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Abstract 

In model-based development of reactive systems, 

statecharts are widely used for formal design of system 

behavior, and provide a sound basis for analysis and 

verification tools, as well as for code generation from 

system models. We present an approach for dynamic 

analysis of reactive systems via run-time verification of 

code produced with Statemate C and MicroC code 

generators  [10],  [15].  The core of the approach is 

automatic creation of monitoring statecharts from 

formulas that specify the system's behavioral properties in 

a proposed assertion language. Such monitors are then 

translated into code together with the system model, and 

executed concurrently with the system code. This 

approach leads to a more realistic analysis of reactive 

systems, as monitoring is supported in the system's actual 

operating environment. For models that include design-

level attributes (division into tasks, etc.), this is crucial for 

performance-related checks, and helps to overcome 

restrictions inherent in simulation and model checking.  

1. Introduction 

Development of reliable reactive systems is a 

significant challenge, especially due to their complex 

behavior. There has been a great deal of research on the 

development of formal methods for specification, design, 

analysis and verification of reactive systems.  

For precise specification of system behavioral 

properties, various types of temporal logic are widely 

used. These include LTL  [14], which offers special 

temporal operators for reasoning about past and future 

properties of behavioral sequences, and MTL  [5], which 

supports expression of real-time constraints through 

definition of duration for future temporal operators. Some 

specification formalisms suggest various kinds of syntax 

sugar that make the specification task more user friendly 

for designers who are not logicians. For example, with the 

LA language in  [18], temporal properties look as a 

combination of stylized  English  with C-like  expressions.  

In  [3], the temporal logic details are hidden "behind the 

scenes", and instead, patterns are used that allow to specify 

common properties (such as existence, absence, response, 

precedence, etc.) and scope in which the property should 

hold. This approach is used, for example, in a Statemate 

verification tool called ModelCertifier  [16] that offers a 

rich library of pre-defined property patterns, where each 

pattern looks as a parameterized natural language 

sentence. Paper  [6] introduces a language for pattern 

definition as a way to create extendable sets of property 

patterns. Sugar  [19] provides several layers for property 

specification and verification; in particular, extended 

regular expressions are used to describe execution 

sequences on which temporal properties are checked. 

On the other hand, model-based system development 

has become the way to design, implement and validate 

reactive systems. Statecharts, first introduced in  [9], have 

become a standard for behavior design in popular model-

based methodologies such as structured and object-

oriented design  [7]. Various tools (e.g., Statemate  [10], 

Rhapsody  [9], BetterState  [20]) support the creation of 

executable models using statecharts, and their analysis 

through simulation, execution of automatically generated 

code, and, in Statemate, verification. Ongoing research on 

model-based testing covers, among other issues, test 

generation from statechart models  [4]. 

One powerful method of dynamic analysis is run-time 

monitoring of system execution. A number of tools have 

been developed for monitoring various types of programs 

(including real-time systems); see, for example  [1],  [2], 

 [18]. The relevant assertion languages allow for 

expressing a wide range of properties in terms of events 

that occur in the running code, and for defining tool 

reactions when a violation is found or when the run was 

successful. An important problem here is the gap between 

the system specification, which usually refers to high-level 

objects, and monitors, which refer to implementation-level 

events (such as function calls, etc.). Some issues related to 

derivation of monitors from system specification are 

considered in  [17].  



Model-based development leads to a narrowing of this 

gap, as monitoring can be performed on the model (rather 

than the implementation) level. Statemate  [10] supports 

the use of the so-called watchdog (testbench) statechart. 

Such a chart is not part of the system model; its role is 

either that of a driver (acting as an environment and 

producing system inputs) or a monitor (watching the 

system for proper behavior or abnormalities). To perform 

its role, the watchdog is executed in parallel with the 

model. Violation of the monitored property can be 

expressed and observed as entering an error state in the 

monitor chart. For example, Fig. 1 shows a simple 

statechart for monitoring the following requirement: 

"Processing of a request must be accomplished within 5 

seconds, and before receiving the next request".   

An important feature of monitor statecharts is that they 

have access to all elements in the system model. In other 

words, visibility from the monitor is supported both for 

observable elements (events, conditions and data items) 

that belong to system's interface with the environment, and 

for internal elements such as states or events used for 

internal communication between system components. This 

allows for both black box and more detailed white box 

monitoring, and makes localization of design problems 

easier.

2. What is in this paper 

This paper presents an approach to dynamic analysis of 

reactive systems modeled with statecharts using Statemate. 

The basic goal here is to reveal errors (rather than to 

validate or show correctness). 

