Proceedings of the

Second International
Workshop on Dynamic Analysis
(WODA 2004)

Edinburgh, Scotland
25 May 2004



Introduction

Dynamic analysis captures a broad spectrum of program analyses that deal with data produced at program
execution time. WODA 2004 brings together researchers and practitioners working in all areas of loosely
defined dynamic analysis. The program committee selected 11 high quality papers from 22 submissions. Every
paper was reviewed by at least three program committee members.

The workshop papers cover a variety of topics spanning the use and implementation of dynamic analysis
techniques: error localization, test case selection and testing effort focus, runtime system monitoring, memory
leak detection, temporal logics, performance analysis, and hardware assisted data breakpoints. Dynamic analysis
impacts numerous large specialized fields. Real-time system scheduling, consistency analyses of distributed
systems, system modeling and garbage collection all have at their core dynamic analyses. Work in dynamic
analysis also needs to consider application domains. Different application domains require varying dynamic
analyses: embedded systems may not contain enough memory or processing power for online analyses, while
critical database systems may not be able to be stopped for offline instrumentation.

All this variety of factors makes dynamic analysis a rich and fascinating research field. The workshop’s goal is
to bring together researchers in the area to better define the field, share results and ongoing works, and foster
collaborations. We think that the most exciting new results occur through cross-fertilization of various research
fields. Our goal is to encourage interaction, idea exchange and brainstorming, not to produce a mini-conference.
Thus the workshop contains both technical and position paper presentations and discussion periods.

We thank all of the authors who submitted papers for WODA 2004; the program committee and additional
reviewers, who provided thorough and thoughtful reviews of the submitted papers; the ICSE workshop
organizers; and all workshop attendees. We hope you find WODA 2004 a rewarding and enjoyable experience.

David Evans, University of Virginia Raimondas Lencevicius, Nokia Research Center, USA

WODA 2004 General and Program Co-Chairs

Program committee members:
Jonathan Cook, New Mexico State University, USA
Michael Ernst, Massachusetts Institute of Technology, USA
Neelam Gupta, University of Arizona, USA
Welf Lowe, Vaxjo University, Sweden
Markus Mock, University of Pittsburgh, USA
Gail Murphy, University of British Columbia, Canada
John Stasko, Georgia Institute of Technology, USA
Andreas Zeller, Universitat des Saarlandes, Germany

Additional reviewers:
Joel Winstead, University of Virginia
Jinlin Yang, University of Virginia

Workshop website: http://www.cs.virginia.edu/woda2004/



Proceedings of the Second International Workshop on Dynamic Analysis

Table of Contents

Session 1:
Using Static Analysis to Determine Where to Focus Dynamic Testing Effort
Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell

Deriving State-Based Test Oracles for Conformance Testing
James H. Andrews

Towards Defining and Exploiting Similarities in Web Application Use Cases through User Session Analysis 17

Sreedevi Sampath, Amie L. Souter, and Lori Pollock

Session 2:
Precise Detection of Memory Leaks
Jonas Maebe, Michiel Ronsse, and Koen De Bosschere

On Specifying and Monitoring Epistemic Properties of Distributed Systems
Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu

Ideas for Efficient Hardware-Assisted Data Breakpoints
Jonathan E. Cook and Mayur Palankar

Session 3:
SAAT: Reverse Engineering for Performance Analysis
Seon-Ah Lee, Seung-Mo Cho, and Sung-Kwan Heo

Performance Data Collection: A Hybrid Approach
Edu Metz and Raimondas Lencevicius

Using Runtime Information for Adapting Enterprise Java Beans Application Servers
Mircea Trofin and John Murphy

Session 4:
Efficient Specification-Assisted Error Localization
Brian Demsky, Cristian Cadar, Daniel Roy, and Martin Rinard

Run Time Monitoring of Reactive System Models
Mikhail Auguston and Mark Trakhtenbrot

25

32

36

40

48

52

60

68






Using Static Analysis to Determine Where to Focus Dynamic Testing Effort

Thomas J. Ostrand
AT&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932
ostrand @research.att.com

Abstract

We perform static analysis and develop a negative bino-
mial regression model to predict which files in a large soft-
ware system are most likely to contain the largest numbers
of faults that manifest as failures in the next release, using
information from all previous releases. This is then used to
guide the dynamic testing process for software systems by
suggesting that files identified as being likely to contain the
largest numbers of faults be subjected to particular scrutiny
during dynamic testing. In previous studies of a large in-
ventory tracking system, we identified characteristics of the
files containing the largest numbers of faults and those with
the highest fault densities. In those studies, we observed
that faults were highly concentrated in a relatively small
percentage of the files, and that for every release, new files
and old files that had been changed during the previous re-
lease generally had substantially higher average fault den-
sities than old files that had not been changed. Other char-
acteristics were observed to play a less central role. We now
investigate additional potentially-important characteristics
and use them, along with the previously-identified charac-
teristics as the basis for the regression model of the cur-
rent study. We found that the top 20% of files predicted by
the statistical model contain between 71% and 85% of the
observed faults found during dynamic testing of the twelve
releases of the system that were available.

Keywords: Software Faults, Fault-prone, Prediction, Re-
gression Model, Empirical Study, Software Testing.

1. Introduction and Earlier Work

Much of today’s industry relies on software systems, and
requires that they behave correctly, perform efficiently, and
can be produced economically. For these reasons, it is im-
portant that we dynamically test systems to identify faults
residing in the code. For large systems, this can be a very
expensive and difficult process. Therefore, we want to de-

Elaine J. Weyuker
AT&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932
weyuker @research.att.com

Robert M. Bell
AT&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932
rbell @research.att.com

termine which files in the system are most likely to contain
the largest numbers of faults that lead to failures and pri-
oritize our testing effort accordingly. In that way we min-
imize the cost of testing and maximize the effectiveness of
the process. In order to do this, we have been investigat-
ing how to use data residing in a combined version control
and change management system used during all stages of
development, testing, and field release, to improve dynamic
testing.

Preliminary work was reported in an earlier paper [10]
which described a case study involving an industrial inven-
tory tracking system, developed over a three year period,
covering twelve quarterly releases. The goal of that research
was to do static analysis to identify structural characteristics
that are associated with files that contain particularly large
numbers of faults as determined by reported failures. The
data used for the static analysis resides in the combined ver-
sion control/change management system with some of the
data determined by statically analyzing the code while other
data were identified during the dynamic testing phase.

Data in this repository were collected during each of nine
development phases including requirements, design, devel-
opment, unit testing, integration testing, system testing, beta
release, controlled release, and general release. In this pa-
per we will describe the use of this information to develop
a statistical model to predict where faults are most likely to
reside in the code, which in turn can be used as an integral
part of the dynamic testing process. Thus our process relies
on a complex interplay between static and dynamic analy-
sis, and data associated with both of these types of analysis.

Our earlier studies considered the extent to which faults
clustered in a small proportion of files, and looked at file
characteristics such as size, age, whether the file is new to
the current release, and if not, whether it was changed dur-
ing the prior release, the number and magnitude of changes
made to a file, the number of observed faults during early
releases, and the number of faults observed during early de-
velopment stages.

Most of the previous research in this area, including



our earlier work [10], and that by other authors described
in[1, 2, 3, 5, 8, 9], was aimed at examining software sys-
tems to establish characteristics that may be associated with
high incidences of faults. In this paper, we go beyond
merely identifying characteristics and successfully build a
statistical model that can predict the incidence of faults in
future versions of a system. Specifically, this model is used
to predict the number of faults that will occur in each file
during the next release, based on current characteristics of
the file and its behavior in earlier releases. By selecting
the set of files that are predicted to account for a large per-
centage of the faults in the next release, we can encourage
testers to use that information to prioritize and focus their
(dynamic) testing efforts.

Thus our goal is to accurately identify a relatively small
percentage of the files that contain a large percentage of the
faults. Of course, there is no guarantee that all faults, or
even the most dangerous faults, will be located by this ap-
proach. However, if the prediction allows a large majority
of all outstanding faults to be identified more rapidly than
they would otherwise be found, then more resources will be
available for additional testing to ferret out the remaining
ones, or the process can be completed more quickly, and
hence cheaply, with equal success.

The work by Graves et al. [4] is most similar to ours,
as they also construct models to predict fault-proneness. In
contrast to Graves et al., however, our model makes pre-
dictions for individual files of the system, rather than for
modules that are collections of files as was done in [4]. The
fact that the granularity of the entities we use in our static
analysis is significantly finer than that used by Graves et al.
is important since it should facilitate the identification of
faults in a much more localized portion of the code, thereby
making debugging easier as well.

Other differences between our work and that done by the
Graves et al. group include the fact that they attempted only
a single prediction while our case study makes predictions
for each release beginning with Release 3, and continuing
through Release 12, allowing us to validate the effectiveness
of our model over a sustained period of time, with the sys-
tem at different levels of maturity. Also, their models use
the fault history of a single two-year period to predict faults
in the following two-year period, while our model uses data
from much shorter 3-month intervals to predict faults in the
following quarterly releases. This shorter interval provides
much more timely information to testers, who can use the
prediction from the current and prior releases to help focus
their testing efforts. In fact the goal of our work is to design
a process that can be used as a standard part of the develop-
ment process in an industrial environment to improve and
streamline the testing of systems requiring very high relia-
bility.

Our earlier study considered a file’s fault density, com-

puted in terms of faults per thousand lines of code (KLOCs).
In Section 3 of this paper we will describe our findings
related to several new questions regarding the number of
faults in a file. Among the new factors we consider is
whether there was a relationship between the complexity
of the file and the number of faults in a file, where complex-
ity is measured by the cyclomatic number [6] rather than
the number of lines of code. We also investigate the role of
the choice of programming language, the fault history in the
file during the previous release, and the amount of change
during the previous release.

As mentioned above, our ultimate goal is to be able to
identify a particular set of files in a new release that are de-
termined by our statistical model to be the most likely ones
to account for the largest numbers of faults. Since we have
determined in our earlier study that faults typically have a
highly skewed distribution, this should be possible to ac-
complish.

The remainder of the paper is organized as follows: In
Section 2, we describe the software system that is the sub-
ject of our case study and present some basic information
about file characteristics and the faults identified during
testing. Section 3 illustrates associations between selected
file characteristics and the number of faults identified during
a particular release. In Section 4 we present findings from
a negative binomial regression model to predict the number
of faults, in order to analyze relationships while controlling
for other characteristics. Finally, Section 5 presents conclu-
sions and describes plans for extending this work.

2. The System Under Study

The system used in this study is the same inventory track-
ing system as was used during the preliminary study [10].
As a standard part of the operating procedure for most de-
velopment projects at AT&T, whenever any change is to be
made to a software system, a Modification Request (MR) is
entered in the combined version control and change man-
agement system. Each MR includes information describing
the file(s) to be changed, the nature of the change (for ex-
ample, is this a new file being added, or a modification of
an existing one), the details of the change including specific
lines of code to be added, deleted, or changed, a description
of the change, and a severity indicating the importance of
the proposed change. These data are collected as part of the
normal development process and were therefore available
for every release of the system. It is these data that we will
statically analyze in order to use it to streamline dynamic
testing.

Some parts of the MR, such as the severity rating, are
highly subjective, and therefore may not be particularly use-
ful. Unfortunately, the standard MR format does not re-
quire the person initiating the request to indicate whether



Number of | Lines | Mean Faults Fault System Test and Later
Rel Files of Code | LOC | Detected | Density Fault Density
1 584 145,967 | 250 990 6.78 1.49
2 567 154,381 | 272 201 1.30 0.16
3 706 190,596 | 270 487 2.56 0.45
4 743 203,233 | 274 328 1.61 0.17
5 804 231,968 | 289 340 1.47 0.19
6 867 253,870 | 293 339 1.34 0.18
7 993 291,719 | 294 207 0.71 0.10
8 1197 338,774 | 283 490 1.45 0.25
9 1321 377,198 | 286 436 1.16 0.16
10 1372 396,209 | 289 246 0.62 0.09
11 1607 426,878 | 266 281 0.66 0.21
12 1740 476,215 | 274 273 0.57 0.15

Table 1. System Information

the change is due to a fault correction or to some other
reason such as performance improvement, cleaning up the
code, or changed functionality. We have now succeeded in
getting the MR form changed to include a field that explic-
itly states whether the MR was due to the identification of
a fault, but this was not available at the time that the data
described here were entered or collected, and so we needed
a way of making that determination.

Since our study included a total of roughly 5,000 faults,
and many more MRs that were categorized as being other
sorts of changes, it was impossible to read through every
MR to make that determination. We therefore needed a
heuristic and used a rule of thumb suggested by the test-
ing group that an MR likely represents a fault correction if
either exactly one or two files were modified. In an infor-
mal attempt to validate this hypothesis, we sampled a small
number of MRs by carefully reading the text description of
the change. In the small sample space, nearly every MR
that modified one or two files was indeed a fault fix, and
every MR that modified a larger number of files (sometimes
as many as 60 files) was not a fault correction, but rather a
modification made for some other reason. For example, if
a new parameter was added to a file, every file that called it
had to be modified accordingly.

Changes can be initiated during any stage from require-
ments through general release. For most development envi-
ronments, change recording begins with integration or sys-
tem test, when control leaves the development team and
moves to an independent testing organization. For this sys-
tem, however, MRs were written consistently from require-
ments on. Almost three quarters of the faults included in
this study were identified during unit testing done by devel-
opers.

The final version of the system used in these studies (Re-
lease 12) included more than 1,700 separate files, with a to-

tal of more than 476,000 lines of code. Roughly 70% of
these files were written in java, but there were also small
numbers of shell scripts, makefiles, xml, html, perl, c, sql,
awk, and other specialized languages. Non-executable files
such as MS Word, gif, jpg, and readme files were not in-
cluded in the study.

Over the three year period that we tracked this system,
there was a roughly three-fold increase in both the number
of files and lines of code. At the same time, there was a
significant concentration of identified faults in files, going
from appearing in 40% of the files in Release 1 to only 7%
of the files by Release 12. One might hypothesize that the
increased fault concentration was simply a reflection of the
fact that the system was three times larger. However, when
the absolute numbers of files containing faults was consid-
ered, this fault concentration was also apparent. For exam-
ple, in Release 1, a total of 233 (of 584) files contained any
identified faults, by Release 8 only 148 (of 1197) files con-
tained any identified faults, and by Release 12, only 120 (of
1740) files contained any identified faults at all.

