA[3].  

The Execution Model can be extracted as shown in 

Figure 4 from the Behavior Models shown in Figure 3. A 

calling module nests called sub-modules. If a module has 

several different flows, the module possesses nodes 

showing the control conditions. For example, “A( )” has 

two different execution flows in Figure 3. Thus, “A( )” in 

Figure 4 has a branch node below the “Begin” node. 

After that, two different flows diverge from the branch 

node and converge to the “End” node in A( ). 

The internal structure of functions may be extracted 

from former static reverse engineering tools. However, 

we have discovered that we can construct the Execution 

Model using only the information from the Behavior 

Models. While each Behavior Model is scanned, a branch 

node is inserted in case the Behavior Model has different 

part from the previous. When a function includes a 

repeated series of nodes, a loop node is added. Multiple 

Behavior Models are integrated to a single Execution 

Model in this way. 

Main()

A()

End

Begin

a() c()

b()

B()

C()

Begin

End

Figure 4: A concept of the Execution Model 

3.4. Simulation Model 

The Simulation Model is a model running in a 

simulation environment to demonstrate architectural 

issues of the present system.  The Simulation Model is 

identical with the Execution Model in containing the 

information of software structure and performance 

information. Yet, we can modify, animate and simulate 

models in the simulation environment, so that we can 

predict a result of software implementation.   

    We can create the Simulation Model mapped from the 

Execution Model in figure 4 as follows. We delineate a 

model for “main ( )” in one module in our simulation tool. 

Next, we draw a model for “A( )” in a sub-model of the 

module separately. Finally, we create a transaction to 

trace models and insert a condition into the branch node 

in “A( )”. After that, we can simulate the models. 

We can create the Simulation Model automatically by 

mapping each element of the Execution Model to each 

element of the Simulation Model. The Execution Model 

is composed of graphs, sub-graphs, nodes, and edges. The 

Simulation Model is composed of modules, sub-models, 

nodes, and arcs.  Therefore, graphs are mapped to 

modules; sub-graphs are mapped to sub-models; nodes 

are mapped to nodes; and edges are mapped to arcs.  The 

arrow in the Execution Model is mapped to a transaction 

of the Simulation Model. 

4. Implementation of SAAT 

In this section, we present the Software Architecture 

Analysis Tool (SAAT) – a tool to generate a dynamic 

model for the performance analysis of software. We 

developed the prototype of SAAT to examine the 

feasibility of SAAT projects.  



The architecture of SAAT may be drawn as the Figure 

5. SAAT is related to existing commercial tools. TAU 

provides trace data extracted from software execution 

[14], while aiSee is a tool showing a model in GDL [15].  

aiSee allows users to see the Behavior Model and 

Execution Model. Finally Workbench conducts 

Simulation Modeling [16].  SAAT is also composed of 

three parts: One that extracts the Behavior Model from 

trace data (BM); one that integrates several behavior 

models into an execution model (EM); and one that 

changes the Execution Model to the Simulation Model 

(SM).  

Simulation

Models

Execution

Models

Behavior

Models

Commercial 

Tool

Input:

TAU

Output:

aiSee

Output:

Workbench

BM

EM

SM

Trace

Data

SAAT Program

Tree

Reader Writer

Handler

Graph List

Reader Writer

Handler

Graph List

Handler Mapper

U
s
e
r
 
I
n
t
e
r
f
a
c
e

Figure 5: Structure of SAAT 

4.1. Commercial Tools 

4.1.1. TAU. The trace tool had to capture the system’s 

response behavior to a user’s request at regular intervals. 

Besides this basic role, we additionally had to consider 

multi-processors and multi-threads because current 

software consists of them.  Fortunately, we found a 

reliable trace tool called TAU [14] for generating 

Software Trace Data. TAU supports multi-processors and 

multi-threads and generates data similar to the Software 

Trace Data in Figure 2. 

4.1.2. aiSee. When we describe the Behavior Model and 

the Execution Model, we needed to determine a 

description tool. With respect to a description tool, we 

need a tool to present nodes and edges. Instead of 

implementing the tool, we searched for a convenient tool 

to present nodes and edges easily.  We found that aiSee 

can present a diagram described in Graph Description 

Language (GDL).  This language is a simple language to 

express graphs and has keywords like node, edge, graph, 

etc. [15]. 

4.1.3 Workbench.  Since we use Workbench [16] as a 

simulation environment, we should convert the Execution 

Model to a model running in the Workbench. In the 

Workbench, one model is composed of nodes, arcs, and 

transactions. One model also could have several sub-

models.  By transforming the Execution Model into the 

simulation tool, we can obtain modeling data for 

simulating and analyzing our system’s performance and 

verify its functionality. 