The analysis is based on run-time monitoring of code 

generated from the system model. The code is checked 

against the system specification describing the required 

and forbidden behaviors; these are expressed in a proposed 

assertion language described below. The main idea 

underlying this approach is the automatic creation of 

monitors directly from the system specification. This is 

achieved through translation of the specification into an 

equivalent watchdog statechart(s). This step is followed by 

generating code from the system model and from the 

created monitor (using the existing Statemate C code 

generator), and their simultaneous execution. Appropriate 

diagnostics  is produced during the execution and/or upon  

its completion.  

The suggested approach has a number of advantages, 

and is especially helpful in situations where the use of 

other analysis tools (e.g. of model checkers such as 

Statemate ModelCertifier  [16]) becomes problematic:  

- There is no restriction on the size of the tested model, 

and execution of compiled code (for model and monitor) is 

fast. On the other hand, model checking may become slow 

for very large real-world models.    

- Generated code for the system and its monitor is 

executed in real time. Even though such code is usually 

considered prototype quality, it is fast enough and allows 

for meaningful checks of time constraints (unless they are 

tighter than the code performance). Such checks are 

beyond the scope of simulation and model checking tools 

that are based on simulated time schemes described in 

 [12]: synchronous (for clock-driven systems) and 

asynchronous (for event-driven systems). In the 

synchronous scheme duration of all steps is the same, 

regardless of how "heavy" the executed actions are. In the 

asynchronous scheme, steps take zero time, and the system 

executes a chain of steps until stabilization; only then is 

the clock advanced and inputs accepted. These 

abstractions are based on the assumption that the system is 

fast enough to complete its reactions to external stimuli 

before the next stimulus arrives. Real time monitoring 

allows one to check whether this assumption is correct. 

- Our approach allows monitoring of code generated 

from the Statemate model augmented by design attributes 

(showing the system division into tasks of various types, 

mapping model elements into events of the target RTOS, 

etc.). For such models, the MicroC code generator  [15] 

automatically creates a highly optimized production 

quality code for the OSEK operating system, widely used 

in the automotive industry for embedded microcontroller 

development. Thus the code can be executed and 

monitored in its realistic hardware-in-the-loop operating 

environment. This kind of analysis is impossible with 

model checking. 

- Model checking requires that all data be properly 

restricted, to guarantee that a finite state model is 

analyzed. This requirement is problematic for input data, if 

there is not enough information about the system 

environment. No such restrictions are relevant for 

monitoring, and moreover, monitored code derived from 

the system model can be connected to real sources of input 

data.    

3. Assertion language 

To specify and monitor real-time properties of reactive 

systems, we use an assertion language that integrates a 

number of powerful features found in temporal logic and 

in FORMAN language (the latter was introduced in [1], 

[2], and is used  in a number of tools): 

- Boolean expressions can refer to any elements in the 

system model, and express properties of system 



configurations. For example: in(S) and (x>5) means that 

currently the system is in state S and x is greater than 5.  

- Regular expressions allow for description of state 

sequences. Consider for example, the expression: 

[SELECT (Open | Read | Write | Close) FROM ex_program ] 

SATISFY Open (Read | Write )* Close 

This assertion requires to select execution trace states 

matching one of the given patterns, and to check the 

sequence of selected states for conformance with the 

regular expression. 

- Temporal formulas express order properties fulfilled 

by system execution sequences. They are built using 

unrestricted future temporal operators NEXT, ALWAYS, 

EVENTUALLY, UNTIL and their past counterparts: 
PREVIOUS, ALWAYS_WAS, SOMETIME_WAS, SINCE.

Following  [14], we consider formulas for the following types of 

properties (where P is a past formula):
   Safety: ALWAYS (P)   

   Guarantee: EVENTUALLY (P)

   Obligation: Boolean combination of safety and guarantee 

   Response: ALWAYS (EVENTUALLY(P) )

   Persistence: EVENTUALLY (ALWAYS(P) )

   Reactivity: Boolean combination of response and persistence. 

According to  [14], any temporal formula is equivalent to a 

reactivity formula; the other five types of formulas are 

allowed for more flexibility.  For convenient expression of 

real-time constraints, we support also a restricted version of 

the above operators; it is obtained by attaching appropriate 

time characteristics. For example, ALWAYS(10)P means 

that P is continuously true during 10 time units after the 

current moment, while SOMETIME_WAS (10) P denotes that 

P was true at least once in the 10 previous time moments. 

With this extension, P in the above formulas is now 

allowed to be a restricted (future or past) formula. Note 

that we don't allow an unrestricted temporal operator to be 

nested within a restricted one.