One important decision that had to be made involved
exactly how to count the number of faults in a file. If n
files were modified as the result of a failure, then this was
counted as being n distinct faults. This is consistent with
the convention used in References [8] and [3]. This implies
that each fault was associated with exactly one file.

Table 1 provides summary information about the first
twelve releases of the system, including lines of code and
faults. New files typically represent new functionality,
while changed files generally represent fault fixes. As the
system matured and grew in size, the number of faults
tended to fall, with the largest decrease occurring from Re-
lease 1 to Release 2. As one might expect, there is also
a general downward trend in the fault density as the sys-
tem matured, with some exceptions including Release 2.



O < = B2

F
a
u
1
t
P
e
r
¢
e
n
t
0+ ;
0 10
release — 1

20 30 40

Figure 1. Fault Distribution for Releases 1, 6, 8, 10, 12

The large dip at Release 2 likely occurred because it was
an interim release. While other releases all occurred at
roughly three month intervals, Release 2 occurred between
Releases 1 and 3, which were themselves done three months
apart. This likely led to a decreased number of faults iden-
tified during Release 2, and hence a decreased fault density.

The last column of the table restricts attention to those
faults identified during system test or later. As mentioned
above, it is uncommon for faults identified during earlier
stages of development to be included in a fault-reporting
system. Therefore, the system test fault densities are likely
to be more comparable to fault densities reported in other
empirical studies. Recall too, that for this system, gener-
ally one quarter or fewer of the faults at any release were
identified during system test or later.

3. Fault Concentration and Potential Explana-
tory Factors

In this section we discuss various potential additional
factors not considered in our earlier work that might ex-
plain the differential fault concentration in files. Once these
factors are understood, we will use them to build a statisti-
cal model that statically analyzes the software, to guide its
dynamic testing.

3.1 Concentration of Faults

Ostrand and Weyuker [10] reported that faults for this
system tended to concentrate in a relatively small proportion
of files at every release. We repeat here Figure 1 which orig-
inally appeared in [10], showing the concentration of faults
in Releases 1, 6, 8, 10, and 12. For clarity, we showed data
for only a sampling of the releases. The selected releases are
representative of the other releases that were not included.
We found that when too many releases were shown on the
same graph, it became impossible to distinguish among the
lines and therefore the import of the data was lost.

The files in each release are sorted in decreasing order
of the number of faults they contain. A point (z,y) on the
Release R curve represents the fact that x% of the files in
Release R contain y% of the faults. For example, at Re-
lease 1, the ten percent of files with the most faults (58 files)
had 669 faults, representing 68% of the total for Release 1.
The curves show that the proportion of faults tends to be-
come increasingly concentrated in fewer files as the system
matures.

3.2 File Size

In [10], we examined the relationship between file size
and fault density and found that there was a tendency for



5 10 20
|

2
1

Faults per File
2 5 1
1 1

B
1

.05
|

Z

1 00 200 500
Lines of Code

1 OOO 2000 4000

7
O
O
-
X Q/s\/\ﬂ
& oy -
8C\.I

9 6\6/6/6\6
(3]
o |
5 2
©
L

S

@

50 100 200 500 1000 2000 4000
Lines of Code

Figure 2. Faults and Files Grouped by Size

small files to have higher average fault densities than large
files. We now consider the relationship between file size and
the average number of faults per file, rather than considering
the average fault density. This will be done by dividing the
files for each release into bins. For a given release, we sort
the files in increasing size order, divide all of these files into
five bins with roughly equal numbers of total lines of code,
and calculate the average faults per file for files in the bin.

For example, at Release 1, the first bin contains 398 files
ranging in size from 5 to 202 lines of code, with an average
size of 73 lines. Those files have a total of 189 faults, re-
sulting in an average of 0.47 faults per file. Subsequent bins
include progressively smaller numbers (94, 48, 32, and 12)
of larger files, with increasingly more faults per file. This
relationship is shown on a log-log scale for Releases 1, 3, 6,
and 12. As noted earler, these releases were representative
of all releases and were selected to show releases at various
stages of maturity. The lefthand portion of Figure 2 shows
that there is a strong relationship between file size and the
average number of faults per file. We also look at the fault
density to see whether there are a “disproportionate” num-
ber of faults that occur in larger files than smaller ones, and
if there are, whether it might make sense to limit the per-
mitted size of files.

The righthand portion of Figure 2 shows fault densities
versus file size for the same sets of bins and releases. The
figure shows that there is little or no relationship between
fault density and file size. Graphs for the releases not shown
in this figure tell similar stories. Although the fault densi-
ties for a given release tend to be higher for the two bins
containing the largest files than for the two bins containing

the smallest ones, the relationship is not monotonic for any
of the twelve releases. Specifically, across the releases, the
bin containing the largest files has the highest fault density
for only five of the twelve releases, and the bin containing
the smallest files has the lowest fault density for only three
of the twelve releases. Moreover, when results are aggre-
gated across releases, fault densities for largest files are only
about 20% higher than for the shortest files. We therefore
conclude that file size is not a strong predictor of fault den-
sity, but might be a good predictor of the absolute number
of faults in a file.

Note that there are two points of difference from our ear-
lier analysis of fault density and size. First, in the present
study, we look at the fault density data aggregated over files
in a given size range rather than considering each file indi-
vidually. Second, we include all files: those for which faults
were detected, and those for which there were no faults de-
tected. In the earlier work the fault density was computed
only for those files that contained faults.

3.3 Program Type

Table 2 compares fault densities for the most commonly-
used program types in this system. Because fault densities
are much lower for existing files, this table only includes
results for a file at the time of its first entry into the system
(new files). The observed fault densities vary by a factor
of close to 30, with makefiles having the highest average
density and xml files the lowest.



LOC | Faults

Fault
Density

2509 58 23.12

7756 69 8.90

6875 60 8.73

5639 22 3.90

413420 | 1424 344

17619 52 2.95

5824 8 1.37

Type Files
makefile 94
sh 140
sql 80
html 52
java 1492
perl 68
c 21
xml 95

5070 4 0.79

Table 2. Fault Densities for New Files, by Program Type

4. Multivariate Analysis of the Number of
Faults

In this section we present results from negative bino-
mial regression models that predict the number of faults in
a file during a release, as a function of various file char-
acteristics. This modeling process serves three major pur-
poses. First, it provides information about the association
between the number of faults and individual file character-
istics while holding other file characteristics constant. Most
of this information is determined by statically analyzing the
code. Information about fault counts is, of course, deter-
mined by dynamic execution of the code, primarily on test
cases, but also during field operation. Data provided in [10]
showed that most faults were detected during either unit or
system testing, with only 2% of the faults detected during
field operation. The second purpose of the modeling pro-
cess is to provide a measure of the concentration of faults
beyond what is accounted for by file characteristics. This
allows us to compare the effectiveness of alternative sets of
factors. Third, the model produces predictions of the most
fault-prone files in a release, so that testing resources can
potentially be targeted more effectively. The third purpose
is the ultimate goal of this research. In Section 4.1, we out-
line the model, while in Section 4.2, we describe our find-
ings. In Section 4.3, we assess the efficacy of this strategy.

4.1 The Negative Binomial Regression Model

Negative binomial regression is an extension of linear
regression designed to handle outcomes like the number of
faults [7]. It explicitly models counts or outcomes that are
nonnegative integers. The expected number of faults is as-
sumed to vary in a multiplicative way as a function of file
characteristics, rather than in an additive relationship. Un-
like the related modeling approach, Poisson regression, the
negative binomial model allows for the type of concentra-
tion of faults apparent in Figure 1, in which we see a rela-
tively small percentage of files containing a large percent-

age of faults. This is done by adjusting inference for the ad-
ditional uncertainty in the estimated regression coefficients
caused by overdispersion.

Let y; equal the observed number of faults and z; be a
vector of characteristics for file i. The negative binomial
regression model specifies that y;, given z;, has a Poisson
distribution with mean ;. This conditional mean is given
by A; = %.65’9:17 where +; is itself a random variable drawn
from a gamma distribution with mean 1 and unknown vari-
ance o2 > 0. The variance o2 is known as the dispersion
parameter, and it allows for the type of concentration we
observed for faults. The larger the dispersion parameter, the
greater the unexplained concentration of faults. However, to
the extent that this concentration is explained by file char-
acteristics z; that are included in the model, the dispersion
parameter will decline.

4.2 Results

We used a negative binomial regression model fit to files
from Releases 1 to 12 with the unit of analysis being a file-
release combination. This yielded a total of 12,501 obser-
vations. The outcome is the number of faults predicted to be
associated with the file at the given release. All models were
fit by maximum likelihood using the procedure Genmod in
SAS/STAT Release 8.01 [11].

Predictor variables for the model are: the logarithm of
lines of code; whether the file is new, changed or unchanged
(the file’s change status); age (number of previous releases
the file was in); the square root of the number of faults in
the previous release (if any); program type; and release.
Logged lines of code (LOC), file age, and the square root of
prior faults are treated as continuous variables. File change
status, program type, and release are treated as categorical
variables, each fit by a series of dummy (0-1) variables, with
one omitted category that serves as the reference. For file
change status, the reference category is unchanged files, so
that the new and changed coefficients represent contrasts
with existing, unchanged files. For program type, the ref-
erence category is java files, the most commonly-occurring



Predictor Dispersion Amount | Percentage
Variables Parameter | Explained | Explained
Null 13.38 NA NA
LOC 5.61 7.77 58.0
Release 11.00 2.38 17.8
File Change Status 7.29 6.09 45.5
Program Type 12.88 Sl 3.8
Prior Faults 9.86 3.53 26.3
LOC, Release 391 9.47 70.8
LOC, Release, File Change Status 3.03 10.35 77.4
LOC, Release, File Change Status, Program Type 2.52 10.87 81.2
Full Model 2.27 11.11 83.0

Table 3. Estimated Dispersion Parameters Associated with Selected Models

| Release

| 3] 4] 5] 6] 7] 8] 9J10]11]12]

| % Faults Identified | 77 [ 74 | 71 [ 85 [ 77 [ 81 | 85 [ 78 [ 84 | 84 ]

Table 4. Percentage of Faults Included in the 20% of the Files Selected by the Model

type for this system. We arbitrarily set Release 12 as the
reference release.

The strongest predictor in the model is the number of
lines of code. Because the model uses the logarithm of lines
of code, a coefficient of 1.00 would imply that the expected
number of faults grows proportionally with lines of code
(i.e., that fault density is unrelated to lines of code). The
estimated coefficient was 1.047 which exceeds 1.00. This
therefore provides some evidence that fault density grows
with lines of code, holding all else equal. We note, however,
that the 95 percent confidence interval does include 1.00.

For categorical predictors, each coefficient estimates
the difference in the logarithm of the expected number
of faults for the corresponding category versus the refer-
ence category. For example, for changed files, the coef-
ficient was 1.066. This indicates that changed files have
about exp(1.066) = 2.90 times more faults than existing,
unchanged files with otherwise similar characteristics. Of
course, the changed files are more likely to have other char-
acteristics (such as prior faults) indicating a propensity for
faults at the current release.

Table 3 displays estimates of the dispersion parameter
for a series of alternative models, to help show the relative
improvement associated with individual, or groups, of pre-
dictor variables. The estimated dispersion parameter for a
null model, with no predictors, is 13.38. The best single
predictors were lines of code and the file’s change status.
Lines of code reduced the dispersion to 5.61, a reduction
of 58.0%, while file change status explained 45.5% of the
dispersion. Use of the full model reduced the dispersion
parameter to 2.27, a reduction of 83.0%.

Various other potential predictor variables were tested,

but dropped from the model because they did little to im-
prove the predictive power when added to the model. Some
of the variables that we decided to exclude because they
did not significantly improve the predictive capability of
the model included: the number of changes for files that
changed since the previous release, whether or not the files
had changed prior to the previous release, and the logarithm
of the cyclomatic number (which was computed for java
files only). The cyclomatic number measures the complex-
ity of a file by counting the number of decision statements
in the file [6]. It has been found to be very highly corre-
lated with the number of lines of code. Although the cyclo-
matic number did predict faults well in a bivariate context,
it helped very little when used in conjunction with lines of
code (both logged), especially at later releases. In contrast,
lines of code remained important even in conjunction with
the cyclomatic number.

4.3 Targeting Fault-Prone Files for Testing

We now evaluate the potential of the regression model to
improve testing productivity by prospectively identifying a
subset of files that contain disproportionately many of the
faults at the next release. At each release, beginning with
Release 3, we created predictions based on fitting alterna-
tive models using data from only the previous releases (e.g.,
predictions for Release 3 used data from Releases 1 and 2).
For each release, these predictions are used to order the files
from most to least fault-prone, based on the predicted num-
bers of faults.

Table 4 shows the percentages of actual faults contained
in the top 20 percent of files identified by the full model at
each of Releases 3 to 12. The model prospectively identified



between 71% and 85% of the faults in the system, with an
average over all releases of 80%. Of course any percentage
of the files could have been selected, but we determined that
20% was a good choice providing a large percentage of the
faults while focusing on a relatively small percentage of the
files.

5. Conclusions and Future Work

We have used static analysis to develop a negative bi-
nomial regression model as a way of predicting which files
are most likely to contain the largest numbers of faults in
a new release, and thereby prioritize effort during dynamic
testing. This prediction was done for each release by using
only data collected during earlier releases. Our initial model
was quite successful in the sense that we were able to use it
to accurately predict, on average, the 20% of the files that
corresponded to 80% of the faults.

The factors that influenced our predictions include the
size of the file, the file’s change status, the number of faults
in the previous release, the programming language, and the
file’s age. Unlike Graves et al. [4], we found that change
history before the prior release was not needed in our mod-
els. This finding may be because our models are more spe-
cific in terms of content and time since we predict faults for
individual files during a series of releases. Graves et al., in
contrast, modeled faults for modules which are large groups
of files, during a single two year period.

So far we have designed our model based on the charac-
teristics identified as most relevant for the twelve releases of
one software system. Although this is a substantial system
that runs continuously, with quarterly new releases, there
may be characteristics of this system that are atypical, and
therefore the model may not be applicable to other systems
without tuning. In addition, as the system ages, the most
important factors may change somewhat. For this reason,
it is important to apply our model to additional releases of
the inventory tracking system, as well as to other systems
with different characteristics, developed in different envi-
ronments.

