On Specifying and Monitoring Epistemic Properties of Distributed Systems

Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Rosu
Department of Computer Science
University of Illinois at Urbana Champaign
{ksen, vardhan, agha, grosu}@cs.uiuc.edu

Abstract

We present an epistemic temporal logic which is suitable
for expressing safety requirements of distributed systems
and whose formulae can be efficiently monitored at runtime.
The monitoring algorithm, whose underlying mechanism is
based on symbolic knowledge vectors, is distributed, decen-
tralized and does not require any messages to be sent solely
for monitoring purposes. These important features of our
approach make it practical and feasible even in the context
of large scale open distributed systems.

1. Introduction

The discovery and prevention of software errors is a dif-
ficult problem involving many different aspects, such as in-
correct or incomplete specifications, errors in coding, faults
and failures in the hardware, operating system or network.
Two prominent formal approaches used in checking for
errors are: theorem proving and model checking. Theo-
rem proving is powerful but labor-intensive, requiring in-
tervention by someone with fairly sophisticated mathemat-
ical training. On the other hand, model checking is more
of a push-button technology, but despite exciting recent ad-
vances, the size of systems for which it is feasible remains
rather limited. As a result, most system builders continue to
rely on testing to identify bugs in their implementation.

There are two problems with software testing. First, test-
ing is generally done in an ad hoc manner: it requires
the software developer to translate properties into specific
checks on the program state. Second, test coverage is rather
limited. To mitigate the first problem, software often in-
cludes dynamic checks on the systems state to identify prob-
lems at run-time. Recently, there has been some interest in
run-time monitoring techniques [1] which provide a little
more rigor in testing. In this approach, monitors are au-
tomatically synthesized from a formal specification. These
monitors may then be deployed off-line for debugging or
on-line for dynamically checking that safety properties are
not being violated during system execution.

In [6] we argue that distributed systems may be effec-
tively monitored against formally specified safety require-
ments. By effective monitoring we mean not only linear ef-
ficiency, but also decentralized monitoring where few or no

additional messages need to be passed for monitoring pur-
poses. We introduced an epistemic temporal logic for dis-
tributed knowledge, called past time linear temporal logic
and abbreviated PT-DTL, and showed how monitors can be
synthesized for it. PT-DTL formulae are local to particu-
lar processes and are interpreted over projections of global
state traces that the current process is aware of. In this pa-
per, we increase the expressiveness of PT-DTL and make
it more programmer friendly by adding constructs similar
to value binding in programming languages and quantifica-
tion in first order logic. These constructs allow us to suc-
cinctly specify properties of open distributed systems in-
volving data. The new logic is called XDTL and its novel
features are inspired from EAGLE [3].

Let us assume an environment in which a node a may
send a message to a node b requesting a certain value. The
node b, on receiving the request, computes the value and
sends it back to a. There can be many such nodes, any pair
can be involved in such a transaction, but suppose that a
crucial property to enforce is that no node receives a reply
from another node to which it had not issued a request ear-
lier. One can check this global property by having one lo-
cal monitor on each node, which monitors a single property.
For instance, a monitors “if a has received a value from b
then it must be the case that previously in the past at b the
following held: b has computed the value and at a a request
was made for that value in the past”. Using XDTL, all one
needs to do is to provide the safety policy as a formula:

valueReceived —
@p,(®(valueComputed A @, (Y valueRequested)))

@ is an epistemic operator and should be read “at”; Q, F' is
a remote property that should be thought of as the value of
F in the most recent local state of b that the current process
is aware of. In PT-DTL[6], @ can only take one process as
a subscript. In XDTL, as described later in the paper, @ can
take any set of processes as a subscript together with a uni-
versal or an existential quantifier, so @, becomes “syntactic
sugar” for @y, (or for Q). ¢ should be read “eventu-
ally in the past”. Monitoring the formula above will involve
sending no additional messages but only a few bits of infor-

mation piggybacked on the messages already being passed
for the computation.

