
Precise detection of memory leaks

Jonas Maebe Michiel Ronsse

Ghent University, ELIS Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

jmaebe|ronsse|kdb@elis.UGent.be
http://www.elis.UGent.be/diota

Koen De Bosschere

Abstract

A memory leak occurs when a program allocates a block
of memory, but does not release it after its last use. In case
such a block is still referenced by one or more reachable
pointers at the end of the execution, fixing the leak is of-
ten quite simple as long as it is known where the block was
allocated. If, however, all references to the block are over-
written or lost during the program’s execution, only know-
ing the allocation site is not enough in most cases. This
paper describes an approach based on dynamic instrumen-
tation and garbage collection techniques, which enables us
to also inform the user about where the last reference to a
lost memory block was created and where it was lost, with-
out the need for recompilation or relinking.

1 Introduction

A memory leak is a memory management problem
which indicates a failure to release a previously allocated
memory block. The term can be used in two contexts. The
first is when indicating imperfections in garbage collectors
as used in e.g. Java Virtual Machines, in case they missed
the fact that a previously allocated block is not referenced
anymore and thus is not added to the pool of free blocks.

The second context is when the programmer himself is
responsible for explicitly freeing all blocks of memory that
he allocated. This is still the case in most run time environ-
ments today and also the situation which we will focus on
in this paper.

Leaking blocks of memory during a program execution
has several negative consequences. It often results in said
program acquiring more and more memory from the oper-
ating system during its execution.

As such, overall system performance will degrade over
time, as allocated but unused blocks of memory will have

to be swapped out once the system runs out of free physical
memory. Eventually, a program may even exhaust its avail-
able virtual address space, which will cause it to terminate
due to an out-of-memory error.

Several packages that can perform memory leak detec-
tion already exist. The necessary instrumentation can hap-
pen at different levels. Insure++ [5] rewrites the source code
of an application. Many leak detectors operate at the library
level by intercepting calls to memory management routines,
such as in case of LeakTracer [1], memdebug, memprof and
the Boehm Garbage Collector [2].

Finally, it is possible to instrument at the machine code
level. Purify [8] statically instruments the object code of an
application and the libraries it uses. Dynamic instrumen-
tors such as Valgrind [7] delay the instrumentation until run
time.

Except for Insure++, all of the mentioned debugging
helpers only tell the programmer where the leaked block of
memory was allocated, but not where it was lost. Insure++
does show where the last pointer to a block of memory was
lost, but not where this pointer got its value. Additionally,
since it is a source code instrumentation tool, it requires re-
compilation and cannot provide detailed information about
leaks in third-party libraries of which the source code is un-
available.

In this paper, we present a technique that uses dy-
namic instrumentation at the machine code level to track
all pointers to allocated blocks of memory. It is completely
language- and compiler-independent and can show where
the leaked blocks were allocated, lost and where the last
references to these blocks were created.

In what follows, we first give a short overview of the
instrumentation framework we use. Next, we discuss the
kinds of memory leaks that exist and how they may occur.
We then describe in great detail how we can detect these
leaks, as well as some implementation details. Finally, we
conclude after presenting a short evaluation and discussing
our future plans.

2 Instrumentation overview

The inner workings of the instrumentation framework
that we use, DIOTA (which stands for Dynamic Instrumen-
tation, Optimization and Transformation of Applications),
are explained extensively in [6]. The framework itself is
quite generic, and specific instrumentation applications are
realised through so-called backends. These are shared li-
braries that link to the DIOTA-framework and which spec-
ify how DIOTA should rewrite the code during the instru-
mentation.

The techniques we will describe rely on only two fea-
tures of DIOTA: the ability to intercept calls to dynamically
linked routines and being notified of memory operations.
The former enables us to track the memory allocations and
deallocations performed by the program, the latter is used to
track the pointers to the memory blocks as they are passed
through the program.

3 Memory leaks

There are two kinds of memory leaks. ZeroFault Soft-
ware [4] calls them logical and physical. A logical mem-
ory leak occurs when a block of memory is allocated and
never freed afterwards, but at all times during the program
execution a reachable pointer to this block of memory ex-
ists. A physical memory leak occurs when the last reachable
pointer to a particular block of memory is lost.