We have now collected data for an additional five re-
leases of the current system, and identified two additional
industrial software systems, each with multiple releases and
years of field exposure, for which data collection and anal-
ysis have begun. Once this is complete, we will apply the
current negative binomial regression model to the data col-
lected from these systems and see whether the prediction is
as successful as we observed for the first twelve releases of
this system. If not, we may have to identify additional rele-
vant characteristics or modify the role played by the factors
by defining new weightings. We are also designing a tool to
automate the application of our prediction model.

We consider our initial results extremely promising and

look forward to the routine use of this sort of predictive
modeling to focus software testing efforts, thereby improv-
ing both the efficiency and the effectiveness of our software
testing process. We have found that using static analysis to
guide and prioritize dynamic software testing is an excellent
way of improving the testing process for this system.

References

[1] E.N. Adams. Optimizing Preventive Service of Soft-
ware Products. IBM J. Res. Develop., Vol28, Nol, Jan
1984, pp.2-14.

[2] V.R. Basili and B.T. Perricone. Software Errors and
Complexity: An Empirical Investigation. Communi-
cations of the ACM, Vol27,Nol, Jan 1984, pp.42-52.

[3] N.E. Fenton and N. Ohlsson. Quantitative Analysis
of Faults and Failures in a Complex Software Sys-
tem. [EEE Trans. on Software Engineering, Vol26,
No8, Aug 2000, pp.797-814.

[4] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. Pre-
dicting Fault Incidence Using Software Change His-
tory. IEEE Trans. on Software Engineering, Vol 26,
No. 7, July 2000, pp. 653-661.

[5] L. Hatton. Reexamining the Fault Density - Compo-
nent Size Connection. IEEE Software, March/April
1997, pp.89-97.

[6] T.J. McCabe. A Complexity Measure. IEEE Trans. on
Software Engineering, Vol2, 1976, pp.308-320.

[7] P. McCullagh and J.A. Nelder. Generalized Linear
Models, 2nd Edition, Chapman and Hall, London,
1989.

[8] K-H.Moller and D.J. Paulish. An Empirical Investiga-
tion of Software Fault Distribution. Proc. IEEE First
Internation Software Metrics Symposium, Baltimore,
Md., May 21-22, 1993, pp.82-90.

[9] J.C. Munson and T.M. Khoshgoftaar. The Detection
of Fault-Prone Programs. IEEE Trans. on Software
Engineering, Vol18, NoS, May 1992, pp.423-433.

[10] T. Ostrand and E.J. Weyuker. The Distribution of
Faults in a Large Industrial Software System. Proc.
ACM/International Symposium on Software Testing
and Analysis (ISSTA2002), Rome, Italy, July 2002,
pp.55-64.

[11] SAS Institute Inc. SAS/STAT User’s Guide, Version 8,
SAS Institute, Cary, NC, 1999.



Deriving State-Basedl'estOraclesfor Conformance Testing

JamedH. Andrews
Departmenbf ComputerScience
University of WesternOntario
London,Ontario, CANADA NG6A 5B7

Abstract

We addressthe problemof howto instrumentcodeto
log eventsfor conformanceestingpurposesand howto
write testoraclesthat processlog files. We specifically
consideroracleswrittenin languagesbasedon the state-
madine formalism. We describetwo processedor sys-
tematically deriving logging code and oraclesfrom re-
quirements.Thefirstis a processhat we haveusedand
taught,andthe seconds a more detailedprocesghatwe
proposeto increasethe flexibility and traceability of the
firstprocess.

1. Intr oduction

Testingcanbe mademore automatedandreliable by
the useof testoracles programsthat checkthe output
of otherprograms.In situationswhereit is infeasibleto
captureprograminput/outputdirectly, the softwareunder
test(SUT) mustwrite text log files of events.Theoracles
that procesgheselog files arethenreferredto aslog file
analyzers.

In contrastto otherdynamicanalysistasks,the SUT
instrumentatiomeededor writing log files is often de-
pendenton the requirementsand thus cannotbe added
automatically The sameis truefor thelog file analyzers.
We arethereforefacedwith the problemof how to insert
logging instrumentatiormanuallyand how to write log
file analyzersThis paperaddressetheseproblems.

We have recentlybeenstudyinga methodof log file
analysis(LFA) in which oraclesarewrittenin alanguage
(LFAL) basedon state machines. Our experiencesof
writing theseoracleshave led to arecommendegrocess
for moving from requirementso oraclesandloggingin-
strumentation We describethis processn Section3 be-
low, and reporton our experiencesf using and teach-
ing it. We have noticed somedeficienciesin this pro-
cess,however, andfor this workshopwe proposea new,
moredetailedprocesqSection4) with the advantageof
greatefflexibility andtraceability

We do not believe that LFA testingcanor shouldre-
placeall traditionalverificationandvalidationactuities,
but ratherthatit canactasa complemento traditional

methods enhancinghemby enhancinghe reliability of
testresultchecking. We take accountof this in our pro-
posedprocesses.Section5 discusseshe potentialben-
efits and problemsof LFA testing,especiallywith refer
enceto the proposeddevelopmentprocessesWe begin,
however, with a discussiorof the backgroundf this pa-
per.

2. Background

Testinginvolves selectingtestcasesfunningthe test
caseson the SUT, and checkingthe results. This paper
dealsprimarily with testresultchecking.Herewe answer
the questionsof why testoraclesarenecessarywhatad-
vantagesve getby runningtestoracleson log files, and
what motivatedour decisionto createa state-basethn-
guagefor writing log file analyzertestoracles. We also
describethelog file analysidanguagd_.FAL anddiscuss
work relatedto this paper

2.1.Why TestOracles?

Testoracleg18] areneededn several commonsitua-
tions. Thefirst is whentestoutputis too comple to be
checledby a human.This is the casefor applicationsas
diverseas communicatiorprotocol software and safety-
critical controlsoftware.

Whenatestcasehasbeenrun onceandthe outputhas
beenconfirmedascorrect,a commonpracticeis to store
thatoutputasa “gold file” for regressiontesting. When
thesametestcases run onanew versionof the software,
the new outputis checledto seeif it is the sameasthe
“gold” output.However, it maybevalid thatthe new out-
putis different. This canbethe case for instancejf the
relative timing of distributedeventschangeslightly.

Finally, moderncomputersystemsareoftensubjected
to randomtesting, stresstestingor load testing. In such
casesinputandsystembehaiour maynotbecompletely
predictableandthe volumeof outputmay be high.

In all of the casegnentionedabove, testresultcheck-
ing musttypically be morecomple thana simpleequal-
ity checkof outputagainststoredoutput. Thephrase'test
oracle”is usuallyresenedfor programghatdosuchmore
comple analysisof output.



2.2.Why Log Files?

Althoughtestoraclesareuseful,it is oftendifficult to
capturesoftwareinputandoutputdirectly, anddifficult to
extractrelevantinformationfrom captured/O. Theuseof
text log files addressethesdlifficulties. Text log files are
alreadyin wide usein industry wherethey aresometimes
referredto as“debugfiles” or “debuglogs”.

Modernsoftwarehasmary diverseinputsandoutputs,
includingmousenput,graphicaloutput,andnetwork and
file I/O. This canbedifficult to monitordirectly unlesghe
softwareis launchedwithin a platform-specificOS-level
sandboxthat interceptsall 1/O. If insteadthe SUT itself
logsrelevantinformationto atext file, inputsandoutputs
of diversedevicescanberecordedndirectly.

The volume and compleity of 1/0 can causeprob-
lems for direct I/O captureas well. If only someas-
pectsof correctnessareto be checled by a testoracle,
it may be that only a small part of the actuall/O of a
systemis neededfor checking. Directly capturedl/O,
suchasTCP/IPoutputof a program,may needto bere-
parsedandre-interpretedo seewhethergiven high-level
eventsto be checled for have happenedlf, instead,se-
lectedhigh-level eventsareloggedto atext file, asmaller
amountof focused gasily-parsethformationis available.

2.3.Why State-Based_og File Analyzers?

We referto a testoraclethat processesnly log files
asalog file analyzer Log file analyzerssanbewrittenin
ary programminganguagebut we have cometo believe
thatlanguagedasedon the statemachineformalismare
thebestfit for thetask,for threemainreasons.

First, we obsered that log file analyzersoften had
to storeinformation aboutpasteventsin orderto detect
conformanceviolationswhenfuture eventshappen.This
was sometimesnformation aboutwhich of several dis-
cretestatesthe SUT wasin, and sometimesmore com-
plex informationaboutnumericandstringvaluesappear
ing in log file lines. This suggestsa programminglan-
guagebasedn statemachinesalthoughthe needto also
storemorecomplec informationsuggestshat something
morethansimplefinite statemachine{FSMs)is needed.

Secondwe obsenedthatlog files oftencontainmary
interleavedstream®f informationaboutthe SUT, but that
checkingary onerequirementypically involved only a
subsebf thisinformation. This suggests programming
languagen which the checkingof separateequirements
is assignedo separatestatemachines.

Third, the statemachineformalismis widely-knovn
andusedin software engineeringn othercontexts, such
asUML stateactiity diagrams.The extensionsneeded
for storing more complex information and specifying
morethanonemachinearenot major.

10

2.4 LFAL

We have developeda simpledomain-specifitanguage
called LFAL (Log File Analysis Language)for writing
log file analyzerg5]. LFAL is basednthestatemachine
formalism; however, an LFAL analyzeris not an FSM,
but rathera collectionof (infinite-)statemachinegunning
in parallel,in whichthestatesanbeary first orderterms
[6], andin which eachmachinemakes transitionsfrom
stateto statebasedn first ordertermsrepresentingom-
pletelog file lines. Conditionson sourcestatesandtrig-
geringlog file linescanbe placedon transitions.

LFAL analyzersassumethat eachlog file line starts
with a keyword and continueswith ary numberof key-
words, strings, integersand real numbers,separatedy
spaces.Eachanalyzemachinetypically checksconfor
manceto one SUT requiremenbr a group of relatedre-
guirementsand noticesonly a subsef the linesin the
log file. If ananalyzemachinenoticesalog file line but
hasno valid transitiononiit, it reportsanerror. We write
the statemachinedor a given analyzerso that this hap-
pensif andonly if thelog file beinganalyzedshavsthata
requiremenhasbeenviolated. (An exampleof anLFAL
analyzemwill bedevelopedin Section3.)

2.5.RelatedWork

The relation of log file analysisto otherwork in dis-
tributedsystemsdelugging,formal specificationfestor-
aclegenerationandassertionss exploredin detailin [5].
Becauseurfocushereis ontheprocessy whichanLFA
testoracleis developedfrom requirementsye compare
thiswork to similar work in developmentof formal spec-
ifications.

Many papershave dealtwith theissueof deriing for-
mal specificationfrom informal requirements.The tar
getformal specificatiortechnologiedave includedtabu-
lar notations[16], the Z specificationanguagd11], the
SCRspecificatiormethodology[12], andstatechart§9].
Theseworks sharea generalpatternof describinghow
to move from informal requirementsystematicallyto the
notationor technologyin question.In this paper we fol-
low asimilarpattern,concentratingn statemachinesand
providing more detail aboutintermediatestepsrequired.
In addition,the artifactthatwe endwith (thelog file ana-
lyzer) canbeviewed asaformal specificationput is also
a programthat canbe compiledandrun for the purpose
of testresultchecking.

Work hasbeendoneon deriving requirementandor-
aclesfrom tracesproducecdby automaticnstrumentation
[8], althoughas yet the requirementproducedare rel-
atively simple. Somecriteria have also beenstatedfor
insertinglogginginstrumentatiorfor the specificpurpose
of performancerofiling [14].

Finally, Cleanroomand other processedasedon it
[15, 17] sharewith the processedescribedcherethe prac-
tice of generatinga traceablesequenceof artifacts of



increasingformality from requirements.In Cleanroom,
however, thefinal artifactis the codeitself, andherewe
are concernednly with a testoracle,which may repre-
sentonly someof therequirements.

3. Big-StepProcess

In this sectionwe describea procesdor deriing log-
ginginstrumentatiorandstate-basetestoraclesfrom re-
quirementsThis processs a distillation of practiceghat
we have followed on previous projects.We call this pro-
cessthe big-stepprocesshecausét involves userstak-
ing biggerstepsof inferencebetweenrartifactsthanin the
small-steporocesso be describedater.

We first describean examplewe will usein this paper
for expositorypurposesWe thendescribethe centralar-
tifact of the big-stepprocessthe SPFESSituationswith
Permittedand ForbiddenEvents),andthengo on to de-
scribethe processasawhole. We thenreporton experi-
enceswe have hadwith usingandteachingthe big-step
processandpoint out someissueghatwe have with it.

3.1.Example Software and Requirements

The examplesoftware that we will usein this paper
for expositorypurposess a hypotheticalcontrollerfor an
elevator We assumehatthe controllercontrolsboththe
doorsandthe motionof the elevator, andwe considerthe
following two requirements.

e R1.Thedoorsareneveropenwhentheelevatorisin
motion.

e R2. Under normal conditions, the elevator door
never staysopenmorethan30 seconds.

The phras€‘undernormalconditions”in requiremenR2
is deliberatelyvague;we will useit to illustratehow the
big-stepand small-stepprocesse$handleuncertaintyin
requirements.

3.2.SPFEs

Figurel summarizeshebig-stepprocessThe central
artifactof theprocesss alist of Situationswith Permitted
and ForbiddenEvents(SPFEs) The SPFEsform a link
betweenthe languageof the requirementsand the con-
ceptsof statemachines.

EachSPFEconsistof a situationthatthe softwareor
its environmentmaybein, apossiblyemptylist of events
thatare permittedin thatsituation,anda possiblyempty
list of eventsthatareforbiddenin that situation. We use
theword “situation” hereinsteadof “state” to avoid con-
fusionwith the conceptof state-machinstatesalthough
we expectthat situationsin the SPFEswill have a close
correspondenceith statedn thelog file analyzer

SPFEsare bestillustratedwith someexamples. For
requiremenR1 listedabore,apossiblesetof SPFESs as
follows.

11

e SPFEL.