- Actions define what should be done when a property 

violation is found, or when the property holds for the 

checked run. Typically, this includes sending an 

appropriate message. In general, any user-defined 

functions can be used here to provide a meaningful report 

that may include, for example, interesting statistics and 

other profiling information (frequency of occurrence for 

certain event, total time spent by the system in certain 

state, etc.). For this, actions can use the appropriate 

attributes of the referred objects (e.g., the time at which a 

certain interval was entered). 

The examples in section 4 illustrate the use of this 

assertion language. Since the language is based on 

constructs described elsewhere (see  [14],  [12] and  [1]), 

detailed description of its syntax and semantics is omitted 

from this paper. Nevertheless, one delicate issue should be 

mentioned here. System specification usually assumes 

infinite execution sequences (as a reactive system has an 

ongoing interaction with its environment). 

Correspondingly, the traditional semantics of temporal 

operators is also defined for infinite execution sequences. 

However, monitoring usually deals with finite (truncated) 

runs, and this requires a proper definition of the semantics 

for cases when there is doubt as to what would have been 

the property formula value if the execution had not been 

stopped. Paper  [7] studies several ways of reasoning with 

temporal logic on truncated executions. We follow the so 

called neutral view discussed in  [7]; this is illustrated by 

the following example. Consider the assertions: 

   ALWAYS (P  EVENTUALLY (10) Q) 

   ALWAYS (P  ALWAYS (10) Q)  

and suppose that the run is completed (truncated) 4 

seconds after the last occurrence of event P (we assume 

that each of the properties held for all earlier occurrences 

of P).  If there was no Q after the last P, then the first 

assertion is considered to be false for this run (even though 

continuation of the run could reveal that Q does occur in 

10 seconds after P, as required).  On the contrary, if Q held 

continuously after the last P and until the end of the run, 

then the second assertion is considered to be true. In 

general, it is the user's responsibility to make the on-satisfy 

and on-failure actions detailed enough, so that he can 

better understand the monitoring results (e.g. whether a 

real violation was found, or it is in doubt due to the state at 

which the execution was truncated).  

4. Examples 

To illustrate our approach, we consider the Early 

Warning System (EWS) example from  [12]. We present 

its verbal description followed by the statechart presenting 

the behavioral design of the system. We then give 

examples of assertions and, for one of them, show its 

translation into a monitor statechart according to our 

translation scheme.  

The EWS receives a signal from an external source. 

When the sensor is connected, the EWS performs signal 

sampling every 5 seconds; it processes the sampled signal 

and checks whether the resulting value is within a 

specified range. If the value is out of range, the system 

issues a warning message on the operator display. If the 

operator does not respond to this warning within a given 

time interval (15 seconds), the system prints a fault 

message and stops monitoring the signal. The range limits 

are set by the operator. The system is ready to start 

monitoring the signal only after the range limits are set. 

The limits can be redefined after an out-of-range situation 

has been detected, or after the operator has deliberately 

stopped the monitoring. 

Fig. 2 shows a statechart describing the EWS, similar 

to the one in  [12]. The main part of EWS behavior is 



detailed in state ON. It contains two AND-components that 

represent the EWS controller and the sensor acting 

concurrently.  Events DO_SET_UP, EXECUTE, and RESET

represent the commands that can be issued by the operator. 

Timing requirements are represented by delays that trigger 

the corresponding transitions. The AND-components can 

communicate; for example, see event CONNECT_OFF sent 

from the controller component to the sensor component. 

Following are four examples of assertions that reflect 

some of the above requirements for EWS: 
1)   ALWAYS (EXECUTE  SOMETIME_WAS (DO_SET_UP))  

(monitoring of signal should be preceded by setting range 

limits) 

2)   ALWAYS (OUT_OF_RANGE 

       EVENTUALLY (15) (RESET or started(PRINT_ALARM)) 

(in the out-of-range situation, within 15 seconds either the 

operator responds or a fault message is printed) 

3)   ALWAYS ( 

      ALWAYS_WAS (15) (in(DISPLAY_ALARM) & not RESET)   

   started(PRINT_ALARM))  

(a similar property, this time expressed using the past 

temporal operator)  

4)   ALWAYS (FINISHED_SAMPLING    

  ALWAYS (5) in(IDLE)  or EVENTUALLY(5)CONNECT_OFF)  

(after signal sampling is finished, there is a 5-second pause 

before the next sampling, unless the sensor is 

disconnected)   

Note that the first assertion is violated for the given 

statechart; this happens in the following scenario: 

POWER_ON; CONNECT_ON; EXECUTE. The other 

assertions are valid as long as the system remains in its ON

state (i.e., POWER_OFF doesn't occur), but otherwise can 

be violated.  

