
SAAT: Reverse Engineering for Performance Analysis

Seon-Ah Lee, Seung-Mo Cho, Sung-Kwan Heo

Software Center, Corporate Technology Operations, Samsung Electronics Co. Ltd.

599-4, Shinsa-dong, Kangnam-gu,Seoul, Korea, 135-120

{salee, seungm.cho, sk.heo}@samsung.com

Abstract

 It is essential to understand both the static and

dynamic aspects of existing software for performance

analysis. Software reverse engineering reestablishes the

structure and behavior of software and helps with that

understanding. Researchers in reverse engineering,

however, have focused on identifying components and on

static relationships. Efforts on performance engineering

are being made to represent software behavior and

simulate it. However, no one has tried to extract a

simulated model from existing software automatically.

We introduce SAAT, a tool developed at our research

center. SAAT analyzes the dynamic aspects of software

and creates a simulated model for performance analysis.

We explain how the model can be generated, using a case

study of UPnP middleware. This paper contributes to the

bridge between performance analysis and reverse

engineering

1. Introduction

Performance analysis is a process that analyzes

dynamic execution flow, estimates the time and resources

consumed, discovers potential bottleneck points, and

predicts the performance in a real environment. In order

to analyze software performance, information for such

analysis should be provided by software architecture

models and design specifications. This information is

required to help understanding and predict time-

dependent behaviors during performance analysis by

dividing software into modules and by displaying time,

intercommunication, data access frequencies, data

transfer capacity of communication channels and other

data.

 If the existing software’s design specifications are

incomplete or incompatible with the current software

version, the design specifications may not be used in the

performance analysis. Additionally, development team

members are sometimes too busy to participate in

performance improvement work. In that scenario, a

reverse engineering methodology will analyze the

performance of the software. However, past studies in

reverse engineering have concentrated on static aspects,

which extract relationships among components through

source code analysis. To date, fields of performance

analysis and reverse engineering have not been directly

related.

In this paper, we introduce the SAAT tool that will

analyze and represent the dynamic structures of software

visually for performance analysis. In Section 2, we

introduce previous studies for software performance

analysis and dynamic reverse engineering. In Section 3,

we explain the basic concepts of SAAT. In Section 4, we

explain the technological considerations to implement and

the architecture of SAAT. In Section 5, we present a

sample case of UPnP middleware. In Section 6, we

discuss our results up to this point and any remaining

problems and recommend tasks for future study.

2. Previous Studies

Researchers in performance engineering are studying

how to integrate software architecture with performance

information. In the realm of reverse engineering,

dynamic reverse engineering to extract software

execution models from existing systems is also being

tried. In this section, we discuss the progress of research

in these two areas, sharing the common factor of software

modeling. We will survey research related to the

software performance model (2.1) and we will cover the

reverse engineering research status for existing system

analysis (2.2).

2.1. Software Performance Model

The software performance model enables one to

measure the detailed performance of software. In

addition, the performance model allows quick and

convenient structural investigation when problems are

found. To allow this solution, the performance model

shall precisely describe the system to be improved.

Related researches including the following:

Smith [3,4] pointed out that there is no software

architecture specification documented enough for

performance analysis in general, and proposed the PASA

(Performance Assessment of Software Architecture)

methodology, which extracts architecture information

from developer interviews and work products. PASA has

10 stages. In Stages 1 to 6, performance analysts examine

software architecture and review the important use cases

and scenarios with the development team. In Stages 7 to

10, the performance analysts construct and analyze the

performance model, and announce the result. The PASA

method requires dedicated cooperation from developers

because the accuracy of the performance model depends

on information provided by the developers.

Woodside [5,6] assumed that the contents that were

not dealt with in software architecture documents, were

omitted either because everyone understood the contents

or they were something that didn’t need to be described.

He then presented the PASD (Performance Aware

Software Development) methodology that produces and

analyzes performance models from the design documents.

The PASD has 7 stages. In Stages 1 to 3, performance-

related information is added to the function-oriented

specifications to make the specifications more complete.

In Stages 4 to 5, the scenario model in the complete

specification is transformed into a performance model. In

Stages 6 to 7, performance is evaluated, and feedback is

provided. In the PASD method, the performance model

is created according to the specification’s scenario model,

and the accuracy of the specification affects the

performance analysis.