We mainly focus on physical memory leaks in this arti-
cle, because finding out where exactly the last pointer to
a block of memory is lost is crucial to fix such an error
and this information is often hard to come by. The de-
scribed techniques are however also applicable to solving
logical memory leaks. In that case, at the end of the pro-
gram our technique allows us to provide the developer with
a list of references to all unfreed memory blocks, including
the place where they were created.

A physical memory leak can occur in three ways:

• The last reference to a block of memory is overwritten
with a new value, or some value is added to it. In the
latter case, it is possible that the original value will be
restored later by subtracting this same value again, so
one should take this into account to avoid false posi-
tives.

• The last reference to a block of memory goes out of
scope. For example, it was stored in a local variable or
a parameter and the function exits.

• The block of memory containing the last reference to
another block of memory is freed.

Note that the lost reference to a block of memory does
not really have to be the last one for it to cause a physical
memory leak. In case of cyclic structures, it is possible to
be left with a group of blocks all referring each other, but
no way to reach them anymore from global data pointers or
local variables.

In order to discover a physical memory leak, a way to
track all pointers to a particular block of memory is re-
quired. In this sense, the problem is identical to the clas-
sic problem of garbage collection. One can therefore also
choose from the wide variety of known algorithms to per-
form garbage collection in order to find memory leaks.

There is however one important difference as far as find-
ing physical memory leaks is concerned: one wants to know
as exactly as possible where a block of memory was lost.
Periodic garbage collection can only loosely pinpoint where
the last reference to a block disappeared, and more exact
techniques are required to improve accuracy.

For this reason, we have chosen to use reference count-
ing [9] as opposed to e.g. the more commonly used mark-
and-sweep algorithm. Although this increases the overhead
significantly and prevents us from detecting leaked cycles,
we think that the added detailed information is worth it. Ad-
ditionally, it is still possible to periodically perform a mark-
and-sweep to detect leaked cycles.

4 Detection

4.1 Memory blocks

In order to be able to track pointers to allocated memory
blocks, one first has to know where those blocks are located.
For this purpose, our DIOTA-backend intercepts all calls to
malloc, calloc, realloc, free, new, delete and their variants.

In case of allocations, the replacements call through
to the original functions and then record their return val-
ues. This recording occurs in a hash table, with the blocks
hashed on their start address. Since we only count the refer-
ences to the start address of a block, this allows for enough
flexibility as far as searching is concerned. The deallocation
routines remove the block to be deallocated from this hash
table before actually deallocating it.

For each allocated block, quite a bit of information is
recorded. First of all, the call stack at the time of alloca-
tion is stored. Next, we also give each allocated block a
reference count, a unique identifier (called ablock id), and
a usecount. This last field keeps track of how many times
a reference to said block has already been created and will
allow us to detect stale references as explained in the next
section.

address = ?
size = ?
id = 2

usecount = ?
refcount = ?

alloc_backtrace

block_info

free(b); 2

address = 0xf4
block_id = 1

ref_backtrace

reference_info a

memory_block

block_info pool

b = NULL; 3

address = ?
size = ?
id != 1

usecount = ?
refcount = ?

alloc_backtrace

block_info
reference_info a

block_info pool

address = 0xf4
block_id = 1

ref_backtrace

memory_block

address = 0x10
size = 0x20

id = 1
usecount = 1
refcount = 1

alloc_backtrace

address = 0xf4
block_id = 1

ref_backtrace

block_info reference_info a

memory_block

void *a = malloc(32); 1

block_info pool

Figure 1. Reference and block bookkeeping

4.2 References

The second piece of the puzzle is keeping track of all ref-
erences to these blocks of memory. For each reference we
keep track of where it was created, its address, the mem-
ory block it refers to and theblock idof the block when the
reference was created.

The information about these references is stored in struc-
tures residing in two trees, with one tree reserved for the
references residing on the stack. A first reason to separate
the stack items from the rest, is that measurements showed
that many more references are created and removed on the
stack than elsewhere, and at the same time the maximum
number of references located on the stack at a single time is
often a factor 1000 smaller than the maximum of references
residing on the heap.