— SituationS1: Theelevatordooris open.
— PermittedeventP1.1: Thedoorcloses.

— ForbiddeneventF1.2: Theelevatorstartsmov-
ing.

e SPFE2.

— SituationS2: The elevatoris moving.

— PermittedeventP2.1: The elevator stopsmov-
ing.
— ForbiddeneventF2.2: Thedooropens.

e SPFE3.

— SituationS3: The elevator is stoppedandthe
dooris closed.

— PermittedeventP3.1: The elevator startsmov-
ing.
— PermittedeventP3.2: Thedooropens.

RequiremenR2 listedabove canbe capturecby a single
SPFE.

e SPFEA4.

— SituationS4: The doorlast openedat time T}
andis still open.

— Permittedevent P4.1: The door closesat time
Ty, whereT, — T < 30.

— ForbiddeneventP4.2: Thedoor closesat time
Ty, whereTy, — 17 > 30.

Note thatin writing the abore SPFE,we have implicitly

assumedhat we are going to usethe log file analyzer
only whenwetestthe SUT underthe“normal conditions”
mentionedn requiremenR2. This assumptioris made
moreexplicit andtraceableunderthe moredetailedpro-
cesgdescribedn Section4.

3.3.Process

The flow of informationandthe sequencef artifacts
producedn thebig-stepprocesgollows the generalpat-
ternof Figurel. The stepsof the processre:

1. From the requirementsof the system, derive the
SPFEs. The SPFEsshould not contradictthe re-
quirementsalthoughthey canrepresenbnly a sub-
setof therequirementsf the LFA testingis notin-
tendedo cover all requirements.

2. Basedon the SPFEs,write a logging policy (LP).
The logging policy shouldspecify what eventsthe
sourcecodeshouldlog andhow it shouldlog them.
This shouldinclude:



Abbr Expansion

Regs | Requirements

SPFEs| Situationswith PermittedandForbiddenEvents
LP LoggingPolicy

LFAP | Log File AnalyzerProgram

Figure 1. Big-step process summary. Left: Artifact abbreviations and their expansions.

Right:

Information flow. An arrow indicates that the arrow sour ce is a primar y sour ce of information for

the arrow destination.

(a) All eventsthatwill allow usto determine for
eachSPFE whethemwe arein thedescribedit-
uation;

(b) All eventsthatarementionedas“permitted” or
“forbidden” in ary SPFE.

3. Instrumenthe sourcecodeconsistentvith theLP.

4. Basedon the SPFEsand the logging instrumenta-
tion, write andvalidatethelog file analyzer

In stepl, we do notrequireevery possibleeventrele-
vantto an SPFEto belistedaseitherpermittedor forbid-
den,althoughsucharequirementvould make the SPFEs
moreprecise.We do this in orderto make this stepless
constrainedlf thereareparticulareventsthatareclearly
permittedor clearly forbiddenin given situations,then
they canbelisted assuchin the SPFEsjn orderto give
guidanceaduringstep2-4. Theothereventscantemporas
ily be left with their permittednessindefined. Whether
they arepermittedor forbiddencanthenbedecidedvhen
theanalyzelis writtenin step4.

We now expanduponsteps2, 3 and 4 above. Step
2 requiresus to write a logging policy, and step 3 re-
quiresus to implementthis policy. In our example, if
we were consideringonly SPFE2,we would only need
to determinewhetherthe elevatoris currentlymoving or
not (S2),whethertheelevatorhasstoppedmoving (P2.1),
andwhetherthe doorhasopenedF2.2). A suficient set
of eventsto beloggedwould be:

e Eventsin whichtheelevatorstartsmoving. (Needed
to determinewvhetherwe arein S2.)

e Eventsin which theelevatorstopsmoving. (Needed
to determinewhethemwe arein S2,andwhetherP2.1
hasoccurred.)

e Eventsin which the door opens. (Neededto deter
minewhether2.2hasoccurred.)

However, for all of SPFE1-4moreeventsareneededand
moredatais neededbouteventsin whichthedooropens.
Thefollowing setof eventsis sufficient:

12

e Eventsin whichtheelevatorstartsmoving. (Needed
for S2,S3,F1.2,P3.1.)

¢ Eventsin whichtheelevatorstopsmoving. (Needed
for S2,S3,P2.1.)

e Eventsin which the door opens,togetherwith the
time the door opens.(Neededor S1,S3,54,F2.2,
P3.2))

e Eventsin which the door closes,togetherwith the
timethedoorcloses.(Neededor S1,S3,P1.1,P4.1,
P4.2))

Theloggingpolicy shouldstateexplicitly whatformatthe
giveneventsshouldbeloggedin. For example,we could
saythatthe SUT mustrecordtheabove eventsby logging
linesof theform st art _nove, st op, door _open t,
anddoor _cl ose t respectiely, wheret is atimestamp.

Step4 of thebig-stepprocessequiresusto write alog
file analyzer Generally eachanalyzemachineis likely
to correspondo oneor a groupof SPFEswith the Situ-
ationscorrespondingo statesof the machine.For exam-
ple, it is possibleto checkall of SPFE1-3with a single
LFAL statemachine:

machi ne door_safety;

initial _state cl osed_stopped;

from cl osed_st opped, on start_nove,
to nmovi ng;

from nmovi ng, on stop,
to cl osed_st opped;

from cl osed_st opped,
to open;

from open, on door_cl ose(T),
to cl osed_stopped;

final _state Any.

on door _open(T),

The three statesof this machine(open, novi ng, and
cl osed_st opped) correspondto the Situationsin
SPFE1-3espectrely. As anexampleof the treatmenif
forbiddenevents,thereis no transitionon thelog file line
door _cl ose t from the stateopen, becausehat log



file line correspondgo an event which is Forbiddenby
SPFE1;however, thereis atransitionon the log file line
door _open t, whichis a Permittedevent. It is possible
to checkSPFEA4with oneadditionalLFAL statemachine:

machi ne door _cl ose_tim ng;
initial_state closed;
from cl osed, on door_open(T1),
to open(Tl);
fromopen(T1l), on door_close(T2),
if (T2-T1 =< 30), to closed;
final _state Any.

Notethatthe statepatternopen( T1) containsnotonly
theinformationthatthe dooris open,but alsothetime at
whichthedoorwasopenedasa parametef the state.

3.4.Experiences

We usedearly, informal versionsof the big-steppro-
cessfor several previous projects[4, 2, 13]. Thelargest
analyzerdevelopedand validatedwas basedon the first
eightpagesf Abrial’'s SteanBoiler specificatiorj1], and
was333netlinesof LFAL code,containingl9 statema-
chineshaving a total of 141 transitions. Basedon our
experiencewith thoseprojects,we codifiedthe process
for training purposes.

In [10], we reportedon an exploratorystudyof learn-
ing andinitial useof LFA testingandLFAL. Theprocess
for developinglog file analyzerswhich we taughtto the
learnersn this studywasthebig-stepprocessWe did not
monitorhow closelythey actuallyfollowedthe processn
thestudy However, we foundthatthey performedwell at
thetasksof creatingaloggingpolicy, instrumentingcode
with logging instrumentationand writing an LFAL log
file analyzer

3.5.Issues

Severalissueshave comeup duringour useandteach-
ing of the big-stepprocesshat we feel are not handled
well by the process.Oneissueis thatit containsno rec-
ommendationgor whatto do whennot all the require-
mentswill be checled by LFA testing. We expectthat
LFA testingwill oftenbeusedasacomplemento tradi-
tional testing;thatis, notto testall the requirement®f a
systenusingLFA, but only asubsetandthoseonly under
givenconditions.With the big-stepprocessthedecisions
madein this regard (e.g. the decisionto testthe exam-
ple systemonly “under normalconditions”)arenowhere
explicit.

A relatedissueis lack of documentatiomndtraceabil-
ity. Thereis alack of documentatiorof therequirements
to be checled, the conditionsunderwhich LFA testing
will take place,andwhy given eventswerechoseno be
logged. This makesit moredifficult to validatebig-step
processrtifacts,e.g.in artifactinspectionsession$7].

Finally, we have notedthatin somecasest is difficult
to find placesin the SUT codeat which to log the events

13

neededor the SPFEs.In somecasesthe eventsneeded
arein asensé‘abstract”,not ableto be matcheddirectly

to locationsin the code but ratherindicating a general
patternof thingsthat have occurred. In thesecaseswe

have foundthattheloggingpolicy is difficult to matchup

with the SPFEs the instrumentatiorin the sourcecode,
or both.

Theseissuesarenot majorif the numberof eventsto
be loggedor the numberof requirementgo be checled
is small, or in caseof non-critical software. We expect
themto be more significantas the numberof eventsor
requirementgrows andthe SUT is moresafety-critical.

4. Small-StepMethodology

In this sectionwe proposea procesdor deriving state
machineoraclesandlogging instrumentatiorthat avoids
someof the pitfalls of the big-stepprocess. Becauseit
takessmallerstepstoward the productionof thefinal ar-
tifacts,we referto it in this paperasthe small-steppro-
cess. It is derived from practicesthat we have usedand
obsenedin the pastfor makingthebig-stepprocessnore
manageable.

We expectthe small-stegrocesso bemoreusefulthe
more the following conditionshold in the development
projectin question.

e The projectis safety-critical,andwe want high as-
surancehatrequirementarereflectedn thetestor-

acle.

Only a subsebf the requirementss to betestedus-
ing LFA, and/orLFA testingis only to bedoneunder
certainconditions.

Thenumberof eventswe needto log is high.
Therequirements$o bechecledarecomple.

The developersare unfamiliar with using log file
analysisfor conformanceesting,andwantto follow
adetailedprocesssothatthey canlearnit.

Figure2 summarizeshe small-stepprocess.The pro-
cessis similar to the big-stepprocessput with someim-
portantadditionsfor the sale of traceabilityandgeneral-
ity:

e RCs(Requiementdo be Chedked) thesubsebf the
original requirementghatis to be checled with the
LFA testing.

e CAs(Cheking Assumptions)the assumptionsin-
derwhichthe LFA testingwill take place.

e AEs (Abstract Events) all the eventsthat will al-
low usto tell whetheror notwe arein the Situations
in the SPFEsandwhetheror not the Permittedand
Forbiddeneventsof the SPFEshave happened.



Abbr | Expansion

RCs Requirement$o be Checled

CAs CheckingAssumptions

SPFEs| Situationswith PermittedandForbiddenEvents
AEs AbstractEvents

CEs ConcreteEvents

LP LoggingPolicy

LFAP | Log File AnalyzerProgram

Figure 2. Small-step process summary. Left: Artifact abbreviations and their expansions.

Right:

Information flow. An arrow indicates that the arrow source is a primar y sour ce of information for

the arrow destination.

e CEs(ConceteEvents) eventsthat are expectedto
beeasilyidentifiableandloggableatthe sourcecode
level, thatallow usto tell whetheror not ary of the
AbstractEvents(AEs) have takenplace.

4.1.Small-StepProcessArtifacts

We now discusghe majordifferencedetweerthear
tifactsgeneratedby thesmall-stepandbig-stepprocesses.

RCs (Requirementsto be Checked) and CAs (Check-
ing Assumptions). The RCsandthe CAs togetheral-
low us to inspectthe SPFEsfor completenessnot just
correctnessin caseswvhereLFA testingis usedfor only
somerequirementsnd/orundersometestingconditions.
The SPFEsshouldrestateall theinformationin the RCs,
giventhe CAs.

For the elevator controllerexample,we might stateas
checkingassumptionghat we will performLFA testing
of the elevator controller only underthe condition that
thedooris never obstructedy someobject,andthatthis
is what“undernormalconditions”’meansn requirement
R2. The SPFEschosemabore underthe big-stepprocess
canthenbejustified by pointing out thatthey encompass
all the requirementdgo be checled, given the checking
assumptionsve have made.

Thesmall-steprocesss thereforemoretraceabléhan
the big-stepprocess.EachRC shouldcorrespondo one
or moreSPFEsandvice-versaandmissingdetailsor sub-
casexot consideredn the SPFEsshouldbe ableto be
justified by appealingo the CAs.

AEs (Abstract Events), CEs (Concrete Events), and
LP (Logging Policy). AEs are “requirements-leel”
events,in thesensehattheir descriptionshouldbeclose
to the languageandterminologyof the SPFESs.In con-
trast, the CEs are “code-level” events,in the sensethat
it shouldbe possibleto matcheachwith oneor morelo-
cationsin the SUT sourcecodeat which they shouldbe
logged. The AEs and CEs are not necessarilydisjoint;

14

theremay be someeventsthat are both sufiiciently ab-
stractto give informationaboutthe SPFEsandalsosuffi-
ciently concreteo belogged.Sucheventswould belisted
asbothAEsandCEs.

For our example,we might considerthe doorsto be
openthemomentthata commands sentto thedoorlock
actuatorto releasethe door from the closedposition. In
this caseit would be appropriateto take “door openat
time ¢t asan AE, andtake “door lock actuatorrelease
commandattimet” asthe CE thatwill belogged.

Becausethe CEs are explicitly documentedin the
small-stepprocessthe logging policy (LP) in the small-
stepprocessieedsonly to documention andwheneach
CE will be logged and the format in which it will be
logged. For example,theremay be a paragraphin the
LP which states:

e WhenaRELEASEcommands sentto thedoorlock
actuatoy the line door | ock_rel ease _cnd ¢
mustbelogged,wheret is the currenttimestampn
second®btainedrom get t i meof day() .

Again, the small-stepprocesshas the advantageof
greatertraceabilityover the big-stepprocess Eachpara-
graphin the LP hasto dowith oneor moreCEs;eachCE
is chosento allow usto tell whetherone or more of the
AEs hastaken place;andeachAE is choserto allow us
to checkspecificsituationsandeventsin the SPFEs.

LFAP (Log File Analyzer Program). The analyzer
written in the small-stepprocesss similar to thatwritten
in the big-stepprocesswith one exception. We expect
theanalyzelto containstatemachinef two maintypes:
eventtransducerandSPFEcheclers.

Eventtransducerarerelatively simple machineghat
readCEsfrom thelog file and“convert” theminto AEs.
In LFAL, we canwrite statemachinesthat do this by
specifyingon transitionsthat the machine“sends” mes-
sagesstandingfor the AEs to all the othermachinesFor
instancea simplesingle-statanachinethattranslateshe
“door lock releasecommand”CE into the “door open”
AE might bewritten asfollowsin LFAL:



machi ne transducer _door _open;
initial _state null;
fromnull,
to null, sending door_open(Tl);
final _state null.