Pooley [7] asserted that integration of performance

factors with design methods shall precede the

performance analysis framework and made efforts to

integrate performance factors with UML notations. He

also proposed simulation methods of the designmodels

described in UML and performance analysis methods.

The method presented by Pooley analyzes performance

by producing simulation models with sequence diagrams,

etc., used in dynamic modeling of UML or by changing

using Petri-net models. Additionally, in Pooley’s method,

the accuracy of information given affects the performance

analysis results of the model.

Similarly, researchers have made efforts to integrate

the software performance model with software

development methodologies and design models. If such

efforts are connected with dynamic reverse engineering;

more substantial effects can be achieved. First, it is

possible to automate the creation of a performance model

based on existing software. Accordingly, analysts might

reduce time working with development team. In addition,

the performance model does not need to rely on an

incomplete design specification.

2.2. Software Reverse Engineering

 In order to understand software, reverse engineering

is used to identify software components and their

interdependence and produces software design-level

abstractions [8]. Software reverse engineering is being

researched for various purposes, such as how to add new

functions to existing software, maintain and improve

system efficiency, and recycle modules in new systems.

Recently, so-called dynamic reverse engineering has been

started in an effort to discover software component

interaction using software traces and records. The

following discusses research related to the dynamic

reverse engineering.

Systa[9,10] proposed the Shimba tool that

automatically produces sequence diagrams of Java

programs. With the Shimba tool, trace information is

acquired while such programs are executed, and the

information is then used to create a state diagram and a

scenario diagram. Systa’s papers give a lesson that

dynamic aspects of software can be generated from

monitoring software execution, but it does not propose to

link the information to a performance model. Also,

considering the fact that not many existing systems are

constructed in Java, additional research is required for

other languages.

Walker and Murphy [11,12] proposed an abstraction

method, recognizing the fact that event trace information

at the functional level presents a wide gap from the

subsystem level of developers’ interests. This method

uses a visualization tool and a path query tool. The

visualization tool shows a series of drawings according to

system execution. The path query tool supports the

analyze event flow information, using normal expressions

that map the source codes to components of the

developer’s choice. The method presents the basic

techniques in abstracting event trace information.

However, the method seems to require some more time

for field use, considering that it is limited to object-

oriented languages, and no real application case has yet

been presented.

 Bengtsson and Bosch [13] pointed out that there was

no research on architectural reengineering methodology,

and if any, quality attributes were not considered. They

defined a reengineering methodology based on scenarios.

In this methodology, explicit and objective evaluation

methods, such as simulations, mathematical model rings,

etc., are adopted.

These efforts to produce architecture-level execution

models from software execution flow have indeed begun

[8,9,10,11,12,13]. The researches have presented many

fundamental and useful results, but further efforts are

required to make them practical such as expanding to the

languages mainly used in real development. Also, there is

still no attempt to connect the result to a simulation.

3. Concept of SAAT

The Software Architecture Analysis Tool was

developed for performance analysis at the Software

Center, Samsung Electronics Co., Ltd. Since most of

software programs are implemented in C language in

Samsung electronics Co, Ltd., SAAT targets software

constructed in C language. Our purpose was to overcome

delays that accompanied performance analysis. Our

activities of performance analysis are as follows: When a

performance analyst is requested to analyze software

performance, the analyst first has to understand the

software’s structure and its dynamic behaviors. Then, the

analyst finds the component that unnecessarily consumes

much time and resources. Finally, the analyst identifies

improvement issues and solutions using a simulation tool.

We hoped to shorten the time of the performance analysis

in order to make the analyst’s work more efficient. We

tried to automate the analysis process.

The process of analyzing the software performance of

the existing system at Samsung Electronics Co., Ltd., can

be automated as shown in Figure 1. First, the information

of how software modules interact should be recorded

(Software Trace Data). Second, the interaction should be

represented as nodes and edges in drawing a diagram

(Behavior Model). If one would like to understand the

dynamic structure of the software, a composite diagram

explaining several interactions should be drawn

(Execution Model). Last, the composite diagram should

be converted for modeling in a simulation tool

(Simulation Model). In the following subsections, we

review the concepts of each model in Figure 1 in more

detail.