It thus makes sense to keep the volatile but small group
of references on the stack separate from the rest for perfor-
mance reasons. Additionally, when the stack shrinks, we
can keep removing the first item of the stack tree as long as
this item’s address lies below the new stack pointer, simpli-
fying stack shrinking management considerably.

A final useful property of these trees is that when a mem-
ory region is copied (e.g. usingmemcpy), we can easily find
all references lying inside this region in order to copy them
as well, without having to scan the entire copied region or
having to iterate over all recorded references.

The bookkeeping of the references can be achieved by
looking at the results of all store operations performed by
the program. Load operations are largely irrelevant, as most
of the time they only result in an extra reference when the
value is stored back to memory. Register variables can be
handled by looking at the contents of the registers when the
reference count of a block drops to zero.

When a value equal to the start address of an allocated
block is stored, we increase the reference count of said
block. When a previously recorded reference is overwrit-
ten with a different value, the reference count of the block
it referred to is decreased again.

After a block has been freed however, all of its references

become stale. There are two ways to solve the problem of
stale references: one is to find (or keep track of) and remove
all those references, another is to make sure the staleness
can be detected the next time this reference is accessed. We
use the latter technique to avoid the extra associated with
the former.

The staleness detection is implemented using the unique
identifier that each block possesses: as mentioned before,
creating a reference to a block results in the currentblock
id of that block to be copied to the reference’s information
structure. When a memory block is freed, itsblock id is
set to the next available unique value. As such, when we
afterwards encounter a stale reference to this block, we can
immediately notice this due to the fact that theblock idsdo
not match.

This technique also allows us to immediately make a
structure containing the information about a memory block
available for reuse (through a dedicated pool of such struc-
tures) when its corresponding block is freed. Even though
there may be stale references to such a block and thus this
structure, the unique identifier makes sure this can be de-
tected reliably when the referencing occurs.

Figure 1 shows an example of how this works in prac-
tice. First, the program allocates a block of memory. After
calling the realmalloc , we allocate a memory block info
structure from the previously mentioned dedicated pool and
fill in the appropriate values. The fact that this info block is
then stored in a hashtable, is not shown here.

Still in statement 1, the program stores the pointer to this
block in the variablea. At this point, we create a new ref-
erence info structure. The pointer to the memory block info
structure is a pointer in the programming language sense: it
is simply the address of this structure.

The block is freed again in statement 2. As shown, the
memory block information structure is freed at the same
time, but the reference information structures are left intact.
Theblock idof the memory block is increased though.

When the program afterwards overwritesa with a new
value, possibly after new blocks have been allocated, the
situation will be as shown for statement 3. The memory

address = 0x10
size = 0x20

id = 1
usecount = 1
refcount = 1

alloc_backtrace

address = 0xf4
block_id = 1

ref_backtrace

block_info reference_info

memory_block

void *a = malloc(32); 1 a += 2*sizeof(void*); 2

free(a-2*sizeof(void*)); 3 <check collected leaks>
(leak removed because id
 memory block has changed)

 4

blk_id = 1
blk_usecnt = 1

alloc_backtrace
ref_backtrace

lose_backtrace

leak_info

address = 0x10
size = 0x20

id = 1
usecount = 1
refcount = 0

alloc_backtrace

block_info

memory_block

blk_id = 1
blk_usecnt = 1

alloc_backtrace
ref_backtrace

lose_backtrace

leak_info

address = 0x10
size = 0x20

id = 2
usecount = 1
refcount = 0

alloc_backtrace

block_info

memory_block

blk_id = 1
blk_usecnt = 1

alloc_backtrace
ref_backtrace

lose_backtrace

leak_info

address = ?
size = ?
id != 1

usecount = ?
refcount = ?

alloc_backtrace

block_info

memory_block

Figure 2. Example of detecting a false positive

block information structure may either be free or in use for
another memory block that has been allocated in the mean
time, but we can detect the fact that the reference originally
pointed to another memory block by comparing theblock
id’s.

4.3 Leaks

Finally, there are the memory leaks. When the reference
count of a block of memory reaches zero, a newpotential
leak is created. The are called potential leaks because there
may still be a reference to the possibly leaked block in a
register, or it could be that a new reference will be calculated
by the program later on (e.g. by substracting a value from a
pointer that currently points to somewhere in the middle of
that block).

