
Performance Data Collection: Hybrid Approach

Edu Metz, Raimondas Lencevicius

Nokia Research Center

5 Wayside Road, Burlington, MA 01803, USA

Edu.Metz@nokia.com Raimondas.Lencevicius@nokia.com

1. Introduction

As the complexity of embedded software systems

grows, performance profiling becomes more and more

important. Performance profiling of embedded software

systems requires data collection with low overhead and

high information completeness.

Performance profiling consists of monitoring a

software system during execution and then analyzing the

obtained data. There are two ways to collect profiling

data: either event tracing through code instrumentation or

statistical sampling. Event tracing may be more intrusive

but allows the profiler to record all events of interest.

Statistical sampling may be less intrusive to software

system execution, but cannot provide complete execution

information.

Our position is that data collection on embedded

software systems should be performed using a hybrid

approach that combines the completeness of event tracing

with the low cost of statistical sampling. The following

sections expand this position.

2. Performance Data Collection

Performance profiling determines where a software

system spends its execution time. Performance profiling

requires data collection during program execution. Such

data collection can be done either by event tracing or by

statistical sampling. Let us consider the implications of

using these two methods.

2.1. Event tracing

Event tracing records events that occur during system

execution. Event tracing can track various events, such as

task switches, component entries and exits, function calls,

branches, software execution states, message

communication, input/output, and resource usage.

Tracing requires changes to the software system

usually called instrumentation. Instrumentation can be

inserted into various program representations: source

code, object code, byte code, and executable code. Time

wise, it can be inserted before program execution or

during it. Adding trace instrumentation can be done

manually, semi-automatically or automatically.

Automatization of the instrumentation may be complex.

Full discussion on complexities of automatic vs. manual

instrumentation goes beyond the scope of this paper. It is

sufficient to say that the instrumentation may be a

burden-some task, especially if some manual work is

needed.

Since an occurrence of any event creates a record,

event tracing is characterized by the completeness of

knowledge: if an event was recorded, it did occur; if it

was not recorded, it did not occur. As we will see, this

does not hold for statistical sampling. Performance

engineers can also learn exactly when each event

occurred since every record is time stamped. This allows

a complete analysis of event relationships in time, for

example, the measurement of precise time distance

between any two events. A performance engineer using

an event trace can reconstruct the dynamic behavior of a

software system.

For example, consider energy consumption by a

mobile device [4]. To map the software execution to the

power consumed, a performance engineer needs to know

exactly when a peripheral is started and stopped. The

information from event tracing directly maps software

execution and power consumption (Figure 1 shows the

measured power consumption as a function of time and

peripheral device activations/deactivations mapped onto

the same timeline).

There are a number of difficulties in using event

tracing. Users have to spend time instrumenting the

software system. Event traces affect the performance of

the software system distorting its execution [8].

Not only does event tracing take some time, adding

traces changes the behavior of the software system

because of additional memory accesses and input/output

[6]. In real-time software systems, the instrumentation

overhead can cause real-time constraint violations.

Therefore, it is important to limit the intrusion by

minimizing the instrumentation overhead [2][5]. One

way to achieve this is by reducing the number of events

traced. However, performance engineers have to choose

carefully, since omitting events from tracing also reduces

the amount of information available. For example, if

only “on” and “off” events are traced in a peripheral, it is

no longer possible to detect and map the peripheral’s

different “on” modes to differences in the system’s

power consumption. In choosing the instrumentation

granularity it is important to address the trade-off between

the amount of event information required and the

performance impact of the trace instrumentation. This

may be hard even for an experienced performance

engineer.

t (s)

I
(A

)

Device 1 Device 2 Device 3 Measured

Figure 1. Device activations mapped to power

consumption

For small routines, event tracing may not yield an

accurate time comparison with larger routines. A small

routine may suffer much higher relative overhead than a

larger routine. If this is ignored, a great deal of effort may

be wasted optimizing routines that are not real

performance bottlenecks.

The data volume associated with event tracing can be

very large: more than megabyte per second traced. This

can cause a problem in devices that do not have large and

fast storage or external network interfaces.

2.2. Statistical sampling

Statistical sampling relies on intermittent access to the

software system to record its current state. Sampling can

record different information: program counter (execution

location), function call stack, scheduled or blocked tasks,

active peripherals and so on. Sampling can be done

strictly periodically or with certain randomness.

The simplest forms of sampling do not require any

software modifications. A sampler simply copies the

content of some processor registers to memory. In more

complex sampling, the software system may need to be

interrupted to record the needed information. In both of

these cases, a performance engineer would usually spend

much less time to achieve sampling than to instrument the

software system for tracing.

The overhead of sampling may be orders below the

overhead of tracing. For example, branch tracing may

require overheads of over a factor of 10, function tracing

may require overheads up to a factor of 2, while sampling

at up to thousand samples a second may have an overhead

of less than 1% [1]. (This estimation assumes a 100Mhz

processor and 1000 cycles of work per sample, which is

enough to read the address of the currently executed

instruction and save this information. Using symbol

information generated at compile time, the profiler can

later correlate the recorded sample with the source code.)