SPFEcheclersaremachineghatcheckoneor moreof
therequirementsasexpressedn the SPFEs.The LFAL
statemachinedescribedor the big-stepprocessn Sec-
tion 3.3areSPFEcheclers,andthe machinegjiventhere
would still beappropriataunderthe small-stepprocess.

4.2.Process

Thesmall-steprocesstartsby generatingeachof the
artifactsmentionedn thetableat theright of Figure2 in
thatordetr Any or all of thesestepsmay causechange
requestso befiled againstpreviously-generatedrtifacts.
In particular we expectthecreationof the SPFE<0 cause
changerequestsagainstthe RCs and CAs, the creation
of the AEs and CEsto causechangerequestagainstthe
SPFEs,and the creationof the LP and LFAP to cause
changeequestagainstall of the SPFESAEs, andCEs.

We believe that a thorough development process
shouldinclude documentinspectiong7]. Eachartifact
shouldbe inspectedfor consisteng with upstreamarti-
factswhen first created. If numerouschangerequests
have beenmadeagninstartifactssincethe lasttime they
wereinspecteda maximally careful processvould con-
ductfurtherinspectiongo ensureghatall artifactsremain
consistentwith eachother To inspectand validatethe
LFAP, we have developedtools andtechniquedor ani-
matingthe statemachinesn theanalyzeyto helpinspec-
torscheckthattheanalyzeiis nottoo strict or lenient[3].

5. Potential Benefitsand Problems

Every new software engineeringtechnology brings
with it potential benefitsand potential problems. Here
we enumeratevhatwe seeasthe mostimportantof both
for LFA testing.

5.1.Potential Benefits

Impr oved reliability. LFA testingassistdirect, auto-
matic confirmationof the conformancef softwareto re-
quirements. This automatictest result checkingcan be
donein complementto traditional humancheckingand
regressioncheckingof testresults. Thelog file analyzer
canbewritten in alanguagesuchasLFAL designedor
the purpose,and as such can take an abstract,concise
view of therequirements.

Note alsothat, in contrastto otherformal methods-
basedtechniquesfor increasingreliability, no assump-
tions are madeasto the developmentlanguageor plat-
form of the SUT. As longasthe SUT canwrite atext file,
andthatfile canbetransportedo a platformon whichiit
canbeanalyzed| FA canbeusedin testing.

on door | ock rel ease cnd(T1),

15

Flexibility. LFA testingcanbeusedto checkfor either
a small or a large numberof requirements.An elevator
controller for instancemaybealarge andcomple sys-
tem having mary requirementshowever, if only thetwo
examplerequirementsareto be checled by LFA testing,
we have shavn (Sections3 and4) thatthis canbe done
by loggingonly four classe®f eventsandwriting aslittle
as22linesof LFAL code.

A developeror developmenteamthatis unsureabout
whether_FA testingis appropriateeanthereforeuseit for
partof atestingeffort, andlater evaluateto what extent
they wishto useit in thefuture.

Scalability. Our experiencesuggestshat the number
of SPFEsgeneratecy eitherthe big-stepor the small-

stepprocessis linear in the numberof requirementgo

be checled,andthatthe sizeof thefinal log file analyzer
programis linearin the numberof SPFEs.We therefore
believe thatasthe numberof requirements$o be checled

by LFA testingincreasesthe amountof effort to imple-

mentLFA testingscalesup reasonably

Traceability. Particularly when using the small-step
processproposedhere, the log file analyzerprogram
(LFAP) and the logging instrumentationcan be traced
backdirectly to the requirements.This traceability can
aid in achiezing high assurancein situationsin which it

is required for instancen safety-criticalprojects.

5.2.Potential Problems

False negatives and positives. When an analyzeran-
nounceghat a log file indicatesa fault in the SUT, the
causemightactuallybeafaultin theanalyzer This“false
negative” is theequivalentof aninvalid expectedresultin

regressiortesting.A moreseriougproblemis thatafaulty
analyzercouldgive a“f alsepositive” by passingalog file

thatdoesactuallyindicateanerror.

To addresshis problem,we have adwcatedthe useof
inspectiondor log file analyzersandhave providedtools
for validatingthem([3]. Of course the useof thesetech-
niguesandtoolsincreasesheweightof the development
procesgseebelow).

Instrumentation maintenance. The logging instru-
mentatioraddedo the SUT for LFA testingis extracode
that mustbe maintained. Changego the codefor other
maintenanceeasonsnusttake accouniof theloggingin-
strumentation.

This problemexists alreadyin the large body of soft-
warethatgeneratesog files. However, existing log files
areoftenusedonly for delugging,andarenotanintimate
partof thetestresultcheckingeffort; the logginginstru-
mentationthereforedoesnot have to be keptin stepwith
therestof the codeasstrictly aswith LFA testing.



Process'weight”. Thebenefitshatwe getout of LFA
testingincreaseas we follow one of the processesut-
lined in this papermoreclosely However, naturallythis
makesthe processmore hearyweight and bringswith it
problemssuchasdeveloperfrustrationandprocesover-
head.Themorehearyweightthe LFA testingprocessthe
moresafety-criticatheprojectwould have to beto justify
it.

6. Conclusions

Whether the benefitsof LFA testing outweigh the
problemsandunderwhatconditions aresubjectsor fu-
tureresearchOneof the purpose®f this paperis to pro-
poseprocessefor futurestudythatcanenhancéhebene-
fits andaddresshe problems.We planto continueby ap-
plying the new small-stepprocesdo publically-available
and industrial requirements,measuringthe amount of
time taken, the size of the resultingartifacts,andthe ef-
fectivenesof theresultingtesting.

7. Acknowledgements

This researchhas beengenerouslysupportedby the
Natural Scienceand EngineeringResearchCouncil of
Canada(NSERC) and Nokia Corporation. This paper
was written while the authorwas visiting Dan Hoffman
andthe ComputerScienceDepartmentt the University
of Victoria, to whom we are grateful for the useof their
facilities.

References

[1] J.-R.Abrial. Steam-boileccontrol specificationproblem.
In J.-R. Abrial, E. Borger, and H. Langmaack editors,
Formal Methodsfor Industrial Applications: Specifying
andProgrammingthe SteanBoiler Control, volume1165
of LNCS Springer October1996.

X. An. Steam-boilecontrolsystem- simulationandtest-
ing usinglog file analysis.Mastersthesis Departmenbf

ComputerScience,University of WesternOntario, Lon-

don,Ontario,CanadaSeptembe2000.

J. H. Andrews, R. Fu, andV. D. Liu. Adding valueto

formal testoracles. In Proceedingsof the 17th Annual
International Confeenceon AutomatedSoftwae Engi-

neering (ASE 2002) pages275-278,Edinkurgh, Scot-
land, SeptembeR002.

J.H. Andrews andY. Zhang. Broad-spectrunstudiesof

log file analysis.In Proceeding®f the 22ndInternational
Confeenceon Softwae Engineering(ICSE2000) pages
105-114[ imerick, Ireland,June2000.

J. H. Andrews andY. Zhang. Generaltestresultcheck-
ing with log file analysis.|IEEE Transaction®n Softwae

Engineering 29(7):634—648July 2003.

G. S.BoolosandR. C. Jefrey. Computabilityand Logic.

CambridgeUniversity Press,Cambridge UK, 2 edition,
1980.

(2]

(3]

(4]

(5]

(6]

16

[7] M. E. Fagan. Design and code inspectionsto reduce
errorsin programdevelopment. IBM Systemslournal,
15(3):182-211July 1976.

M. Harder J. Mellen, and M. D. Ernst. Improving test

suitesvia operationaklbstraction. In Proceedingsf the

25th International Confeenceon Softwae Engineering

pages0-73,Portland ,Oregon,May 2003.

D. Harel. Fromplay-in scenariogo code: An achievable

dream.|EEE Computer34(1):53-60Januarn2001.

G. HuangandJ. H. Andrews. Learningandinitial useof

a softwaretestingtechnology: An exploratory study In

Proceedingf the 8th International Confeenceon Em-

pirical Assessmeiitt Softwae Engineering EASE2004)

Edinburgh, ScotlandMay 2004. To appear

J.Jacly. TheWay of Z: Practical Programmingwith For-

mal Methods CambridgeJniversity Press1997.

J. Kirby, Jr, M. Archer, and C. Heitmeyer. SCR: A

practicalapproacho building ahighassurancEOMSEC

system. In 15th Annual ComputerSecurityApplications

Confeence pagesl09-118PhoenixArizona,December

1999.

V. D. Liu. Conformancenalysisof communicationgro-

tocol software using log files. Masters thesis,Depart-

ment of ComputerScience,University of WesternOn-

tario, London,Ontario,CanadaApril 2002.

E. MetzandR. Lencevicius. Efficientinstrumentatiorior

performanceprofiling. In Proceedingsof the Workshop

on DynamicAnalysis |CSE2003 pagesl0-12,Portland,

Oregon,May 2003.

H. D. Mills, M. Dyer, andR. Linger. Cleanroomsoft-

wareengineeringlEEE Softwae, 4(5):19-24 September

1987.

D. L. ParnasandP. C. Clements.A rationaldesignpro-

cess:How andwhy to fakeit. IEEE Transaction®n Soft-

ware Engineering 12:251-257February1986.

[17] B.D. TackettandB. V. Doren. Processontrolfor error
free software: A softwaresuccesstory |IEEE Softwag,
16(3):24—-29May/Junel999.

[18] E. J. Weyuker. On testingnon-testableprograms. The
ComputerJournal, 25(4):465-470November1982.

(8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]



Towards Defining and Exploiting Smilaritiesin Web Application Use Cases
through User Session Analysis

Sreedevi Sampath
CIS
University of Delaware
Newark, DE 19716
sampath@cis.udel.edu

Abstract

With the highly increased use of the web comes a sig-
nificant demand to provide more reliable web applications.
By learning more about the usage and dynamic behavior of
these applications, we believe that some software devel op-
ment and mai ntenance tool s can be designed with increased
cost-effectiveness. In this paper, we describe our work in
analyzing user session data. Particularly, the main contri-
butions of this paper are the analysis of user session data
with concept analysis, an experimental study of user ses-
sion data analysis with two different types of web software,
and an application of user session analysis to scalable test
case generation for web applications. In addition to fruitful
experimental results, the techniques and metrics themselves
provide insight into future approaches to analyzing the dy-
namic behavior of web applications.

1. Introduction

Broadly defined, a web-based software system consists
of aset of web pages and componentsthat interact to forma
system which executesusing web server(s), network, HTTP,
and a browser, and in which user input (navigation and data
input) affects the state of the system. A web page can be
either static, in which case the content is fixed, or dynamic,
such that its contents may depend on user input. Dynamic
analysis of web applications can provide information that
is useful in many ways. For instance, monitoring of an ap-
plication is used to provide information about the load of
traffic of user requests on an application at different times
of the day. Knowledge of the pages accessed by individ-
ua users is used to customize a web application for more
personalization. Information about the dynamic behavior
of the application under normal usage can be used for mod-
eling the application for analysis, coupled with modeling

Amie L. Souter
Computer Science
Drexel University

Philadelphia, PA 19104
souter@cs.drexel.edu

Lori Pollock
CIS
University of Delaware
Newark, DE 19716
pollock@cis.udel.edu

based on static information. Logging of the dynamic be-
havior of a web application can be used for automatic test
case generation [8, 21, 28].

In this paper, we describe our work in analyzing user
session data. By making minimal configuration changes to
a web server, data can be collected as a set of user ses-
sions, each session being a sequence of URL and name-
value pairs'. The collection of logged user sessions can
be viewed as a set of use cases where a use case is a be-
haviorally related sequence of events performed by the user
through a dialogue with the system [11]. By learning more
about the usage and dynamic behavior of web applications
through user session data analysis, we believe that some
software development and maintenance tools can be de-
signed with increased cost-effectiveness. Particularly, the
main contributions of this paper are the analysis of user ses-
sion datawith concept analysis, discovering the commonal-
ity of URL subsequences of objects clustered in concepts,
an experimental study of user session dataanalysiswith two
different types of web applications, and an application of
user session analysisto scalabletest case generation for web
applications. In addition to fruitful experimental results, the
techniques and metrics themselves provide insight into fu-
ture approaches to analyzing the dynamic behavior of web
applications through analysis of user session data.

2. Clustering via Concept Analysis

Concept analysis is a sound mathematical technique for
clustering objects that have common discrete attributeq 3].
Concept analysistakesasinput aset O of objects, aset A of
attributes, and a binary relation R C O x A, called a con-
text, which relates the objects to their attributes. To analyze
user sessions using concept analysis we define the objects
to represent user sessions, and the attributes of objects are
represented by URLs. While auser session is considered to

1The name-value pairs are associated with GET/POST requests.

17



GDef | GReg | GLog | PLog | GShop | GBooks | GMylnfo
usl X X X
us2 X X X X
us3 X X X X X
usd X X X X X
usb X X X
us6 X X X X X X

Figure 1. (a) Relation table and (b) concept lattices for test suite reduction

be a set of URLs and associated name-value pairs usualy,
we currently defineauser session during concept analysisto
bethe set of URL s requested by the user, without the name-
value pairs, and without any ordering on the URLs. This
problem simplification considerably reduces the number of
attributes to be analyzed, and results from our analysis of
user sessions described in section 5 provide evidenceto jus-
tify this simplification.

Therelation table in Figure 1(a) shows the context for a
set of user sessions for a portion of a bookstore web appli-
cation [10] which we use for our experiments. Consider the
row for the user, us3. The (true) marks in the relation ta-
bleindicate that user us3 requested the URL s GDef, GReg,
GLog, PLog and GShop. We distinguish a GET (G) request
from a POST (P) request when building the lattice, since
they are essentialy different requests.