Execution

Model

Behavior

Model

Software

Trace Data

Simulation

Model

Behavior

Model

Software

Trace Data

…

Figure 1: Automating process for performance analysis

3.1. Software Trace Data

Software Trace Data is a record of the interaction

between the software modules. Because our target

software is written in a procedural language, a software

module is a function. Interaction involves not only call-

relationships among several functions, but also

information about the order of those functions. Hence,

Software Trace Data includes function names, the calling

relationship and execution order. Also, we add the

function’s running time into the data for performance

analysis.

Software Trace Data is recorded as shown in Figure 2.

The record consists of function name, time stamp, and

flags according to the execution order. A line informing a

function’s start has information about function name, start

time, and start flag. A line informing a function’s end has

information about function name, finish time, and finish

flag. Also, lines of called functions are nested between

the starting line and the finishing line of a calling function.

As a result, both call-relationship and execution order can

be represented in the Software Trace Data.

Function Main()

{

call A();

call B();

call C();

}

Function A(parameter order)

{

if (order == first_sequence)

{

call a();

call b();

}

else

{

call c();

}

}

Function B()

{}

Function C()

{}

A node Time Start/Finish

Main start time of Main start flag

A start time of A start flag

a start time of a start flag

a finish time of a finish flag

b start time of b start flag

b finish time of b finish flag

A finish time of A finish flag

B start time of B start flag

B finish time of B finish flag

C start time of C start flag

C finish time of C finish flag

Main finish time of Main finish flag

Figure 2: A concept of Software Trace Data

Software Trace Data is recorded while running the

software. The easiest method for tracing software is to

insert probing functions into functions of the target

software. These probing functions write events of

functions into a file when the functions start and finish.

After compiling the software instrumented with probing

functions, we can create a Software Trace Data file by

running the software.

3.2. Behavior Model

The Behavior Model is a diagram representing

Software Trace Data as nodes and edges. A node stands

for a software module, namely, a function. Edges have

two kinds of meaning. An edge directing below means

the execution order between two connected functions. An

edge directing to the right signifies a call-relationship

between two linked functions. The Behavior Model is

similar to a sequence diagram of UML, a design language

for object-oriented programming. Thus, the Behavior

Model represents one instance of the software executions.

Figure 3 shows an abstract presentation of the

Behavior Model. Software modules are arranged

according to their execution order and call relationship. In

case “Main()” calls “A(),” The Behavior model places

“Main()” left, “A()” right, and shows an arrow starting

from “Main()” and arriving at “A().” However, in

another case, “Main()” calls the second function, “B(),”

Behavior model applies another rule: The second called

function is connected to the first called function. Hence,

the Behavior Model places “B()” below “A()” and

shows an arrow starting from “A()” to “B().” The latter

arrow stands for the execution order between “A()” and

“B().”

Main() A() a()

B()

C()

Main() A() c()

B()

C()

b()

First Sequence Second Sequence

Figure 3: A concept of the Behavior Model

Rules of creating the Behavior Model from the

Software Trace Data are related to start and finish flags. If

a line has a start flag and the previous line also has a start

flag, the node for the former is placed left of the node for

the latter. Meanwhile, if a line has a start flag and the

previous line has a finish flag, the node for the former is

placed below the node for the latter. Additionally, if a line

has a finish flag, there is no action for arrangement. The

activity of arrangement occurs when reading a line

including a start flag.

3.3. Execution Model

The Execution Model is a composite of several

Behavior Models to represent the dynamic structure of the

software. Even if each Behavior Model calls for the same

function, the function may have different flows, based on

control conditions and values of the variables. The

Behavior Model can be combined by considering the

control conditions, such as the branch or loop. To

represent these control conditions, the Execution Model

has several shapes of nodes. For example, the branch

condition is represented as a rhomboid and the loop

condition as a circle. We borrowed the concept of the

Execution Model from the Execution Model of PASA[3].

The Execution Model can be extracted as shown in

Figure 4 from the Behavior Models shown in Figure 3. A

calling module nests called sub-modules. If a module has

several different flows, the module possesses nodes

showing the control conditions. For example, “A()” has

two different execution flows in Figure 3. Thus, “A()” in

Figure 4 has a branch node below the “Begin” node.