At such frequencies, sampling produces much less data

than event tracing—a positive in storage-limited devices.

With advantages presented above, sampling is a

perfect tool for gathering the performance data in

systems where the low overhead is crucial. For example,

sampling the execution of software in a mobile device

executing real-time tasks may be the only way to obtain

information about long-running functions without

causing the software to miss real-time deadlines due to

tracing overhead.

However, sampling also has downsides. The

sampling frequency determines the granularity of the

gathered information. In addition, the duration for which

the software system executes directly relates to the

number of samples collected. A sampling profiler

requires software systems to execute over a reasonable

period of time to ensure accuracy [7]. The goals of a

performance engineer may require high sampling

frequency that negates the low overhead and small data

production of sampling.

Sampling yields only a statistical measure of the

software’s execution patterns. It does not provide

completely precise numbers: if an event does not occur

in a sampling log, there is no guarantee that it did not

occur in execution. Therefore sampling may not be

useful for situations that need to track exact numbers of

events, for example, a singleton message to a task or an

exact relationship between requests and

acknowledgements. In periodic real-time systems, the

sampling interval needs to be randomized to avoid

sampling the same periodic software entity at every

sampling point.

Sampling may not be able to detect frequently

executed routines whose execution times are smaller

than the sampling frequency. In addition, manual trace

instrumentation usually tracks application-specific

events that could be difficult to capture by sampling. For

example, detecting a transition from a single-person

voice call to a conference call may require event tracing.

Sampling is not a good approach when event

causality is analyzed. Although it may extract a function

call stack at the sample time, it cannot track all function

calls or message exchanges. A performance engineer

who needs a complete message sequence chart or

component interaction graph might be better off

choosing event tracing.

3. Hybrid Data Collection

Let us summarize the previous section. Event tracing

yields the most detailed and complete system execution

data. However, it takes time to instrument software,

tracing has a high overhead and may change the behavior

of the software system [6]. Statistical sampling is simple

to use and less intrusive to software system execution, but

does not provide causality relationships and exact data.

Embedded software systems, such as mobile devices,

have real-time constraints and therefore require

performance-profiling methods with low overheads. On

the other hand, performance analysis of such devices

often involves causality relationships and precision

requirements. For example, a performance engineer needs

to know exactly when a task starts processing a message

in a multiplayer game that changes the game environment,

since this may point to the cause of performance

bottleneck evidenced by numerous file accesses.

Often neither event tracing nor statistical sampling can

satisfy such conflicting requirements. The problem is

further compounded by the fact that test runs are not

entirely deterministic in mobile devices due to

interactions with other systems such as mobile network

elements. Therefore, performance data cannot be

collected during multiple test runs, but instead needs to be

collected during a single test run.

To collect performance data of embedded software

systems with low overhead and adequate completeness,

we propose to use a middleweight approach which is a

hybrid of heavyweight event tracing and lightweight

statistical sampling. Only a subset of all events is traced,

providing limited completeness and causality information.

Additional information is obtained through sampling.

To apply our method, a performance engineer has to

determine which part of the performance data should be

collected with event tracing and which with statistical

sampling. The following subsections describe these

choices using a couple of examples.

3.1. Processor time profiling

When the goal of a performance engineer is to

determine which software components and subsystems

spend most time running on a processor, statistical

sampling can provide most information. It can reveal the

approximate amount of time spent in a component, such

as a task, module or function. Event tracing can

supplement this information in a couple of areas. First, it

can precisely identify switches of very high-level

components, such as tasks. Second, it can demonstrate the

component execution causality by tracking message

exchanges. For example, consider the synchronization

between tasks A and B in Figure 2. After sending message

m1, task A enters a wait state where it waits for a state

synchronization callback m2 from task B before

continuing its execution. Here, event tracing can record

and timestamp the sending of messages m1 and m2, while

sampling can provide more in depth performance data

during time intervals [t1, t2], [t2, t3], [t3, t4]. Just

sampling is not enough to provide the crucial

synchronization information.

Task A Task A

Task B

t (s)

m1 m2

t4t3t2t1

Figure 2: Task state synchronization

Profiling system interrupts requires event tracing as

well. Even though the intrusion cost of tracing interrupts

is high, sampling cannot be used here, because the

execution times of interrupt handlers are much smaller

than the sampling frequency.

3.2. Resource usage and energy profiling

In mobile devices power consumption varies

depending on the peripherals used. During the system

execution, software accesses peripherals. These accesses

need to be recorded to determine when a peripheral is

used. In resource usage and energy profiling, complete

information about active and inactive peripherals is

required. Event tracing needs to be used to track state

transitions of Bluetooth, GPS or infrared subsystems.

The intrusion cost of recording “on” and “off” events of

peripherals is low since they occur infrequently.