Concept analysis mutually intersects the user sessions
for al observed use cases of the web application. The re-
sulting intersections create a hierarchical clustering of the
user sessions. Concept analysis identifies all of the con-
ceptsfor agiventuple (O, A, R), whereaconcept isatuple
t = (0;, A;) for which all and only objectsin O; share all
and only the attributes in A; The concepts form a partial
order defined as (O, A1) < (02, As), iff Oy C Os. The
set of al concepts of a context and the partia ordering form
a complete lattice, called the concept lattice, which can be
represented by adirected acyclic graph with anodefor each
concept and edges denoting the < partial ordering. Based
on the origina relation table, concept analysis derives the
lattice in Figure 1(b) as a sparse representation of the con-
cepts.

A user session s requests all URLs at or above the con-
cept uniquely labeled by sin the lattice. Similarly, a URL
u is accessed by all user sessions at or below the concept
uniquely labeled by u. The T of the lattice denotes the
URLSs that are requested by al the user sessions. The L

of the lattice denotes the user sessions that access all URLs
in the context.

3. Examining Common Subsequences

Clustering of user sessions via concept analysis ensures
that all objectsin a node have the same set of common at-
tributes. One question arises from clustering based on URL
sets without considering the ordering of the URLs in each
user session. Will user sessions represented by objects in
the same concept node represent similar use cases? To an-
swer this question, a measure of commonality of objectsin
terms of sequencing (i.e., ordering) of URLsis needed. We
propose examining common subsequences as representative
of partial use cases of the user sessions.

Figure 2(a) shows an example concept node, the at-
tributes of that node, and the two user sessions represented
by the objects of that node. The sequence of URLSs for a
user session are presented in columns, from left to right.
The set of subsequences common to both of these user ses-
sions are indicated below the node. For each concept node
containing more than one object, we determine the longest
common subsequence (LCS) of URLSs among its objects.
For different values of k, the set of unique subsequences
of URLs of length k that are common to all the objects
in the node is computed. This set is unique, in the sense,
that occurrence of the subseguence [ PLog,GShop] multiple
times between the set of objects, is considered only once
in the common subsequence set of size 2. Also, if a sub-
sequence [ GDef,GReg,GLog] is identified as common be-
tween objects of the node, then obvioudly all subsequences
of [GDef,GReg,GLog] are aso common. For the sake of
fairness, we do not count subsegquences of alarger sequence
as smaller subsequences. However, for example, if the se-
quence [ GReg,GLog] shows up in our resultsin addition to
[GDef,GReg,GLog], it is because [ GReg,GLog] occurs as

18



NODE 003

OBJECTS

USER SESSIONS

us3 us6

GDef  GReg GDef  GReg
GReg GLog GReg  GlLog
GlLog PLog GLOg  GBooks
PLog GShop GBooks p og
GShop PLog GShop
PLog GShop

ATTRIBUTES

GDef, GLog, GReg, GShop, PLog

— e
COMMON SUBSEQUENCES . L L e — —— ——— — . . . .
[GDef,GReg,GLog] uw x t fopstfghi i kmn | op | aredgqgr s t ooz hbodecd r wwty
PLog,GSh ;
{GR(;?; GLO(;’]J] Aftributes
(@ (b)

Figure 2. (a) Example of common subsequences and (b) Spread of common subsequences over

attributes for a node in Bookstore

atotally different subsequence from the larger subsequence
in the use cases of the objects.

Another useful analysisis to examine the spread of the
common subsequences of URL s of the objects of a concept
node over the attribute space of that node. The graphin Fig-
ure 2(b) shows the spread of common subsequences over
the attribute space of a nodein the lattice for one of the ap-
plications we used. The x-axis shows the attributes of the
concept node. For ease in showing URL ordering some of
the attributes are repeated along the x-axis. This node has
37 attributes all of which are not shown on the axis (be-
cause they do not appear in any subsequence of size greater
than 1). Continuous subsequences are represented by solid
lines. A dotted line between two points, denotes that only
the points form the subsequence. Only subsequences of
size greater than one are shown in the graph. In this ex-
ample graph, medium size subsequences cover some of the
attributes and other attributes are covered by smaller subse-
quences. This spread of attribute coverage by common sub-
sequences helps to provide some sense of the overall com-
monality of the use cases represented by different objects
put into the same concept node based only on common sets
of URLs.

In section 5.3, our experiments provide evidence that
concept analysis with single URL s as attributes clusters ob-
jects together such that they have both the same set of at-
tributes and large common partial use cases. In the next

section, we describe how clustering these user sessions can
be used in scalable test case generation.

4. Application to Test Case Generation

User session based testing exploits the ability of a web
server to log user sessions for automatic test case genera-
tion. Our key insight to obtaining a scalable approach is to
formulate user session based test case generation in terms
of concept analysis. Existing incremental concept analysis
techniques[9] can be exploited to analyze the user sessions
on the fly, and continually minimize the number of main-
tained user sessions.

In our initial work, we developed a heuristic for select-
ing a subset of user sessions to be maintained as the current
test suite, based on the current concept lattice. Given acon-
text with a set of user sessions as objects O, we define the
similarity of a set of user sessions O; C O as the number
of attributes shared by all of the user sessionsin O;. Based
on the partial ordering reflected in the concept lattice, user
sessions labeling nodes closer to 1. aremoresimilar in their
set of URL requeststhan nodes higher in the concept | attice.

Our heurigtic for user session selection, which we call
test-all-exec-URLS, seeksto identify the smallest set of user
sessions that will still cover al of the URLs executed by
the original test suite while representing the common URL
subsequences of the different use cases represented by the

19




original test suite. Thisheuristic isimplemented asfollows:
The reduced test suite is set to contain a user session from
each node next to L, that is one level up the lattice from
L. We call these nodes next-to-bottom nodes. These nodes
contain objects that are highly similar to each other. If the
set of user sessions at L is nonempty, those user sessions
are also included. In our example in Figure 1, the original
test suiteis all the user sessionsin the original context. The
reduced test suite however contains only user sessions us2
and usB, which label the next-to-bottom nodes. By travers-
ing the concept latticeto T along all paths from these nodes,
we will find that the set of URL s accessed by these two user
sessions are exactly the set of al URLSs requested by the
original test suite.

5. Experiments

In order to investigate the effectiveness and useful ness of
user session clustering, and our heuristic for user session se-
lection, we performed experiments utilizing a medium and
large size application with real user sessions.

5.1. Research Questions

The experiments are designed to answer two questions
with regard to user session clustering and selection for scal-
abletest case generation: (1) How effective is the choice of
using single URLSs as attributes for clustering and is it rea-
sonable to choose only one object from a concept node as
the representative object? (2) How effective is the test-all-
exec-URLs heuristic for selecting test cases for the current
test suite? Our hypotheses with regard to these questions
are:

1. The set of user sessions (i.e., objects) clustered into
the same concept node will have a high commonality
in the subseguences of URLs in their sessions. Thus,
cost-effective clustering based on single URLs is rea-
sonable, and only one representative from the next-to-
bottom nodes can be chosen to be included in the cur-
rent test suite.

2. In addition to covering al of the executed URLSs of
the original test suite, the user sessions (i.e., objects)
of the next-to-bottom nodes (i.e., in the reduced test
suite) execute a high percentage of the subsequences of
URLSs of the rest of the original test suite. We believe
that this provides evidence that the original use cases
are well represented by the reduced test suite.

5.2. General Methodology

We use an application from an open source e-commerce
site [10] to experiment with applying concept analysis to

user sessions to generate a reduced test suite. The applica-
tion is a bookstore, where users can register, login, browse
for books, search for specific books giving a keyword, rate
the books, buy books by adding them to the shopping cart,
modify personal information, and logout. The bookstore
application has 9,748 lines of code, 385 methods and 11
classes. Since our interest was in user sessions, we con-
sidered only the code available to the user when comput-
ing these metrics, not the code that forms part of bookstore
administration. The application uses JSP for its front-end
and MySql database for the backend. The application was
hosted on the Resin web server[22].

Emailswere sent to variouslocal newsgroups, and adver-
tisements were posted in the university’s classifieds web-
page, asking for volunteers to browse the bookstore. We
collected 123 user sessions, all of which were used in these
experiments. Some of the URLs of bookstore mapped di-
rectly to the 11 classes/JSP files and the rest were requests
for gif and jpeg images of the application. The size of the
largest user session in bookstore was 863 URL s and on av-
erage a user session had 166 URLSs.

In addition to the bookstore, we also obtained user
logs from a University of Delaware production application,
uPortal[27], which is an abridged and customized version
of the university’s web presence, and has options for users
to personalize the view of the campusweb. The application
is mainly open source and is written using Java, XML, JSP
and J2EE. uPorta consists of 38,589 lines of code, 4233
methods, and 508 classes. The logs contained 2083 user
sessions, which were also analyzed for the experimental
study?. URLSs collected for uPortal mapped directly to 6
of the JSP/Java files, but the data carried on them varied
highly for each request. The size of the largest user session
in uPortal was 407 URL s and on average a user session had
14 URLs.

5.3. Commonality Among Attributes of a Concept

The focus of this experiment is to determine if objects
clustered together in a concept node, in addition to having
aset of common attributes, have a high commonality in the
subsequences of URLSs. If thisis true, then only one object
needs to be chosen from a given node for test case genera-
tion. Section 3 provided an introduction to the computation
of common subsequences of a set of user sessions and our
motivation to examine them. This section describes a new
metric and experiments we performed towards quantifying
the common subsequences of sets of user sessions.

Once common subsequences are generated as described
in section 3, the nodes are grouped such that all nodeswith
the same number n of attributes are members of the attr-

2We are currently creating a nonproduction uPortal version that main-
tains security of individual users' personal information for replay.

20



Percent of attributes covered 120

60
70
B0 |
50
40 r

0

Averags Value of Coverags %)
@

4037
M 31385, 1513107
2996 s 52219 —rt e
a5 7 1013 15 17 19 N B’ OB N W IO\ OB A K
0% 4 4 3','31131 s s g 9 13 1 1 1l 1 5 9 31 3 35 AT 3] 4

Attribute size set Subsequence size Atiitig Se i
(@ (b)

Figure 3. (a) Percent of attributes covered by different subsequence sizes and (b) Average percent of
attributes covered by nodes in different attribute size sets for Bookstore

Percent of attributes covered

100 1 —

Average Value of Coverage(®
5

1 2 3 ]

Attribute Size Set Subsequence size Attribut Siow Set

@) (b)

Figure 4. (a) Percent of attributes covered by different subsequence sizes and (b) Average percent of
attributes covered by nodes in different attribute size sets for uPortal

21



Pereent Missing Freguency
= i

113 15 77 18 210835 T B3 3 X
Subsequence size

(@)

ol - I | S - A )

Pereent Missing Frequency

1 4 7 1013 16 19 22 25 26 31 34 37 40 43 46 49 52 55 S6 61 64 &7 70 73 76 79 62 85 &6 9

Subseguence Size

(b)

Figure 5. Percent subsequences not covered by next-to-bottomnodes for (a) Bookstore and (b) uPortal

size[n] set. This grouping gives a sense of the nodes’ level
inthe concept lattice. Nodeswith alow number of attributes
will tendto becloserto T.

We define the following metric: the percent of attributes
(i.e., URLS) of aconcept nodethat areincludedin (i.e., cov-
ered by) URL sequences of length k by objects (i.e., user
sessions) in the node. For each attr-size set, the percent
of attributes covered by each size subsequence is averaged
over dl the nodesin the set.

Theresults of computing this metric for the user sessions
collected from bookstore and uPortal are shown in Figure
3(a) and Figure 4(a) respectively. The graphs show the
percent of attributes covered by different subsequence sizes
of nodes belonging to various attr-size sets. Coverage for
subsequences of size 1 is not shown, because it is obvi-
oudly 100%. Asthe attr-size increases, the percent coverage
of attributes increases. These graphs are simply meant to
demonstrate the trends of attribute coverage and attempt to
illustrate that subsequences of varying sizes cover areason-
able percent of the attributes. For example, in Figure 3(a),
size 10 subsequences across all attr-size sets cover between
27 to 62% of the attributes. In the bookstore, the largest
subsequence, size 37, covers 21% of the attributes in one
attr-size set and 30% in another. The computation produced
similar results with the logs of uPortal (Figure 4(a)) — Size
6 subsequences across al attr-size sets covered between 13
to 33% of the attributes. The largest subsegquence of size 33
covers 33% of the attributes.

To enable viewing the trend of percent attributes covered
by nodesin different attr-size sets, the resultswere compiled
in adifferent manner. First, the average percent of attributes
covered (a;) by each concept node i, over all subsequence
sizes was computed. To befair, the maximum longest com-

mon subsequence value for al nodes in a certain attr-size
set is determined and is used in the above average, instead
of averaging over the maximum size subsegquence of each
node. Then, an average percent coverage of the averages
(a;) for al the nodesin an attr-size set was computed. The
results are shown in Figure 3(b) for bookstore and Figure
4(b) for uPortal. These graphs demonstrate that the average
percent of attributes covered by nodes in various attribute
size setsis quite high.

These results strengthen our first hypothesis that indeed
there exists commonality in orderings of URLS between
objects of a concept node and that these common subse-
guences cover a high range of percentage of the attributes
of that node. Thus, clustering based on single URLs isrea
sonable for clustering similar use cases, and choosing one
object from a given concept node as the representative test
casewill not result in loss of the attributes covered or the use
cases represented by other objectsin the node (Question 1).

5.4. Next-to-bottom Coverage of URL Orderings

The goal of this experiment is to support our hypothesis
of choosing next-to-bottom nodes as the reduced test suite.
We believe that such a selection will not cause large loss
in representation of use cases associated with the remaining
nodesin the lattice.

Thereduced set is defined to contain the set of objectsin
the set of next-to-bottom nodes of the concept lattice. The
difference between the objects that belong to the original
test suite and the objects that belong to reduced set is called
the remaining set. This experiment focused on determining
the frequency of sequencesof URLsthat were present in the
remaining set but missing in the reduced set. Thismetricis

22



our measure to capture the ‘loss of coverage’ of use cases
in the remaining set by the reduced set.

As can be observed for bookstore, in Figure 5(a), for sub-
sequences of size 2, 38.37% of subsequences are missing,
66% of only size 3 subsequences are missing and 76.66%
of just size 4 subsequences are missing. For uPortal user
sessions, resultsshown in Figure 5 (b), 15.6% of size 2 sub-
sequences are missing, 29.1% of only size 3 and 36.9% of
only size 4 are missing. The percent missing subsequences
increases with the size of the subsequence, because it is
less likely for two user sessions to share exactly the same
long sequence of URLSs as many short similar sequences.
For uPortal, we observed that there were only afew distinct
URLSsin the application, and the lengths of the user sessions
wererelatively small (average of 14 URLYS).