Such a potential leak contains the call stacks of where it
occurred, where the last reference, which was just lost, was
created and where the leaked block was allocated.

All potential leaks are stored in a hash table, with the
hash based on the recorded call stacks mentioned above.
Apart from that data, we also record the cause of the leak (as
explained in section 3) and the currentblock idandusecount
of the memory block at the time the leak occurred. Finally,
leaks also have an occurrence count.

Two potential leaks are deemed identical if their causes
and their three recorded call stacks match. In such a case,
the previously stored potential leak in the hash table is ver-
ified to see whether the block it refers to is still leaked.

This verification occurs at two levels. First of all, if the
block id recorded in the potential leak is different from the
current one of the memory block, it means the block has
been freed since we detected the potential leak, so it was a
false positive.

The second verification is based on discrepancies be-
tween theusecountvalues of the potential leak and the
memory block. If these values differ, a new reference has
been created to the supposedly leaked block since the orig-
inal leak detection. As such, this block can not have been
leaked at that moment in time.

If both tests pass, the previously recorded leak is deemed
to be permanent. The occurrence count of the leak is in-
creased, and the the storedblock id and usecountare re-
placed by those of the newly detected leak.

A demonstration of detecting a false positive based on a
change ofblock idis shown in figure 2. Like in the previous
figure, in statement 1 a memory block is allocated and the
resulting pointer is stored in variablea. The result is that an
info structure for the memory block and the reference are
created, with the latter referring to the former.

In statement 2, we add a constant toa. When the value
of a in memory is changed, we detect that the new pointer
no longer refers to the start of the memory block, so we
decrease the reference count of the previous block it pointed
to.

Since that one is now zero, we create a new potential
leak. This leak gets a copy of the creation backtrace of the
reference we just overwrote, the allocation site of the mem-

ory block and the current backtrace (i.e., the place where the
leak was detected). We also copy the currentblock id and
usecountvalues of the memory block and keep a pointer to
the information about the memory block for future check-
ing.

In statement 3, the block is freed. Consequently the
block idof the memory block info is increased. The poten-
tial leak remains untouched. Note that if the parameters are
passed via the stack, theusecountof the block will also be
increased, since by passing the parameter a new reference
to the block is created.

When we later on check whether the previously created
potential leak was a real leak, we can see it was not due to
the fact theblock idswill differ between the memory block
info and the leak info (as well as theusecount, possibly).

4.4 Reporting

Every time memory is allocated, we check whether 5
minutes have passed since the last time we wrote out all
collected leaks. If so, then we process all collected poten-
tial leaks, write out the ones we deem to be real leaks (us-
ing the same verification based onblock idsandusecounts
described in the previous section) and reset the hash table
containing them. This procedure is also carried out when
the program exits.

We only do this checking at allocation time, since if the
program is not allocating any new memory, any leaks that
may have happened are not going to have much influence
on the program’s operation. We also do not lose any infor-
mation by delaying the reporting of the leaks.

We have not yet implemented the reporting of the re-
maining references to logically leaked memory blocks at
the end of the program. It could be easily done by iterating
over all still existing references though, preferably grouping
them per leaked memory block.

An example of a report (in verbose mode) of a detected
leak can be seen in figure 3

5 False positives, false negatives

A very important aspect of detecting memory leaks, is
dealing with false positives and false negatives. In case of
a real garbage collection system, one cannot afford to incur
the former, as it would result in memory corruption. In our
case, the consequences are not as catastrophic, but if there
are too much false positives, the output becomes useless to
the user.

We use the system of the potential leaks to avoid most
false positives. The majority of those result from functions
which return the last reference to a block of memory in a
register. Once the stack shrinks, the last reference is then
often removed, resulting in a potential leak. When the result

of this function is stored back to memory, theusecountof
the memory block is increased, so the false positive will be
recognised and not reported.

Another way to deal with this, would be to scan the con-
tents of the registers whenever a leak due to stack shrinking
occurs, but that has not yet been implemented.