4.2. SAAT Program 

4.2.1 BM. When creating the Behavior Model, we should 

consider the abstraction level of the models so that users 

understand and manage the models easily.  For that, the 

function lists should be categorized into modules to the 

level of the user’s requirements. Also, low-level functions 

that users do not want to see should be eliminated or 

hidden to maintain the simplicity of the models. Thus, we 

endow a node possessing sub-nodes with a folding option 

to solve this issue. In spite of the importance of 

abstraction, the implementation was simple because aiSee 

supports the option with one token. 

The drawing mechanism, used for the Behavior Model, 

is a binary tree. Each node in a binary tree has a left child 

and a right child. In the concept of Behavior Model, a left 

child becomes the first child, and a right childe turns to a 

sibling. The first child is the first called sub-function on 

the base of a function. A sibling implies the next executed 

function from a function. In reading, Reader saves 

information on the line to a node and pushes the node into 

a stack in temporary. When Reader reads a finish line 

related to the node in the stack, it pops the node and the 

previous node from the stack and links both   to each 

other to make a tree. Then, Writer writes files by visiting 

from the root to leaf nodes in the tree. 

4.2.2 EM. In creating the Execution Model, the internal 

structure of a function is needed because the Execution 

Model has a structure to fulfill the flows of several 

Behavior Models. For that purpose, if a function is called 

more than once and sub-operations of the function are 

different, loops and branches in the internal structure of 

the function need to be recognized.  We replaced this 

structure of the function with the composition of the 

Behavior Models, as we wanted to get rid of cumbersome 

tasks like source analysis. 

The structuring mechanism, used for the Execution 

Model, is a hash table that manages graphs that are 

organized in adjacency linked list. The hash key is a 

graph name.  Once Reader reads tree information, Graph 

List recognizes nodes having a sub-tree, converts them to 

graphs, and saves the graphs in the hash table. After that 

process, Graph List scans the hash table. When Graph 

List finds the same name of a graph in the lists of graphs, 



it combines the two graphs into one. Finally, Writer 

creates a file of the Execution Model by scanning the 

hash table. These tasks occur several times if there are 

more Behavior Models. 

4.2.3 SM. When creating the Simulation Model in 

Workbench from the Execution Model in GDL, we 

should deliberate on the conversion from one language to 

another.  One parser may be required if we intend to 

convert GDL to Simulation language in Workbench.  For 

that task, we can use Lex and Yacc for analyzing GDL 

and converting the language to Workbench graph codes.  

However, we omitted the subpart because we used a 

hidden file to have the concise information of the graphs 

instead of using the GDL file directly.  Mapper reads 

information on the graphs in a hidden file of the 

Execution Model and maps the information to the 

Simulation Model.  Writer outputs the files to run in a 

simulation environment.  

5. Case Study 

We applied SAAT to Universal Plug and Play (UPnP) 

[17], developed by Samsung Electronics Co., Ltd.  UPnP 

is a home network middleware that supports distributed 

and open networks that are used to control devices and 

transmit data among devices. UPnP consists of two 

components: Controlled Device (CD) and Control Point 

(CP). CD provides services, while CP detects and 

controls the services. The middleware is implemented in 

C language.  

Our concern was the feasibility of SAAT. We 

wondered whether the tool could be applied to ongoing 

development projects and products and how effective the 

result of creating a simulation model would be. For that, 

we captured the Trace Data of UPnP, using the TAU tool 

(5.1) and generated Behavior Models (5.2), Execution 

Model (5.3) and Simulation Model (5.4) in order. 

5.1. Trace Data of UPnP 

We captured the Software Trace Data of UPnP as 

Figure 6. We used TAU in order to instrument source 

files of UPnP with probing functions. The result files 

were five files containing the information of each thread 

because UPnP runs in five threads and TAU generates 

trace files according to each thread. However, we just 

show one trace file here as an example. 

The case in Figure 6 is an instance of a concept in 

Figure 2, Section 3.1. TAU logs the execution time as 16 

digits. With regards to flags, 1 means a start flag and -1 

signifies a finish flag. This Software Trace Data has the 

information on the execution flow of UPnP. We can 

know which executions occurred in what order by 

looking at the list of functions by time. However, for a 

more intuitive understanding, such execution flow must 

be graphically represented. 