Statistical sampling can complement event tracing by

providing information that is too expensive to obtain

using event tracing. For example, the processor power

management puts the processor in a low power sleep

mode when no software is scheduled to run. Unlike

Bluetooth mode changes, the processor’s transition to the

sleep state may be too frequent and too expensive to

track via instrumentation. Statistical sampling can reveal

the processor’s idle state with enough accuracy as long

as the context switch time is an order of magnitude

larger than the sampling frequency.

Another opportunity for sampling is presented by

devices with multiple active modes. As mentioned in

section 2.1, the overhead of tracing every state transition

of a peripheral may be too high. While tracing could

provide information about major “on” and “off” states,

sampling could complement this information with

infrequent samples of secondary states allowing more

precise system mapping than achieved with just tracing.

3.3. Hybrid approach discussion

The proposed hybrid approach for performance data

acquisition in embedded software systems has the

potential to limit the data collection overhead while

providing partial completeness and causality.

It is important to understand the requirements for

performance data acquisition, which are domain and

application specific. In different domains event tracing,

statistical sampling, or our hybrid approach may provide

the best solution. Our hybrid approach is sensitive to the

choice of which performance data to collect using event

tracing and which by statistical sampling. A couple of

heuristics would be to trace infrequent events and non-

deterministic events that provide causality information.

However, further research is needed on how to make

these choices.

The hybrid approach also yields the following

benefits:

• Can provide useful profiling results in shorter

execution runs than can be provided by pure

statistical sampling.

• Can be used to profile events that occur infrequently.

• Limits the profiling data volume, which makes

storing, transfer and post processing easier.

Performance engineers are more likely to make use

of profilers if they are easy to use.

• Allows reconstructing the dynamic behavior of a

software system.

The proposed hybrid approach also has some

limitations:

• Unless engineered intelligently, our hybrid approach

could still inherit the drawbacks of both event

tracing and statistical sampling.

• Trace instrumentation is still required, which may

alter the behavior of the original software system.

• It yields two separate sets of profiling data. These

two sources of information need to be combined and

synchronized during post-mortem analysis.

Certain information could be reconstructed from

statistical samples gathered during an execution. Events

that deterministically precede events captured in a sample

could be added to the performance data. This direction

needs to be explored in future research.

4. Related Work

Several tools exist for performance profiling of

software systems. Many of these are sampling based

profilers [1]. Some tools, such as Intel’s Vtune [9],

provide event-tracing capabilities in addition to statistical

sampling. However, the user cannot simultaneously use

event tracing and statistical sampling during a single test

run.

Hollingsworth et all [3] developed a hybrid data

collection approach that uses event tracing to record state

transitions in counter and timer data structures. These

structures are then sampled periodically to collect

performance data. Our hybrid approach uses event tracing

to record a subset of all events of interest. The remainder

of events is recorded through statistical sampling.

5. Conclusion

This paper describes a hybrid approach to the

performance data collection. The hybrid approach

involves striking a balance between event tracing and

statistical sampling, combining the completeness of

event tracing with low cost of statistical sampling. In

addition, the proposed approach limits the profiling data

volume. Useful profiling results can be obtained with

relatively short execution runs.

We have described the use of a hybrid data collection

approach for software execution time and resource

consumption analyses. We believe that such an approach

should be incorporated in future profilers. It is likely that

other dynamic analysis domains would also benefit from

incorporating both complete and sampling based data

collection.

6. References

[1] J. Anderson , L. Berc, J. Dean, S. Ghemawat, M.

Henzinger, S. Leung, R. Sites, M. Vandevoorde, C.

Waldspurger, W. Weihl, Continuous Profiling: Where

Have All the Cycles Gone?, Proceedings of the 16th ACM

Symposium on Operating Systems Principles, 1997

[2] M. Arnold, B. Ryder, A Framework for Reducing the Cost

of Instrumented Code, Proceedings of the Conference on

Programming Language Design and Implementation

(PLDI), 2001, pp. 168-179.

[3] J. Hollingsworth, B. Miller, J. Cargille, Dynamic Program

Instrumentation for Scalable Performance Tools,

Proceedings of the Scalable High Performance

Computing Conference, 1994

[4] R. Lencevicius, E. Metz, A. Ran; Software Validation

using Power Profiles, Proceedings of the 20th IASTED

International Conference on Applied Informatics (AI

2002), Feb 2002.

[5] E. Metz, R. Lencevicius, Efficient Instrumentation for

Performance Profiling, Proceedings of the 1st Workshop

on Dynamic Analysis, 2003, pp. 143–148.

[6] D. Stewart, Measuring Execution Time and Real-Time

Performance, Embedded Systems Conference (ESC),

2001.

[7] K. Subramaniam, M. Thazhuthaveetil, Effectiveness of

Sampling Based Software Profilers, 1st International

Conference on Reliability and Quality Assurance, 1994,

pp. 1–5.

[8] J. Vetter, D. Reed, Managing Performance Analysis with

Dynamic Statistical Projection Pursuit, Proceedings of the

1999 ACM/IEEE Conference on Supercomputing, 1999.

[9] Vtune Performance Analyzer, March 2004.

http://www.intel.com/software/products/vtune/