Suppose that we want to restrict the above safety pol-
icy by imposing a further condition that the value received
by a must be same as the value computed by b. To express
this stronger property, we need to compare values in states
at two process that are not directly related. This property
cannot be directly expressed in PT-DTL without introduc-
ing extra variables in the program itself. However, adding
extra variables in the program can potentially result in side-
effects which are not desirable. An elegant way to solve the
problem is to introduce the notion data-binding in the logic
used for monitoring. Informally, we can restate the prop-
erty as follows: a monitors “if a has received a value from
b then remember the value received in a variable k and it
must be the case that previously in the past at b the follow-
ing held: b has computed the value and the computed value
is equal to k and at a a request was made for that value in
the past”. This can be written formally as follows:

valueReceived — let k = valuein
@y (0 (computedValue A (k = valueComputed)
NQ,(drequestedValue)))

Informally, the construct “let & = £ in F” binds the value
of the expressions 5 at process a with the logic variables k
which can be referred by any expression in the formula F'.
Another example in [6] regards monitoring certain cor-
rectness requirement in a leader-election algorithm. The
key requirement for leader election is that there is at-most
one leader. If there are 3 processes namely a,b,c and
state is a variable in each process that can have values
leader, loser, candidate, sleep, then we can write the
property at every process as: “if a leader is elected then if
the current process is a leader then, to its knowledge, none
of the other processes is a leader”. We can formalize this re-
quirement as the following pT-DTL formula at process a:

leaderElected — (state = leader —
(Qp(state # leader) A Q.(state # leader))

We can write similar formulae with respect to b and c. Given
an implementation of the leader election problem, one can
monitor each formula locally, at every process. If violated
then clearly the leader election implementation is incorrect.

However, the above formula does not specify the re-
quirement that every process must know the name of the
process that has been elected as leader. We cannot ex-
press this stronger requirement in PT-DTL. However, us-
ing the construct “let __in _” and assuming that the variable
leaderName contains the name of the leader, the require-
ment can easily be stated in XDTL as follows:

leaderElected — let k = leaderName in
(@p(leaderName = k) A Q.(leaderName = k))

Note that the above formula assumes that the name of ev-
ery process involved in leader election is known to us be-
forehand. Moreover, the size of the formula depends on the
number of processes. In a distributed system involving a
large number of processes, writing such a large formula may
be impractical. The problem becomes even more important
in an open distributed system where we may not know the
name of processes beforehand. To alleviate this difficulty, as
already mentioned, we use a set of indices instead of a sin-
gle index in the operator @. The set of indices denoting a
set of processes can be represented compactly by a predi-
cate on indices. For example, in the above formula, instead
of referring to each process by its name we can refer to the
set of all remote processes by the predicate ¢ # a and use
this set as a subscript to the operator Q:

leaderElected — let £k = leaderName in
Qyy{ijiza} (leaderName = k)

Qyy;jia} (LeaderName = k) denotes the fact that the for-
mula leaderName = k must hold true at all processes ¢ sat-
isfying the predicate ¢ # a. This is equivalent to the first or-
der logic formula Vi . ((i # a) — @Q;(leaderName = k)).

The logic XDTL proposed in this paper, extending PT-
DTL with the construct “let __in _” and with quantified
sets of processes in the subscript of the epistemic operator
@, is more expressive and elegant than PT-DTL. These ben-
efits are attained without sacrificing efficiency and the de-
centralized nature of monitoring.

Many researchers have proposed temporal logics to rea-
son about distributed systems. Most of these logics are in-
spired by the classic work of Aumann [2] and Halpern ez al.
[4] on knowledge in distributed systems. Meenakshi et al.
define a knowledge temporal logic interpreted over a mes-
sage sequence charts in a distributed system [5] and develop
methods for model checking formulae in this logic. How-
ever, in our work we address the problem of monitoring and
investigate an expressive distributed temporal logic that can
be monitored in a decentralized way.

The rest of the paper is organized as follows. Section 2
describes the basic concepts of distributed systems. Sec-
tion 3 introduces the more expressive PT-DTL which we
call XDTL. In Section 4 we conclude by briefly sketching a
decentralized monitoring algorithm.

2. Distributed Systems

We consider a distributed system as a collection of pro-
cesses, each having a unique name and a local state, com-
municating with each other through asynchronous message
exchange. The computation of each process is abstracted
out in terms of events which can be of three types: internal,
an event denoting local state update of a process, send, an
event denoting the sending of a message by a process to an-
other process, and receive, an event denoting the reception

of a message by a process. Let E; denote the set of events
of process ¢ and let E denote | J, E;. Also, let < C E X E
be defined as follows.
1. e < €' if e and €’ are events of the same process and ¢
happens immediately before ¢/,

2. e < ¢ if e is the send event of a message at some pro-
cess and ¢’ is the corresponding receive event of the
message at the recipient process.