Another kind of false positive can occur since we only
track references to the start of a memory block. In
practice, we only experienced this in the case of C++
code, where in some cases constructors return a pointer
to sizeof(void*) bytes past the start of the allocated
block. We compensated for this by treating such pointers
also as references to blocks. After this adaption, we did not
encounter any further reported false positives due to point-
ers not pointing to the start of a block.

Permanent false positives can occur due to not handling
cases which seldom happen, such as overwriting part of
a pointer, or writing a pointer byte per byte to memory.
Adding support for these cases can be done at the expense
of a larger slowdown.

False negatives can occur when a value is stored to mem-
ory that happens to have the same value as the start of an
allocated memory block, but which is not actually used in
the program as such. In case this is a loop counter, the refer-
ence count will immediately be decreased again in its next
iteration. If it is random data, e.g. copied from a mapped
file, a physical leak may never be detected using the ref-
erence counting method. The same goes for leaked cyclic
structures.

However, since we keep track of all allocated memory
blocks, we can still report them as logical memory leaks
when the program exits. Additionally, we can also provide a
list of all sites where the remaining references were created.

6 Related work

As mentioned in the introduction, several memory de-
buggers which support memory leak detection already ex-
ist. Most simply provide replacement functions for malloc,
free and friends and report, when the program exits, which
blocks have not been deallocated. This very low overhead
technique is used by Valgrind, Leaktracer, memdebug and
memprof and is therefore useful to try first.

Insure++ performs full instrumentation of the available
source code and can therefore also track where exactly the
last reference to a block of memory is lost in case of physi-
cal memory leaks, at least if this occurs within a part of the
program for which source code is available. It does not pro-
vide any extra information regarding logical memory leaks.

Another interesting case is the well known Boehm
garbage collector [2]. It includes a mode in which it func-
tions as a memory leak detector instead of as a garbage col-
lector. However, as it relies on periodic scanning of the

*** Warning, freed block containing last reference to a block of memory
(reference at 0x88a937c, block at 0x88a9388, ip = 0x8048497,

1 occurrence(s)) in thread 0 at:
[0x08048497]: test_linked_list, /user/jmaebe/diota/test/mem8.c:54

53: // make a->next no longer reachable
54: free(a);
55: }

[0x08048642]: main, /user/jmaebe/diota/test/mem8.c:120
119: testje2(&a);
120: test_linked_list();
121: // test multiple leaks at the same location

[0x0039176b]: __libc_start_main+235, /lib/tls/libc.so.6

The last reference to that block we know of was created at 0x804848e:
[0x0804848e]: test_linked_list, /user/jmaebe/diota/test/mem8.c:51

50: a=malloc(sizeof(record_t));
51: a->next=malloc(sizeof(record_t));
52:

[0x08048642]: main, /user/jmaebe/diota/test/mem8.c:120
119: testje2(&a);
120: test_linked_list();
121: // test multiple leaks at the same location

[0x0039176b]: __libc_start_main+235, /lib/tls/libc.so.6

This block was allocated at 0x8048486:
[0x08048486]: test_linked_list, /user/jmaebe/diota/test/mem8.c:51

50: a=malloc(sizeof(record_t));
51: a->next=malloc(sizeof(record_t));
52:

[0x08048642]: main, /user/jmaebe/diota/test/mem8.c:120
119: testje2(&a);
120: test_linked_list();
121: // test multiple leaks at the same location

[0x0039176b]: __libc_start_main+235, /lib/tls/libc.so.6

Figure 3. Example of verbosely reported memory leak

...
1 enode* result = new_enode(polynomial, exp+1, pos+1/*from 1 to m*/);

for(int i=0;i<exp+1;i++) {
set<map<lstring,int> > new_terms =

find_terms_with_var_exp(terms, var_name, i);
5 // fix memory leak found by DIOTA

value_clear(result->arr[i].d);
value_clear(result->arr[i].x.n);
result->arr[i] = translate_one_term(parameter_names,

left_over_var_names,
10 new_terms);

}
...

Figure 4. Bug found in FPT using our technique

address space of a program using a variant of the mark-and-
sweep algorithm, it can only discover that a pointer got lost
somewhere between two garbage collections.