After that, two different flows diverge from the branch

node and converge to the “End” node in A().

The internal structure of functions may be extracted

from former static reverse engineering tools. However,

we have discovered that we can construct the Execution

Model using only the information from the Behavior

Models. While each Behavior Model is scanned, a branch

node is inserted in case the Behavior Model has different

part from the previous. When a function includes a

repeated series of nodes, a loop node is added. Multiple

Behavior Models are integrated to a single Execution

Model in this way.

Main()

A()

End

Begin

a() c()

b()

B()

C()

Begin

End

Figure 4: A concept of the Execution Model

3.4. Simulation Model

The Simulation Model is a model running in a

simulation environment to demonstrate architectural

issues of the present system. The Simulation Model is

identical with the Execution Model in containing the

information of software structure and performance

information. Yet, we can modify, animate and simulate

models in the simulation environment, so that we can

predict a result of software implementation.

 We can create the Simulation Model mapped from the

Execution Model in figure 4 as follows. We delineate a

model for “main ()” in one module in our simulation tool.

Next, we draw a model for “A()” in a sub-model of the

module separately. Finally, we create a transaction to

trace models and insert a condition into the branch node

in “A()”. After that, we can simulate the models.

We can create the Simulation Model automatically by

mapping each element of the Execution Model to each

element of the Simulation Model. The Execution Model

is composed of graphs, sub-graphs, nodes, and edges. The

Simulation Model is composed of modules, sub-models,

nodes, and arcs. Therefore, graphs are mapped to

modules; sub-graphs are mapped to sub-models; nodes

are mapped to nodes; and edges are mapped to arcs. The

arrow in the Execution Model is mapped to a transaction

of the Simulation Model.

4. Implementation of SAAT

In this section, we present the Software Architecture

Analysis Tool (SAAT) – a tool to generate a dynamic

model for the performance analysis of software. We

developed the prototype of SAAT to examine the

feasibility of SAAT projects.

The architecture of SAAT may be drawn as the Figure

5. SAAT is related to existing commercial tools. TAU

provides trace data extracted from software execution

[14], while aiSee is a tool showing a model in GDL [15].

aiSee allows users to see the Behavior Model and

Execution Model. Finally Workbench conducts

Simulation Modeling [16]. SAAT is also composed of

three parts: One that extracts the Behavior Model from

trace data (BM); one that integrates several behavior

models into an execution model (EM); and one that

changes the Execution Model to the Simulation Model

(SM).

Simulation

Models

Execution

Models

Behavior

Models

Commercial

Tool

Input:

TAU

Output:

aiSee

Output:

Workbench

BM

EM

SM

Trace

Data

SAAT Program

Tree

Reader Writer

Handler

Graph List

Reader Writer

Handler

Graph List

Handler Mapper

U
s
e
r

I
n
t
e
r
f
a
c
e

Figure 5: Structure of SAAT

4.1. Commercial Tools

4.1.1. TAU. The trace tool had to capture the system’s

response behavior to a user’s request at regular intervals.

Besides this basic role, we additionally had to consider

multi-processors and multi-threads because current

software consists of them. Fortunately, we found a

reliable trace tool called TAU [14] for generating

Software Trace Data. TAU supports multi-processors and

multi-threads and generates data similar to the Software

Trace Data in Figure 2.

4.1.2. aiSee. When we describe the Behavior Model and

the Execution Model, we needed to determine a

description tool. With respect to a description tool, we

need a tool to present nodes and edges. Instead of

implementing the tool, we searched for a convenient tool

to present nodes and edges easily. We found that aiSee

can present a diagram described in Graph Description

Language (GDL). This language is a simple language to

express graphs and has keywords like node, edge, graph,

etc. [15].

4.1.3 Workbench. Since we use Workbench [16] as a

simulation environment, we should convert the Execution

Model to a model running in the Workbench. In the

Workbench, one model is composed of nodes, arcs, and

transactions. One model also could have several sub-

models. By transforming the Execution Model into the

simulation tool, we can obtain modeling data for

simulating and analyzing our system’s performance and

verify its functionality.