The partial order < is the transitive closure of the relation
<. This partial order captures the causality relation among
the events in different processes and gives an abstraction
of the distributed computation denoted by C = (F, <). In
what follows, we assume an arbitrary but fixed distributed
computation C. Let us define < as the reflexive and transi-
tive closure of <. In Fig. 1, e;; < es3 and therefore also
e11 < ez3. However, even though e1o2 &eo3, we have
e12 < ez as process 2 gets a message from process 3 which
contains knowledge of e;5.

The local state of a process is abstracted out in terms of

a set of events. For ¢ € F we define |e Lef {/ | e K e},
that is, |e is the set of events that causally precede e. For
e € E;, we can think of |e as the local state of process ¢
when the event e has just occurred.

We extend the definition of <, < and < to local states
such that |e< |’ iffe<e/, [e < |[e/iffe < ¢/,and |e < |e
iff e X €’. We use the symbols s;, s}, s; and so on to repre-
sent the local states of process . We also assume that each
local state s; of each process ¢ associates values to some lo-
cal variables V;, and that s;(v) denotes the value of a vari-
able v € V in the local state s; at process .

We use the notation causal;(s;) to refer to the latest
state of process 7 of which process ¢+ knows while in state
s;. Formally, causal;j(s;) = s; where s; is a state at pro-
cess j such that s; < s; and for all states 5;- in process
j with s’ < s; we have s’ < s;. For example, in Fig-
ure 1 causali(lees) = |eis. Note that if ¢ = j then
causal;(s;) = s;.

€3l €32 €33

®
\J

-
|

ell el2

Figure 1. Sample Distributed Computation

3. Extended Distributed Temporal Logic

In order to reason about the global distributed computa-
tion locally, XDTL has a set of three new variants of epis-
temic operators, whose role is to evaluate an expression or a

formula in the last known state of a remote process. We call
such an expression or a formula remote. In addition to the
epistemic operators, we add the construct “let k= 5 in
to XDTL to bind expressions to local logic variables that
can be referred by any expression or formula in F'.

The intuition underlying XDTL is that each process may
be associated a local formula which, due to the epistemic
operators, can refer to the global state of the distributed sys-
tem. These formulae are required to be valid at the respec-
tive processes during a distributed computation. The dis-
tributed computation satisfies the specification when all the
local formulae are shown to satisfy the computation. Next,
we formally describe the syntax and semantics of XDTL.
3.1. Syntax

In the sequel, whenever we talk about an XDTL formula,
it is in the context of a particular process, having the name :.
We call such formulae i-formulae and let F;, F!, etc., denote
them. Additionally, we introduce the notion of expressions
local to a process i called as i-expressions and let &;, &/, etc.,
denote them. Informally, an ¢-expression is an expression
over the global state of the system that process i is currently
aware of. Local predicates on i-expressions form the atomic
propositions on which the temporal i-formulae are built.

We add the epistemic operators Qy;F; and Qg;Fj
which is true if at all (or some, respectively) processes j
in the set .J, I; holds. Similarly, we add the epistemic op-
erator @;¢&; which returns the set of j-expressions ¢
for all processes j in the set J. The sets J can be ex-
pressed compactly using predicates over j. For example,
J can be the sets {j | j # a} or {j | client(j)}. The fol-
lowing gives the formal syntax of XDTL with respect
to a process i, where ¢ and j are the name of any pro-
cess (not necessarily distinct):

F; == true | false | P(&) | —F; | Fi op F; propositional
| OF; | OF; |QF; | F; S F; temporal
| @VJFj | @HJF]‘ cpistemic
|let k = & in F binding
EGin= clulk]|f(&) functional
| @s¢&; epistemic
Lo= (o &)

The infix operator op can be any binary propositional op-
erator such as A, V, —, =. The term f_; stands for a tuple of
expressions on process ¢. The term P(f:-) is a (computable)
predicate over the tuple &; and f (f_;) is a (computable) func-
tion over the tuple. For example, P can be <, <, >, > =,
Similarly, some examples of f are +, —, /, . Variables v;
belong to the set V; containing all the local state variables
of process ¢. c stays for constants, e.g., 0, 1, 3.14.