Fig. 3 shows how the second of these four assertions is 

translated into a monitor statechart. Suppose POWER_OFF

occurs 7 seconds after OUT_OF_RANGE, and there was no 

RESET in this interval. If the system remains in state OFF

for at least the following 8 seconds, then the monitor will 

enter its state D, thus indicating a violation of the 

monitored assertion.  

5. Implementation Outline 

Statemate Boolean expressions obtained from basic 

predicates (like in(DISPLAY_ALARM)), guarding conditions, 

and event occurrences are directly visible from monitor 

statechart; in this sense, their monitoring is trivial. In 

monitors created to watch temporal and timing properties, 

such expressions can be used as transition triggers, similar 

to the example in Fig.1.  

In the rest of this section, we present an outline of a 

translation scheme for restricted and unrestricted temporal 

formulas allowed by our assertion language (see section 3 

above). Though not fully formalized here, the presentation 

clearly shows the technique used for generation of 

monitors from assertions.  

Let P, Q, S denote basic Boolean formulas, which do 

not contain any temporal operators, and let FRM denote 

any formula.  

Then P  Q means that P is used as a trigger to start 

monitoring of formula Q; for each occurrence of P, a new 

thread of Q monitoring should be started. Absence of the 

trigger (P  …) means that the start of execution is the 

only trigger event. 

If a formula includes only restricted future temporal 

operators, like in 
FRM  P  TL_Operator (N1) TL_Operator (N2) …. 

TL_Operator (Nk ) S  

then its value becomes known after (i.e. it needs to be 

monitored during), at most,    t(FRM) = N1 + N2 + … + Nk 

time units from the triggering event P. For example:

            P  ALWAYS(5) EVENTUALLY(10) S 

is monitored during, at most, 15 time units from the 

triggering event P. For each step within the monitoring 

interval we have to know the Boolean values of all basic 

sub-formulas in the FRM. This is sufficient to determine, 

after t(FRM) time units, whether FRM is true or false for the 

particular occurrence of the trigger event P.

Every restricted future formula is translated into a chart 

containing two designated states: accepting state F, and 

rejecting state D; there are no transitions exiting from F

and D in such a chart. The value of the formula is true 

when computation ends in F, and false when it ends in D.

If execution of the monitored system is truncated before 

completion of the formula computation, then (in the spirit 

of the neutral view as defined in  [7]) the value is decided 

to be true for the ALWAYS-formula and false for the 

EVENTUALLY-formula. 

As an illustration, Fig. 4 schematically shows the 

translation pattern for FRM ALWAYS (N) P, where P itself 

is either a basic or a restricted future formula. Translation 

is defined by structured induction, starting from the case 

when P is a basic formula. Note that each advance of the 

clock by one time unit causes a new thread of computation 

for P to be started. Each thread is represented in the chart 

by a separate AND-component; there are N such 

components. This number is known based on an analysis 

of the translated formula. 

Fig. 5 shows a translation pattern for a safety assertion 

where the unrestricted operator ALWAYS is applied to the 

restricted formula P (the actual structure of state P in each 

thread is defined by translation rules for restricted 

formulas). In this case, as long as P holds the value true, 



we should continue the ongoing computation of P.

Whenever the monitor enters its D state, the value of the 

formula becomes false; otherwise (including the case of 

truncated execution), the value is true. Note that since 

obtaining a value of P may require up to t(P) time units, 

there are t(P) threads computing P. When a cycle of P

computation is completed with the value true (the 

component reaches its F state), it is restarted again. Also 

note the delays: RESTART_P_i is defined in such a way that 

with each advance of the clock by one time unit, a new 

cycle of P computation is started. Restarting P

immediately upon its completion in state F would have 

caused a violation of such synchronization in case a 

certain cycle takes less time than t(P). This, in turn, could 

lead to wrong computation of the entire formula.  

To implement EVENTUALLY (ALWAYS(P)), we have to 

restart computation of ALWAYS(P) whenever it gets the 

value false, i.e., when the chart in Fig. 5 enters state D (at 

the top level of the hierarchy). In other words, such 

implementation can be obtained by redirecting the 

transition from D back to the AND-state. 

Implementation of dual formulas (where ALWAYS is 

replaced by EVENTUALLY and vice versa) is similar to the 

described above, with appropriate replacement of F-states 

by D-states and vice versa.  