It appearsthat the reduced set seemsto belacking the ex-
act same long subsequence present in the remaining set but
a large number of smaller size subsequences are present.
Dueto the clustering done by concept analysis, the reduced
set is guaranteed to have more distinct URLSs than the re-
maining set. So even if the exact same long subsequence
is absent there are bound to be other sequences (that cover
URLs missing in the remaining set) that are present in the
reduced set but absent in the remaining set. The absence of
a relatively small number of subsequences in the reduced
set and the assurance due to concept analysis that, a larger
number of URLS are present in this set, makes it suitable
to be considered for the reduced test suite, and thus moder-
ately supports our second hypothesis (Question 2).

To summarize, the experiments performed in this section
support our hypotheses for user session clustering and se-
lection and our heuristic for test case generation. We have
performed some preliminary coverage and fault detection
studies of test suites created by these techniques and found
very promising results. More complete results will be de-
scribed in a future paper. We believe that the metrics de-
fined and the techniques applied can also be used for other
dynamic analysis of web applications.

6. Related Work

Concept Analysisand Clustering in Software Engineer-
ing. Snelting first introduced the idea of concept analysis
for use in software engineering tasks, specifically for con-
figuration analysis [13]. Concept analysis has also been ap-
plied to evaluating class hierarchies [25], debugging tem-
poral specifications[1], redocumentation [14], and recover-
ing components [7, 15, 26, 24]. Ball introduced the use of
concept analysis on test coverage data to compute dynamic
analogs to static control flow relationships [2]. The binary
relation consisted of tests (objects) and program entities (at-
tributes) that a test may cover.

Similar to concept analysis is cluster analysis in which

many techniques exist [12]. Such techniques are based on
finding groups of clustersin a population of objects, where
each object is characterized by a set of attributes. Cluster
analysis algorithms use a dissimilarity metric to partition
the set of objectsinto clusters.

To improve the accuracy of software reliability estima-
tion [20], cluster analysis has also been utilized to partition
a set of program executionsinto clusters based on the sim-
ilarity or dissimilarity of their profiles. It has been exper-
imentally shown that failures often correspond to unusual
profiles that are revealed by cluster analysis. Dickinson et
al. have utilized different cluster analysis techniques along
with afailure pursuit sampling techniqueto select profilesto
reveal failures. They have experimentally shown that such
techniques are effective [5, 6]. Clustering has also been
used to reverse engineer systems[4, 18, 19, 29].

Test Case Generation. Several tools existsthat provide au-
tomated testing for web applications such as WebKing [28]
and Rational Robot [21]. These tools function by collect-
ing data from users through minimal configuration changes
to aweb server. The data collected can be viewed as user
sessions, which isaacollection of user requestsin theform
of URL and name-value pairs. To transform a user session
into a test case, each logged request of the user session is
changed into an HTTP request that can be sent to a web
server. A test case consists of a set of HTTP requests that
is associated with a particular user session. Different strate-
giesare applied to construct test cases for the collected user
sessions. In these tools, test case generators are based on
selecting most popular paths in web server logs. Studies
have shown promising results that demonstrate the fault de-
tection capabilities and cost-effectiveness of user session-
based testing [8]. They showed that the eff ectiveness of user
session techniquesimproves as the number of collected ses-
sionsincreases. However, the cost of collecting, analyzing,
and storing datawill also increase.

Recently, analysis tools have been devel oped that model
the underlying structure and semantics of web-based pro-
grams. With the goal of providing automated data flow test-
ing, Liu, Kung, Hsia, and Hsu [16] developed the object-
oriented web test model (WATM). They utilized this model
to generatetest cases, which are based on data flow between
objects in the model. Their technique generates def-use
chains as test cases, which require additional analysisin or-
der to generate test cases that can be utilized as actua input
to the application. They do not indicate how this step would
be accomplished.

Ricca and Tonella [23] developed a high level UML-
based representation of a web application and described
how to perform page, hyperlink, def-use, all-uses, and all-
pathstesting based on the data dependences computed using
the model. Their ReWeb tool loads and analyzes the pages

23



of the application and builds a UML model. The TestWeb
tool generates and executes test cases. However, significant
interventionis required by the user for generating input.

Lucca et al. [17] recently developed a web application
model and set of tools for the evaluation and automation of
testing web applications. They developed functional testing
techniques based on decision tables, which help in generat-
ing effective test cases. However, the process of generating
test input in this manner is not automated.

7. Summary and Future Work

This paper has demonstrated that interesting usage pat-
terns of a web application can be uncovered through con-
cept analysis combined with common subsequence analy-
sis. Thisis just a first step towards better understanding
the dynamic behavior of web applications. We have shown
how thiskind of analysis can be used for scalable, automatic
test case generation for this application domain. Our future
work includes modifying the heuristic test-all-exec-URLs
to consider degree of similarity between user sessions, ex-
ploring additional user session analyses that might be use-
ful for software engineering tasks, and combining user ses-
sion analyses with dynamic analysis of the actual program
code, towards accurate static modeling of web applications.
These combined efforts would provide a basis for creating
software development, testing, and maintenance tools for
reliable web applications.

Acknowledgements
We thank the U. of Delaware IT group for their aid in log-
ging uPortal sessions.

References

[1] G. Ammons, D. Mandelin, and R. Bodik. Debugging tempo-
ral specifications with concept analysis. In ACM SGPLAN
Conf on Prog Lang Design and Implem, 2003.

[2] T.Ball. The concept of dynamic analysis. In ESEC / SG-
SOFT FSE, pages 216234, 1999.

[3] G. Birkhoff. Lattice Theory, volume 5. American Mathe-
matical Soc. Colloquium Publications, 1940.

[4] D.Bojicand D. Velasevic. Reverse engineering of use case
redlizations in uml. In Proceedings of the 2000 ACM sym-
posium on Applied computing, pages 741—747, 2000.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. In Proceedings of
the 23rd international conference on Software engineering,
pages 339-348. |EEE Computer Society, 2001.

[6] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In
Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of software engineering, pages
246-255. ACM Press, 2001.

[7] T.Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. |EEE Trans on Soft Eng, 29(3):210-224,
Mar 2003.

[8] S. Elbaum, S. Karre, and G. Rothermel. Improving web
application testing with user session data. In Int Conf on
Soft Eng, 2003.

[9] R. Godin, R. Missaoui, and H. Alaoui. Incremental con-
cept formation algorithms based on galois (concept) lattices.
Computational Intelligence, 11(2):246-267, 1995.

[10] Open source web applications with source code.
< http://www.gotocode.com>, 2003.

[12] 1. Jacobson. The use-case construct in object-oriented soft-
ware engineering. In J. M. Carroll, editor, Scenario-based
Design: Envisioning Work and Technology in System Devel-
opment, 1995.

[12] A.Jainand R. Dubes. Algorithmsfor Clustering Data. Pren-
tice Hall, 1988.

[13] M. Kroneand G. Snelting. On theinference of configuration
structures from source code. In Int Conf on Soft Eng, 1994.

[14] T. Kuipersand L. Moonen. Types and concept analysis for
legacy systems. In Int Workshop on Prog Compr, 2000.

[15] C. Lindig and G. Snelting. Assessing modular structure of
legacy code based on mathematical concept analysis. In Int
Conf on Soft Eng, 1997.

[16] C.-H. Liu, D. C. Kung, and P. Hsia. Object-based data flow
testing of web applications. In Proceedings of the First Asia-
Pacific Conference on Quality Software, 2000.

[17] G.D. Lucca, A. Fasolino, F. Fardli, and U. D. Carlini. Test-
ing web applications. In International Conference on Soft-
ware Maintenance, 2002.

[18] C.-H. Lung. Software architecture recovery and restruc-
turing through clustering techniques. In Proceedings of
the third international workshop on Software architecture,
pages 101-104, 1998.

[19] B. S. Mitchell, S. Mancoridis, and M. Traverso. Search
based reverse engineering. In Proceedings of the 14th inter-
national conference on Software engineering and knowledge
engineering, pages 431438, 2002.

[20] A. Podgurski, W. Masri, Y. McCleese, F. G. Wolff, and
C. Yang. Estimation of softwarereliability by stratified sam-
pling. ACM Trans. Softw. Eng. Methodol., 8(3):263-283,
1999.

[21] Rational Robot. < http:/Avww-
306.ibm.com/software/awdtool s'tester/robot/>, 2003.

[22] Caucho resin. http://www.caucho.com/resin/, 2002.

[23] F Riccaand P. Tonella. Analysis and testing of web appli-
cations. In Proceedings of the International Conference on
Software Engineering, May 2001.

[24] M. Siff and T. Reps. Identifying modules via concept anal-
ysis. In International Conf on Software Maintenance, 1997.

[25] G. Snelting and F. Tip. Reengineering class hierarchies us-
ing concept analysis. In SGSOFT FSE, 1998.

[26] P Tonella. Concept analysis for module restructuring. |EEE
Trans on Soft Eng, 27(4):351-363, Apr 2001.

[27] Uportal. <http://www.uportal .org>, 2004.

[28] WebKing. <http://www.parsoft.com>, 2004.

[29] T. Wiggerts. Using clustering algorithmsin legacy systems
remodularization. In Fourth Working Conference on Reverse
Engineering (WCRE ' 97), 1997.

24



Precise detection of memory leaks

Jonas Magbe

Michiel Ronsse

Koen De Bosschere

Ghent University, ELIS Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
jmaebe|ronsselkdb@elis.UGent.be
http://www.elis.UGent.be/diota

Abstract

A memory leak occurs when a program allocates a block
of memory, but does not release it after itslast use. In case
such a block is still referenced by one or more reachable
pointers at the end of the execution, fixing the leak is of-
ten quite simple as long as it is known where the block was
allocated. If, however, all references to the block are over-
written or lost during the program’s execution, only know-
ing the allocation site is not enough in most cases. This
paper describes an approach based on dynamic instrumen-
tation and garbage collection techniques, which enables us
to also inform the user about where the last reference to a
lost memory block was created and where it was lost, with-
out the need for recompilation or relinking.

1 Introduction

A memory leak is a memory management problem
which indicates a failure to release a previously allocated
memory block. The term can be used in two contexts. The
first is when indicating imperfections in garbage collectors
as used in e.g. Java Virtual Machines, in case they missed
the fact that a previously allocated block is not referenced
anymore and thus is not added to the pool of free blocks.

The second context is when the programmer himself is
responsible for explicitly freeing all blocks of memory that
he allocated. Thisis still the case in most run time environ-
ments today and also the situation which we will focus on
in this paper.

Leaking blocks of memory during a program execution
has several negative consegquences. It often results in said
program acquiring more and more memory from the oper-
ating system during its execution.

As such, overall system performance will degrade over
time, as alocated but unused blocks of memory will have

to be swapped out once the system runs out of free physical
memory. Eventually, a program may even exhaust its avail-
able virtual address space, which will cause it to terminate
due to an out-of-memory error.

Several packages that can perform memory leak detec-
tion aready exist. The necessary instrumentation can hap-
pen at different levels. Insure++ [5] rewrites the source code
of an application. Many leak detectors operate at the library
level by intercepting calls to memory management routines,
such asin case of LeakTracer [1], memdebug, memprof and
the Boehm Garbage Collector [2].

Findly, it is possible to instrument at the machine code
level. Purify [8] statically instruments the object code of an
application and the libraries it uses. Dynamic instrumen-
tors such as Valgrind [7] delay the instrumentation until run
time.

Except for Insuret+, all of the mentioned debugging
helpers only tell the programmer where the leaked block of
memory was allocated, but not where it was lost. Insure++
does show where the last pointer to a block of memory was
lost, but not where this pointer got its value. Additionally,
sinceit is a source code instrumentation tool, it requires re-
compilation and cannot provide detailed information about
leaks in third-party libraries of which the source codeis un-
available.

In this paper, we present a technique that uses dy-
namic instrumentation at the machine code level to track
all pointersto allocated blocks of memory. It is completely
language- and compiler-independent and can show where
the leaked blocks were alocated, lost and where the last
references to these blocks were created.

In what follows, we first give a short overview of the
instrumentation framework we use. Next, we discuss the
kinds of memory leaks that exist and how they may occur.
We then describe in great detail how we can detect these
leaks, as well as some implementation details. Finally, we
conclude after presenting a short evaluation and discussing
our future plans.

25



2 Instrumentation overview

The inner workings of the instrumentation framework
that we use, DIOTA (which stands for Dynamic Instrumen-
tation, Optimization and Transformation of Applications),
are explained extensively in [6]. The framework itself is
quite generic, and specific instrumentation applications are
realised through so-called backends. These are shared li-
braries that link to the DIOTA-framework and which spec-
ify how DIOTA should rewrite the code during the instru-
mentation.

The techniques we will describe rely on only two fea
tures of DIOTA: the ability to intercept callsto dynamically
linked routines and being notified of memory operations.
The former enables us to track the memory alocations and
deallocations performed by the program, the latter is used to
track the pointers to the memory blocks as they are passed
through the program.

3 Memory leaks

There are two kinds of memory leaks. ZeroFault Soft-
ware [4] calls them logical and physical. A logical mem-
ory leak occurs when a block of memory is alocated and
never freed afterwards, but at all times during the program
execution a reachable pointer to this block of memory ex-
ists. A physical memory leak occurswhen the last reachable
pointer to a particular block of memory islost.

We mainly focus on physical memory leaks in this arti-
cle, because finding out where exactly the last pointer to
a block of memory is lost is crucial to fix such an error
and this information is often hard to come by. The de-
scribed techniques are however aso applicable to solving
logical memory leaks. In that case, at the end of the pro-
gram our technique allows us to provide the developer with
alist of references to all unfreed memory blocks, including
the place where they were created.

A physical memory leak can occur in three ways.

e Thelast reference to ablock of memory is overwritten
with a new value, or some value is added to it. In the
latter case, it is possible that the original value will be
restored later by subtracting this same value again, so
one should take this into account to avoid false posi-
tives.

e The last reference to a block of memory goes out of
scope. For example, it was stored in alocal variable or
a parameter and the function exits.

e The block of memory containing the last reference to
another block of memory isfreed.