4.2. SAAT Program

4.2.1 BM. When creating the Behavior Model, we should

consider the abstraction level of the models so that users

understand and manage the models easily. For that, the

function lists should be categorized into modules to the

level of the user’s requirements. Also, low-level functions

that users do not want to see should be eliminated or

hidden to maintain the simplicity of the models. Thus, we

endow a node possessing sub-nodes with a folding option

to solve this issue. In spite of the importance of

abstraction, the implementation was simple because aiSee

supports the option with one token.

The drawing mechanism, used for the Behavior Model,

is a binary tree. Each node in a binary tree has a left child

and a right child. In the concept of Behavior Model, a left

child becomes the first child, and a right childe turns to a

sibling. The first child is the first called sub-function on

the base of a function. A sibling implies the next executed

function from a function. In reading, Reader saves

information on the line to a node and pushes the node into

a stack in temporary. When Reader reads a finish line

related to the node in the stack, it pops the node and the

previous node from the stack and links both to each

other to make a tree. Then, Writer writes files by visiting

from the root to leaf nodes in the tree.

4.2.2 EM. In creating the Execution Model, the internal

structure of a function is needed because the Execution

Model has a structure to fulfill the flows of several

Behavior Models. For that purpose, if a function is called

more than once and sub-operations of the function are

different, loops and branches in the internal structure of

the function need to be recognized. We replaced this

structure of the function with the composition of the

Behavior Models, as we wanted to get rid of cumbersome

tasks like source analysis.

The structuring mechanism, used for the Execution

Model, is a hash table that manages graphs that are

organized in adjacency linked list. The hash key is a

graph name. Once Reader reads tree information, Graph

List recognizes nodes having a sub-tree, converts them to

graphs, and saves the graphs in the hash table. After that

process, Graph List scans the hash table. When Graph

List finds the same name of a graph in the lists of graphs,

it combines the two graphs into one. Finally, Writer

creates a file of the Execution Model by scanning the

hash table. These tasks occur several times if there are

more Behavior Models.

4.2.3 SM. When creating the Simulation Model in

Workbench from the Execution Model in GDL, we

should deliberate on the conversion from one language to

another. One parser may be required if we intend to

convert GDL to Simulation language in Workbench. For

that task, we can use Lex and Yacc for analyzing GDL

and converting the language to Workbench graph codes.

However, we omitted the subpart because we used a

hidden file to have the concise information of the graphs

instead of using the GDL file directly. Mapper reads

information on the graphs in a hidden file of the

Execution Model and maps the information to the

Simulation Model. Writer outputs the files to run in a

simulation environment.

5. Case Study

We applied SAAT to Universal Plug and Play (UPnP)

[17], developed by Samsung Electronics Co., Ltd. UPnP

is a home network middleware that supports distributed

and open networks that are used to control devices and

transmit data among devices. UPnP consists of two

components: Controlled Device (CD) and Control Point

(CP). CD provides services, while CP detects and

controls the services. The middleware is implemented in

C language.

Our concern was the feasibility of SAAT. We

wondered whether the tool could be applied to ongoing

development projects and products and how effective the

result of creating a simulation model would be. For that,

we captured the Trace Data of UPnP, using the TAU tool

(5.1) and generated Behavior Models (5.2), Execution

Model (5.3) and Simulation Model (5.4) in order.

5.1. Trace Data of UPnP

We captured the Software Trace Data of UPnP as

Figure 6. We used TAU in order to instrument source

files of UPnP with probing functions. The result files

were five files containing the information of each thread

because UPnP runs in five threads and TAU generates

trace files according to each thread. However, we just

show one trace file here as an example.

The case in Figure 6 is an instance of a concept in

Figure 2, Section 3.1. TAU logs the execution time as 16

digits. With regards to flags, 1 means a start flag and -1

signifies a finish flag. This Software Trace Data has the

information on the execution flow of UPnP. We can

know which executions occurred in what order by

looking at the list of functions by time. However, for a

more intuitive understanding, such execution flow must

be graphically represented.