For restricted past formulas we need to monitor only 

the finite segment of the execution in order to decide 

whether the formula is true or false. Consider, for 

example, ALWAYS_WAS (N) P which means "during N time 

units preceding the current moment, P was continuously 

true". Implementation uses a counter CP associated with 

the formula; on each advance of the clock, if P is true then 

CP is incremented, and if P is false then CP is set to 0. 

Now ALWAYS_WAS (N) P is true at the current moment, iff 

CP=N.

Similarly, for SOMETIME_WAS (N) P that means "from 

the current moment in at least N previous steps P was true 

at least once", the implementation will use the counter CP

in the following way: On each advance of the clock, if P is 

true then CP is set to N, and if P is false then CP is 

decremented by 1. Now, SOMETIME_WAS (N) P is true at 

the current moment, iff CP > 0 at the current moment. 

6. Conclusions and future work 

The paper presents an approach to dynamic analysis of 

reactive systems via run-time verification of code 

generated from Statemate models.  The approach is based 

on the automatic creation of monitoring statecharts from 

formulas that specify the system's temporal and real-time 

properties in a proposed assertion language. The 

promising advantage of this approach is in its ability to 

analyze realistic models (with attributes reflecting the 

various design decisions) in the system's realistic 

environment.  This capability is beyond the scope of 

simulation and model checking tools. 

Several experiments have been carried out, that 

included manual creation of monitor charts from assertion 

formulas and their use with C code generated from 

Statemate models (EWS considered in section 4, and some 

others). This helped in a more accurate definition of the 

translation scheme. 

The natural next step is actual implementation of the 

translation from the assertion language into statechart 

monitors, which is the core of the suggested approach, and 

use of created monitors with real-world system models.   

The assertion language needs to be more convenient 

for designers. A possible way to achieve this is to adopt 

some of the ideas discussed in  [3],  [6],  [18],  [19]. This will 

require an appropriate adaptation of the translation 

scheme.  

The system described above for statechart run time 

monitoring is under development. The suggested 

translation scheme provides a uniform mechanism for 

automatic creation of monitors, although some examples 

show that, in certain cases, more compact and optimized 

monitors can be produced. Further research is needed to 

define a more efficient translation scheme, both for 

synchronous and asynchronous time models. 

Finally, an interesting challenge is to check a similar 

approach with a UML-based design paradigm that uses an 

OO version of statecharts for behavior description. Here 

an additional advantage could be in monitoring of systems 

where objects are created dynamically such that their 

amount is not limited in advance (model checking analysis 

of such systems is clearly problematic).    
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Figure 2. Statechart for Early Warning System  

Figure 3. Monitor chart for the assertion  
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Figure 5. Translation pattern for formula ALWAYS  P
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/RES:=false 

.....  

Maximum time needed to compute value   
of  formula FRM:  

  t(FRM) = N  

Computation may finish in less than N time units  

Case 1:   
-------  
P a is basic formula 

Maximum time needed to compute value of formula FRM:  
t(FRM) = N + t(P)  

Case 2:  
-------
P contains only restricted temporal operators                  

All components 
are in F / RES:=true 

At least one component  
is in D / RES:=false 

Figure 4. Translation patterns for formula ALWAYS (N) PP

D

COMP_N  

P

F D

START_P 

IDLE

RESTART_P_N/  
RES:=true  

dly(N)/ 
TN:=CURR_TIME  

COMP_0  

P

F D

START_P  

RESTART_P_0/  
 RES:=true  

/T0:=  
 CURR_TIME  

COMP_2 

P

F D

START_P 

IDLE 

RESTART_P_2/ 
RES:=true 

dly(2)/ 
T2:=CURR_TIME 

COMP_1  

P

F D

START_P  

IDLE  

RESTART_P_1/  
 RES:=true  

dly(1)/ 
T1:=CURR_TIME  

...

...

COMP_N  

P

F D

START_P 

IDLE

COMP_0  

P

F D

START_P  

COMP_2 

P

F D

START_P 

IDLE 

COMP_1  

P

F D

START_P  

IDLE  

RESTART_P_N/  
RES:=true  

dly(N)/ 
TN:=CURR_TIME  

RESTART_P_0/  
 RES:=true  

/T0:=  
 CURR_TIME  

RESTART_P_2/ 
RES:=true 

dly(2)/ 
T2:=CURR_TIME 

RESTART_P_1/  
 RES:=true  

dly(1)/ 
T1:=CURR_TIME  

/RES:=false  

...

...

P is a resticted formula:  t(P) = N             
===================================             

RESTART_P_i = dly(N - mod(CURR_TIME-Ti, N))                                              At least one                            
component is in D /                      
          RES:=false              