3.2. Semantics

The semantics of XDTL extends the semantics of PT-
DTL by defining the three variants of epistemic operators

C,si,le] = QusF;
C,si,[e] F Qa,F;

C,si,le] = let (k,...., k") = (&,...

iffvVj.(j € J) —C,sj,le] = Fj where s; = causal;(s:)
iff 35. (j € J) AC,sj,[e] = F; where s; = causal;(s;)

,&) in F

iff C, si, [e, k — (C, 85, [e))[&], .- -,k — (C,si, [e])][E]] E F

= val

(C, si, [e, k — wval])[K]
(Cv Si, [6])[[@ij]]

={(C,sj,[e))[&] | 85 = causal;j(s;) Nj € J}

Table 1. Semantics of XDTL

and the binding operator. The semantics is given by re-
cursively defining the satisfaction relation C, s;, [e] E F,
where [e] is an environment carrying the bindings for differ-
ent logic variables which gets introduced by the “let __in _”
operator. (C, s;, [e])[¢:] is the value of the expression &;
in the state s; under the environment [e]. Table 1 formally
gives the semantics of the new operators of XDTL. For the
semantics of other operators the readers are referred to [6].
We assume that expressions are properly typed. Typically
these types would be integer, real, strings,etc.
We also assume that s;, s}, s/, . .. are states of process 7 and
S5, 8"

%, s, ... are states of process j.

4. Monitoring Algorithm

To monitor XDTL formulae in a decentralized way, we
synthesize distributed monitors as follows. For each pro-
cess there is a separate monitor, called a local monitor,
which checks the local XDTL formulae and can attach addi-
tional information to any outgoing message. This informa-
tion can subsequently be extracted by the local monitor on
the receiving side without changing the underlying seman-
tics of the distributed program. The local monitor of each
process ¢ maintains a KNOWLEDGEVECTOR data-structure
KV;, storing for each process j in the system the status of
all the safety policy sub-formulae and sub-expressions re-
ferring to j that ¢ is aware of. The knowledge vector K'V; is
appended to any message sent by i. When performing an in-
ternal computation step, the status of the local formulae and
expressions is automatically updated in the local knowledge
vector. When receiving a message from another process, the
knowledge vector is updated if the received message con-
tains more recent knowledge about any process in the sys-
tem. To do this, a sequence number needs also to be main-
tained for each process in the knowledge vector. Unlike [6],
the entries of KNOWLEDGEVECTOR are symbolic expres-
sions instead of values. This is due to the fact that all the
logic variables referred in an expression or a formulae may
not be available at the time of evaluation of the expression
or the formula. Therefore, the evaluation of a formula or an
expression may be partial, containing the various logic vari-
ables. The logic variables in these formulae or expressions
are replaced by actual values once they become available. A
detailed discussion of the algorithm is beyond the scope of

this short paper. However, readers are referred to [6, 3] for
some of the similar ideas.

5. Conclusion

We believe that the logic XDTL presented in this pa-
per is a powerful underlying specification formalism for dis-
tributed systems. Specifications expressed as XDTL formu-
lae can be effectively monitored, even in the context of large
scale open distributed systems. However, it is worthwhile to
investigate other extensions that increase its expressiveness
without sacrificing the efficiency of monitoring.

Acknowledgements

The first three authors are supported in part by the DARPA
IPTO TASK Program, contract F30602-00-2-0586, the
DARPA IXO NEST Program, contract F33615-01-
C-1907, the ONR Grant N00014-02-1-0715, and the
Motorola Grant RPS #23 ANT. The last author is sup-
ported in part by the joint NSF/NASA grant CCR-0234524,

References

[1] Ist, 2nd and 3rd CAV Workshops on Runtime Verification
(RV’01 - RV’03), volume 55(2), 70(4), 89(2) of ENTCS. El-
sevier Science: 2001, 2002,

[2] R. Aumann. Agreeing to disagree. Annals of Statistics, 4(6),
1976.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
based runtime verification. In Proceedings of 5th Interna-
tional Conference on Verification, Model Checking and Ab-
stract Interpretation (VMCAI’04), volume 2937 of LNCS.

[4] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[5S] B. Meenakshi and R. Ramanujam. Reasoning about mes-
sage passing in finite state environments. In Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP’00), volume 1853 of LNCS.

[6] K. Sen, A. Vardhan, G. Agha, , and G. Rosu. Efficient decen-
tralized monitoring of safety in distributed systems. In Pro-
ceedings of 26th International Conference on Software Engi-
neering (ICSE’04) (To Appear).