[root@duri93 device]# cat events.0.edf
creation program: tau_convert -dump
creation date: jul-08-2003
number records: 40
number processors: 0
max processor num: 0
first timestamp: 1057631241510426
last timestamp: 1057631247598443

#=NO= =====EVENT== ==TIME [us]= =NODE= =THRD= ==PARAMETER=
 1 (null) 1057631241510426 0 0
 2 (null) 1057631241510447 0 0
 3 "int main(void) C " 1057631241510456 0 0 1
 4 "void TvDeviceStateTableInit(v 1057631241510563 0 0 1
 5 "void TvDeviceStateTableInit(v 1057631241510590 0 0 -1
 6 "int UPnP_CD_Start(int, FunPtr 1057631241510696 0 0 1
 7 "int upnpStart() C " 1057631241510732 0 0 1

 …………
 29 "void UPnP_CD_SetRenewTime1057631242718027 0 0 -1
 30 "int UPnP_CD_Finish(void) C " 1057631244597264 0 0 1
 31 "void Stop_Threads() C " 1057631244597326 0 0 1
 32 "int PrintString(char *, ...) 1057631244597332 0 0 1
 33 "int PrintString(char *, ...) 1057631244597366 0 0 -1
 34 "int PrintString(char *, ...) 1057631247598364 0 0 1
 35 "int PrintString(char *, ...) 1057631247598410 0 0 -1
 36 "void Stop_Threads() C " 1057631247598418 0 0 -1
 37 "int UPnP_CD_Finish(void) C " 1057631247598423 0 0 -1
 38 "int main(void) C " 1057631247598428 0 0 -1
 39 (null) 1057631247598440 0 0
 40 (null) 1057631247598443 0 0

Figure 6: Tautrace.0.0.0.trc (Main flow of UPnP CD)

5.2. Behavior Model of UPnP

The Behavior Model connected to the Trace Data in

Figure 6 is shown in Figure 7. This Behavior Model

shows the execution order from the Trace Data of TAU.

We can easily know that UPnP CD starts, sets cache

control, sets CD’s timeout, sets renew time, and finishes

by reviewing the diagram in Figure 7. Each node can be

folded or unfolded to hide or show a sub-tree of each

node. Therefore, users can browse the Behavior Model at

the level they want to know.

Behavior Models differ by the user services requested.

Figure 8 shows another Behavior Model of UPnP. The

cases in Figures 7 and 8 are those of the Behavior Model

explained in Section 3.2. In addition to the concept of

Section 3.2, information on the time consumed at each

node is displayed beside the node name. Thus we can

know the candidates for any bottleneck as well as the

execution order and call-relationship.

Figure 7: Behavior Model 1 (Main flow of UPnP CD)

Figure 8: Behavior Model 2 (Main flow of UPnP CD)

5.3. Execution Model of UPnP

The Execution Model combines different Behavior

Models. Figure 9 shows an Execution Model produced

from the combination of Behavior Models of Figures 7

and 8 in Section 5.2. In Figure 9 below, the internal

structure of “Stop_Threads()” represents the Execution

Model well. The “Stop_Threads ()” presents a branch to

two different internal flows and a loop showing repetition

of the sub-flows.

Figure 9: Execution Model (Main flow of UPnP CD)

5.4. Simulation Model of UPnP

The Execution Model in Figure 9 is changed to the

Simulation Model in Figure 10. The upper diagram in

Figure 10 shows a Workbench model for the main func-

tion while the lower diagram shows a model for Stop_

Threads(). The distinctive aspect in the Simulation

Model is the transactions, which move dynamically as

time goes. Therefore, we can modify and simulate a

model to predict the performance of the system to be

implemented and search for a better solution based on the

simulation results.

Main

Stop_Threads

Figure 10: Simulation Model (Main flow of UPnP CD)

At this time, we confirm that the modeling data could

be generated from monitoring software execution.

However, the result of applying SAAT to the UPnP

product is incomplete when comparing the result with that

of a manual result for several reasons. First, SAAT pours

all information into the Simulation Model, while

performance analysts do not care for detailed layers.

Second, the SAAT starts at the thread level while

performance analysts start to model at the critical

modules. Finally, SAAT does not distinguish concrete

conditions, although some conditions could be important

in modeling. We should develop SAAT to customize the

Simulation Model according to user intention.

6. Conclusions

We have explained how we created the Execution

Model from the execution trace data of the software

system and how we constructed the Simulation Model

from the Execution Model for performance analysis.