7 Evaluation

We evaluated our techniques by analysing a few known
free software programs (lynx and vim, which turned out not
to contain any recurring memory leaks), as well as locally
adapted versions of the SimpleScalar simulator and the For-
tran Parallel Transformer (FPT) [3]. The slowdown factor
lies between 200 and 300 times, which is obviously very
significant. The amount of required memory more or less
doubles compared to the original execution.

Both SimpleScalar and FPT were known to contain
memory leaks from testing with other tools, but without the
exact location of the actual leaking, fixing them proved to
be very hard. An example from FPT is shown in figure 4.

Originally, thed andx.n fields in lines 6 and 7 were
long int ’s. Afterwards, they were changed into whole
numbers with infinite precision from the GNU Multipreci-
sion Library GMP. Before overwriting such values, one has
to call thevalue clear() macro to free previously allo-
cated memory.

While adding such calls throughout 50000+ lines of C++
code, the two that are now at lines 6 and 7 were forgot-
ten. Our tool pinpointed what is now line 8 in the fragment
above as the place where the last reference to a block of
memory was overwritten.

8 Future plans

One of our main goals currently is to reduce the overhead
of our backend. It has already become more than a factor
10 faster since the start of this project, and we are confident
we can reduce it a lot more. One way is to adapt DIOTA so
that the backend can better control when exactly it wants its
callbacks to be called.

Currently, the backend’s callback is called before each
memory access (either load, modify or store). This means
that when a store is reported, the new value is not yet written
to memory. As such, we have to log this event and only
when the next memory operation occurs, the result of the
previous store can be examined.

Another issue is detecting when the stack shrinks. At
the moment, every time a memory access occurs, we check
whether the stack has shrunk and whether consequently
some references went out of scope. A much better way
would be to insert these checks only after instructions that
can increase the stack pointer (given a downward growing
stack).

We therefore intend to add a mode to DIOTA whereby
a backend’s callbacks will only be called right after a write

or modify operation, and add the ability for a backend to
specify on a per-instruction (type) basis whether it wants to
be called or not.

9 Conclusion

In this paper, we described how precise memory leak de-
tector can be performed using the reference counting tech-
nique. We described implementation details and the prob-
lems of false positives and false negatives.

We showed in our evaluation that although the current
slowdown is quite big, the results provided by the technique
help significantly with finding the root cause of memory
leaks. We intend to speed up the implementation and tech-
nique in the future.

10 Acknowledgements

Jonas Maebe is supported by a grant from the Institute
for the Promotion of Innovation by Science and Technology
in Flanders (IWT). This research was also funded by Ghent
University and by the Fund for Scientific Research-Flanders
(FWO-Flanders).

The authors also wish to thank Kristof Beyls for pro-
viding ideas, testing consecutive implementations and his
invaluable feedback throughout this process.

References

[1] E. S. Andreasen. Leaktracer.
http://www.andreasen.org/LeakTracer/ .

[2] H. Boehm. Dynamic memory allocation and garbage collec-
tion. In Computers in Physics, volume 9, pages 297–303,
May 1995.

[3] E. D’Hollander, F. Zhang, and Q. Wang. The fortran paral-
lel transformer and its programming environment.Journal of
Information Science, 106:293–317, 7 1998.

[4] T. Z. Group. Zerofault.http://www.zerofault.com .
[5] Insure++.http://www.parasoft.com/ .
[6] J. Maebe, M. Ronsse, and K. D. Bosschere. DIOTA: Dy-

namic Instrumentation, Optimization and Transformation of
Applications. InCompendium of Workshops and Tutorials,
Held in conjunction with PACT’02: International Conference
on Parallel Architectures and Compilation Techniques, Char-
lottesville, Virginia, USA, Sept. 2002.

[7] N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. In O. Sokolsky and M. Viswanathan, edi-
tors,Electronic Notes in Theoretical Computer Science, vol-
ume 89. Elsevier, 2003.

[8] E. R. Rs. Purify: Fast detection
of memory leaks and access errors.
http://citeseer.nj.nec.com/291378.html .

[9] P. R. Wilson. Uniprocessor garbage collection techniques. In
Proc. Int. Workshop on Memory Management, number 637,
Saint-Malo (France), 1992. Springer-Verlag.