[root@duri93 device]# cat events.0.edf 
#  creation program: tau_convert -dump 
#  creation date: jul-08-2003 
#  number records: 40 
#  number processors: 0 
#  max processor num: 0 
#  first timestamp: 1057631241510426 
#  last timestamp: 1057631247598443 

#=NO= =====EVENT== ==TIME [us]= =NODE= =THRD= ==PARAMETER= 
    1                         (null)                    1057631241510426      0      0 
    2                         (null)                    1057631241510447      0      0 
    3           "int main(void) C  "            1057631241510456      0      0            1 
    4 "void TvDeviceStateTableInit(v   1057631241510563      0      0            1 
    5 "void TvDeviceStateTableInit(v   1057631241510590      0      0           -1 
    6 "int UPnP_CD_Start(int, FunPtr  1057631241510696      0      0            1 
    7          "int upnpStart() C  "            1057631241510732      0      0            1 

                         ………… 
   29 "void UPnP_CD_SetRenewTime1057631242718027      0      0          -1 
   30 "int UPnP_CD_Finish(void) C  " 1057631244597264      0      0            1 
   31      "void Stop_Threads() C  "      1057631244597326      0      0            1 
   32 "int PrintString(char *, ...)            1057631244597332      0      0            1 
   33 "int PrintString(char *, ...)            1057631244597366      0      0           -1 
   34 "int PrintString(char *, ...)            1057631247598364      0      0            1 
   35 "int PrintString(char *, ...)            1057631247598410      0      0           -1 
   36      "void Stop_Threads() C  "      1057631247598418      0      0           -1 
   37 "int UPnP_CD_Finish(void) C  "  1057631247598423      0      0           -1 
   38           "int main(void) C  "            1057631247598428      0      0           -1 
   39                         (null)                    1057631247598440      0      0 
   40                         (null)                    1057631247598443      0      0 

Figure 6: Tautrace.0.0.0.trc (Main flow of UPnP CD) 

5.2. Behavior Model of UPnP 

The Behavior Model connected to the Trace Data in 

Figure 6 is shown in Figure 7. This Behavior Model 

shows the execution order from the Trace Data of TAU. 

We can easily know that UPnP CD starts, sets cache 

control, sets CD’s timeout, sets renew time, and finishes 

by reviewing the diagram in Figure 7. Each node can be 

folded or unfolded to hide or show a sub-tree of each 

node. Therefore, users can browse the Behavior Model at 

the level they want to know. 

Behavior Models differ by the user services requested. 

Figure 8 shows another Behavior Model of UPnP. The 

cases in Figures 7 and 8 are those of the Behavior Model 

explained in Section 3.2. In addition to the concept of 

Section 3.2, information on the time consumed at each 

node is displayed beside the node name. Thus we can 

know the candidates for any bottleneck as well as the 

execution order and call-relationship. 

Figure 7: Behavior Model 1 (Main flow of UPnP CD) 



Figure 8: Behavior Model 2 (Main flow of UPnP CD) 

5.3. Execution Model of UPnP 

The Execution Model combines different Behavior 

Models. Figure 9 shows an Execution Model produced 

from the combination of Behavior Models of Figures 7 

and 8 in Section 5.2. In Figure 9 below, the internal 

structure of “Stop_Threads( )” represents the Execution 

Model well. The “Stop_Threads ( )” presents a branch to 

two different internal flows and a loop showing repetition 

of the sub-flows.  

Figure 9: Execution Model (Main flow of UPnP CD) 

5.4. Simulation Model of UPnP 

The Execution Model in Figure 9 is changed to the 

Simulation Model in Figure 10. The upper diagram in 

Figure 10 shows a Workbench model for the main func-

tion while the lower diagram shows a model for Stop_ 

Threads( ). The distinctive aspect in the Simulation 

Model is the transactions, which move dynamically as 

time goes. Therefore, we can modify and simulate a 

model to predict the performance of the system to be 

implemented and search for a better solution based on the 

simulation results.  

Main

Stop_Threads

Figure 10: Simulation Model (Main flow of UPnP CD) 

At this time, we confirm that the modeling data could 

be generated from monitoring software execution. 

However, the result of applying SAAT to the UPnP 

product is incomplete when comparing the result with that 

of a manual result for several reasons. First, SAAT pours 

all information into the Simulation Model, while 

performance analysts do not care for detailed layers. 

Second, the SAAT starts at the thread level while 

performance analysts start to model at the critical 

modules. Finally, SAAT does not distinguish concrete 

conditions, although some conditions could be important 

in modeling. We should develop SAAT to customize the 

Simulation Model according to user intention. 

6. Conclusions 

We have explained how we created the Execution 

Model from the execution trace data of the software 

system and how we constructed the Simulation Model 

from the Execution Model for performance analysis. 

Through SAAT prototyping, we showed that a simulation 

model could be automatically generated from the 

execution trace data of software. This case study shows 

the possibility of saving the time usually consumed in 

making a simulation model for performance analysis of 

software. 

We propose the following additional research. First, 

we should find how to group functions that belong to the 

corresponding component. In this case, we may use the 



Dali Workbench tool made by Kazman [18, 19]. However, 

we did not yet implement this method in SAAT. For this 

purpose, user intervention parts or important component-

declaring parts must be added. In addition, we should 

complement SAAT by finding additional rules for 

converting from the Behavior Model to the Execution 

Model and by adding options to modify the Simulation 

model for user tastes.  In the long term, we want to adapt 

this tool to several modeling environments. 
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