Through SAAT prototyping, we showed that a simulation

model could be automatically generated from the

execution trace data of software. This case study shows

the possibility of saving the time usually consumed in

making a simulation model for performance analysis of

software.

We propose the following additional research. First,

we should find how to group functions that belong to the

corresponding component. In this case, we may use the

Dali Workbench tool made by Kazman [18, 19]. However,

we did not yet implement this method in SAAT. For this

purpose, user intervention parts or important component-

declaring parts must be added. In addition, we should

complement SAAT by finding additional rules for

converting from the Behavior Model to the Execution

Model and by adding options to modify the Simulation

model for user tastes. In the long term, we want to adapt

this tool to several modeling environments.

7. References

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J.

Ivers, R. Little, R. Nord, and J. Stafford, Documenting

Software Architecture: Views and Beyond, Addison-

Wesley, Sept. 2002.

[2] R.J. Pooley, "Software Engineering and Performance -

a roadmap”, Proceedings of the conference on The future

of Software engineering, Limerick, pp189-200, July 2000.

[3] C.U. Smith and L.G. Williams, Performance

Solutions: A Practical Guide to Creating Responsive,

Scalable Software, Addison-Wesley, Sept. 2001.

[4] C.U. Smith and L.G. Williams, “PASASM: An

Architectural Approach to Fixing Software Problems”,

Proc. CMG, Reno, Dec., 2002.

[5] K. Siddiqui and M. Woodside, "Performance-Aware

Software Development (PASD) Using Resource Demand

Budgets", Proc. of the 3rd WOSP, Rome, July 2002.

[6] D. Petriu and M. Woodside, “Generating a

Performance Model from a Design Specification”, 3rd

Workshop on Generative Programming, ECOOP 2001,

June 2001.

[7] R. Pooley and P. King, "The Unified Modeling

Language and Performance Engineering", IEE

Proceedings - Software, Vol 146 No 1, pp 2-10, February

1999.

[8] E. Stroulia and T. Systä, “Dynamic Analysis For

Reverse Engineering and Program Understanding”,

Applied Computing Review, ACM, vol 10, issue 1, 2002.

[9] T. Systä, “Understanding the Behavior of Java

Programs”, Proc. of the 7th WCRE, pp. 214-223,

Brisbane, Australia, November 2000

[10] R. Kollmann, P. Selonen, E. Stroulia, T. Systä and A.

Zündorf, “A Study on the Current State of the Art in

Tool-Supporter UML-Based Static Reverse Engineering”,

Proc. of the 7th WCRE, pp.22-33, 2002.

[11] R. Walker, G. Murphy, J. Steinbok and M. Robillard,

“Efficient Mapping of Software System Traces to

Architecture Views”, CASCON, 2000.

[12] R. Walker, G. Murphy, B. Free-Benson, D. Wright,

D. Swanson and J. Isaak, “Visualizing Dynamic Software

System Information through High-level Models”, Proc. of

the 13th ACM SIGPLAN Conference on OOPSLA, ACM

Press, pp. 271-283, 1998.

[13] P. Bengtsson and J. Bosch, “Scenario-based

Software Architecture Reengineering”, Proceedings of

the 5th ICSR, pp. 308-317, June 1998.

[14] University of Oregon, TAU: Tuning and Analysis

Utilities, http://www.cs.uoregon.edu/research/paracomp/

tau/, 1999.

[15] Absint, aiSee, http://www.aisee.com, 2002.

[16] Workbench, Hyperformmix, http://www.hyperformi-

x.com/products/workbench.htm, 2003.

[17] Microsoft Corporation, Universe Plug and Play

Device Architecture, http://www.upnp.org/download/

UPnPDA10_20000613.htm, 2000.

[18] R. Kazman and S.J.Carriere, “Playing Detective:

Reconstructing Software Architecture from Available

Evidence”, CMU/SEI-97-TR-010, Pittsburgh, PA:

Software Engineering Institute, Canegie Mellon

University, 1997.

[19] L. O’Brien and C. Stoermer, “Architecture

Reconstruction Case Study”, CMU/SEI-2003-TN-008,

Pittsburgh, PA: Software Engineering Institute, Canegie

Mellon University, 2003.