Note that the lost reference to a block of memory does
not really have to be the last one for it to cause a physical
memory leak. In case of cyclic structures, it is possible to
be left with a group of blocks all referring each other, but
no way to reach them anymore from global data pointers or
local variables.

In order to discover a physica memory leak, a way to
track all pointers to a particular block of memory is re-
quired. In this sense, the problem is identical to the clas-
sic problem of garbage collection. One can therefore also
choose from the wide variety of known algorithms to per-
form garbage collection in order to find memory leaks.

Thereis however one important difference asfar asfind-
ing physical memory leaksis concerned: one wantsto know
as exactly as possible where a block of memory was lost.
Periodic garbage collection can only loosely pinpoint where
the last reference to a block disappeared, and more exact
techniques are required to improve accuracy.

For this reason, we have chosen to use reference count-
ing [9] as opposed to e.g. the more commonly used mark-
and-sweep algorithm. Although this increases the overhead
significantly and prevents us from detecting leaked cycles,
wethink that the added detailed information isworth it. Ad-
ditionally, it is till possible to periodically perform a mark-
and-sweep to detect |eaked cycles.

4 Detection

4.1 Memory blocks

In order to be able to track pointers to alocated memory
blocks, onefirst hasto know where those blocks are located.
For this purpose, our DIOTA-backend intercepts al callsto
malloc, caloc, realloc, free, new, delete and their variants.

In case of alocations, the replacements call through
to the original functions and then record their return val-
ues. This recording occurs in a hash table, with the blocks
hashed on their start address. Since we only count the refer-
ences to the start address of a block, this allows for enough
flexibility asfar as searching is concerned. The deallocation
routines remove the block to be deallocated from this hash
table before actually deallocating it.

For each allocated block, quite a bit of information is
recorded. First of all, the call stack at the time of alloca
tion is stored. Next, we aso give each alocated block a
reference count, a unique identifier (called a block id), and
a usecount. This last field keeps track of how many times
areference to said block has aready been created and will
allow us to detect stale references as explained in the next
section.

26



I | | block_info pooll | |

I | | block_info pool

Il | block mfopool | | |

block_lnfo reference_info a I block_info
address = 0x10 address.: Oxf4 I _e;ic;r;s_s_:_?_ T
size = 0x20 block_id =1 size="? 1
id=1 ref_backtrace 1 id=2 I

usecount = 1 memory_block I usecount =
refcount = 1 | refcount="? !
alloc_backtrace I alloc_backtrace |

@ void *a = malloc(32);

reference_info a I_ _bl&k;nf; = I/L reference_info a
address = 0xf4 e -—I address = 0xf4
block_id = 1 | address =7 block_id = 1
ref_backtrace | sze; N 1' I ref_backtrace

— id!=
memory_block I usecount=? memory_block
I refcount="?
| alloc_backtrace |
(® b = NULL;

Figure 1. Reference and block bookkeeping

4.2 References

The second piece of the puzzleis keeping track of all ref-
erences to these blocks of memory. For each reference we
keep track of where it was created, its address, the mem-
ory block it refers to and the block id of the block when the
reference was created.

The information about these referencesis stored in struc-
tures residing in two trees, with one tree reserved for the
references residing on the stack. A first reason to separate
the stack items from the rest, is that measurements showed
that many more references are created and removed on the
stack than elsawhere, and at the same time the maximum
number of references located on the stack at asingletimeis
often afactor 1000 smaller than the maximum of references
residing on the heap.

It thus makes sense to keep the volatile but small group
of references on the stack separate from the rest for perfor-
mance reasons. Additionally, when the stack shrinks, we
can keep removing the first item of the stack tree aslong as
thisitem’s address lies below the new stack pointer, simpli-
fying stack shrinking management considerably.

A final useful property of thesetreesisthat when amem-
ory regioniscopied (e.g. using memcpy), we can easily find
all references lying inside this region in order to copy them
as well, without having to scan the entire copied region or
having to iterate over al recorded references.

The bookkeeping of the references can be achieved by
looking at the results of all store operations performed by
the program. Load operations are largely irrelevant, as most
of the time they only result in an extra reference when the
value is stored back to memory. Register variables can be
handled by looking at the contents of the registers when the
reference count of ablock dropsto zero.

When a value equal to the start address of an allocated
block is stored, we increase the reference count of said
block. When a previously recorded reference is overwrit-
ten with a different value, the reference count of the block
it referred to is decreased again.

After ablock has been freed however, al of itsreferences

become stale. There are two ways to solve the problem of
stalereferences: oneisto find (or keep track of) and remove
all those references, another is to make sure the staleness
can be detected the next time this reference is accessed. We
use the latter technique to avoid the extra associated with
the former.

The staleness detection isimplemented using the unique
identifier that each block possesses: as mentioned before,
creating a reference to a block results in the current block
id of that block to be copied to the reference’s information
structure. When a memory block is freed, its block id is
set to the next available unique value. As such, when we
afterwards encounter a stale reference to this block, we can
immediately notice this due to the fact that the block ids do
not match.

This technique also allows us to immediately make a
structure containing the information about a memory block
available for reuse (through a dedicated pool of such struc-
tures) when its corresponding block is freed. Even though
there may be stale references to such a block and thus this
structure, the unique identifier makes sure this can be de-
tected reliably when the referencing occurs.

Figure 1 shows an example of how this works in prac-
tice. First, the program allocates a block of memory. After
caling thereal malloc, we alocate a memory block info
structure from the previously mentioned dedicated pool and
fill in the appropriate values. The fact that thisinfo block is
then stored in a hashtable, is not shown here.

Still in statement 1, the program stores the pointer to this
block in the variable a. At this point, we create a new ref-
erence info structure. The pointer to the memory block info
structure is a pointer in the programming language sense: it
issimply the address of this structure.

The block is freed again in statement 2. As shown, the
memory block information structure is freed at the same
time, but the reference information structures are | eft intact.
The block id of the memory block isincreased though.

When the program afterwards overwrites a with a new
value, possibly after new blocks have been alocated, the
situation will be as shown for statement 3. The memory

27



block_info

reference_info

address = 0x10

address = 0xf4

size = 0x20 block_id = 1

id=1 ref_backtrace
usecount = 1 memory_block
refcount = 1

alloc_backtrace

@ void *a = malloc(32);

i block_info leak_info
| address = 0x10 i blk_id = 1
| size =0x20 1 blk_usecnt = 1
id=2 | alloc_backtrace
usecount=1 | ref_backtrace
refcount =0 I lose_backtrace
| alloc_backtrace ] memory_block

(3) free(a-2*sizeof(void*));

block_info leak_info

address = 0x10 blk_id =1
size = 0x20 blk_usecnt = 1
id=1 alloc_backtrace
usecount = 1 ref_backtrace
refcount =0 lose_backtrace

alloc_backtrace memory_block

@ a += 2*sizeof(void*);

block_info leak_info Y/

.=

I address=7?
1 size="?
id!=1 |
usecount=7? |
refcount = ?
I alloc_backtrace .

memory_block

<check collected leaks>
(leak removed because id
memory block has changed)

Figure 2. Example of detecting a false positive

block information structure may either be free or in use for
another memory block that has been alocated in the mean
time, but we can detect the fact that the reference originally
pointed to another memory block by comparing the block
id's.

4.3 Leaks

Finaly, there are the memory leaks. When the reference
count of a block of memory reaches zero, a new potential
leak is created. The are called potential leaks because there
may still be a reference to the possibly leaked block in a
register, or it could be that anew reference will be calculated
by the program later on (e.g. by substracting a value from a
pointer that currently points to somewhere in the middle of
that block).

Such a potential leak contains the call stacks of where it
occurred, where the last reference, which was just lost, was
created and where the leaked block was allocated.

All potential leaks are stored in a hash table, with the
hash based on the recorded call stacks mentioned above.
Apart from that data, we also record the cause of theleak (as
explained in section 3) and the current block id and usecount
of the memory block at the time the leak occurred. Findly,
leaks a so have an occurrence count.

Two potential leaks are deemed identical if their causes
and their three recorded call stacks match. In such a case,
the previously stored potential leak in the hash table is ver-
ified to see whether the block it refersto is still leaked.

This verification occurs at two levels. First of al, if the
block id recorded in the potential leak is different from the
current one of the memory block, it means the block has
been freed since we detected the potential leak, so it was a
false positive.

The second verification is based on discrepancies be-
tween the usecount values of the potential leak and the
memory block. If these values differ, a new reference has
been created to the supposedly leaked block since the orig-
inal leak detection. As such, this block can not have been
leaked at that moment in time.

If both tests pass, the previoudly recorded leak is deemed
to be permanent. The occurrence count of the leak is in-
creased, and the the stored block id and usecount are re-
placed by those of the newly detected leak.

A demonstration of detecting afalse positive based on a
change of block idisshown in figure 2. Likein the previous
figure, in statement 1 a memory block is allocated and the
resulting pointer isstored in variable a. Theresult isthat an
info structure for the memory block and the reference are
created, with the latter referring to the former.

In statement 2, we add a constant to a. When the value
of a in memory is changed, we detect that the new pointer
no longer refers to the start of the memory block, so we
decrease the reference count of the previous block it pointed
to.

Since that one is now zero, we create a new potential
leak. Thisleak gets a copy of the creation backtrace of the
reference we just overwrote, the allocation site of the mem-

28



ory block and the current backtrace (i.e., the place where the
leak was detected). We also copy the current block id and
usecount values of the memory block and keep a pointer to
the information about the memory block for future check-
ing.
In statement 3, the block is freed. Consequently the
block id of the memory block info isincreased. The poten-
tial leak remains untouched. Note that if the parameters are
passed via the stack, the usecount of the block will also be
increased, since by passing the parameter a new reference
to the block is created.

When we later on check whether the previously created
potential leak was areal leak, we can see it was not due to
the fact the block ids will differ between the memory block
info and the leak info (as well as the usecount, possibly).

4.4 Reporting

Every time memory is allocated, we check whether 5
minutes have passed since the last time we wrote out al
collected leaks. If so, then we process all collected poten-
tial leaks, write out the ones we deem to be real leaks (us-
ing the same verification based on block ids and usecounts
described in the previous section) and reset the hash table
containing them. This procedure is also carried out when
the program exits.

We only do this checking at alocation time, since if the
program is not allocating any new memory, any leaks that
may have happened are not going to have much influence
on the program’s operation. We also do not lose any infor-
mation by delaying the reporting of the leaks.

We have not yet implemented the reporting of the re-
maining references to logically leaked memory blocks at
the end of the program. It could be easily done by iterating
over al still existing referencesthough, preferably grouping
them per leaked memory block.

An example of areport (in verbose mode) of a detected
leak can be seenin figure 3

5 Falsepositives, false negatives

A very important aspect of detecting memory leaks, is
dealing with false positives and false negatives. In case of
area garbage collection system, one cannot afford to incur
the former, as it would result in memory corruption. In our
case, the consequences are not as catastrophic, but if there
are too much false positives, the output becomes useless to
the user.

We use the system of the potential leaks to avoid most
false positives. The mgjority of those result from functions
which return the last reference to a block of memory in a
register. Once the stack shrinks, the last reference is then
often removed, resulting in a potential leak. When the result

of this function is stored back to memory, the usecount of
the memory block isincreased, so the false positive will be
recognised and not reported.

Another way to deal with this, would be to scan the con-
tents of the registers whenever aleak dueto stack shrinking
occurs, but that has not yet been implemented.

Another kind of false positive can occur since we only
track references to the start of a memory block. In
practice, we only experienced this in the case of C++
code, where in some cases constructors return a pointer
to sizeof (void*) bytes past the start of the allocated
block. We compensated for this by treating such pointers
also asreferencesto blocks. After this adaption, we did not
encounter any further reported false positives due to point-
ers not pointing to the start of a block.

Permanent false positives can occur due to not handling
cases which seldom happen, such as overwriting part of
a pointer, or writing a pointer byte per byte to memory.
Adding support for these cases can be done at the expense
of alarger slowdown.

Fal se negatives can occur when avalueis stored to mem-
ory that happens to have the same value as the start of an
allocated memory block, but which is not actually used in
the program as such. In casethisisaloop counter, the refer-
ence count will immediately be decreased again in its next
iteration. If it is random data, e.g. copied from a mapped
file, a physical leak may never be detected using the ref-
erence counting method. The same goes for leaked cyclic
structures.

However, since we keep track of al allocated memory
blocks, we can still report them as logical memory leaks
when the program exits. Additionally, we can also providea
list of all siteswhere the remaining references were created.

6 Related work

As mentioned in the introduction, several memory de-
buggers which support memory leak detection already ex-
ist. Most simply provide replacement functions for malloc,
free and friends and report, when the program exits, which
blocks have not been deallocated. This very low overhead
technique is used by Valgrind, Leaktracer, memdebug and
memprof and is therefore useful to try first.

Insure++ performs full instrumentation of the available
source code and can therefore also track where exactly the
last reference to ablock of memory islost in case of physi-
cal memory leaks, at least if this occurs within a part of the
program for which source code is available. It does not pro-
vide any extrainformation regarding logical memory leaks.

Another interesting case is the well known Boehm
garbage collector [2]. It includes a mode in which it func-
tions as amemory leak detector instead of as a garbage col-
lector. However, as it relies on periodic scanning of the

29



freed block containing last reference to a block of memory

*** Warning,
block at 0x88a9388, ip = 0x8048497,

(reference at 0x88a937c,
1 occurrence(s)) in thread 0 at:

[0x08048497] : test linked list, /user/jmaebe/diota/test/mem8.c:54

53: // make a->next no longer reachable
54: free(a) ;
55: }
[0x08048642] : main, /user/jmaebe/diota/test/mem8.c:120
119: testje2 (&a) ;
120: test linked list();

// test multiple leaks at the same location

121:
/lib/tls/libc.so.6

[0x0039176b]: _ libc start main+235,

The last reference to that block we know of was created at 0x804848e:
[0x0804848e] : test linked list, /user/jmaebe/diota/test/mem8.c:51

50: a=malloc (sizeof (record t));

51: a->next=malloc (sizeof (record t)) ;

52:
[0x08048642] : main, /user/jmaebe/diota/test/mem8.c:120

119: testje2 (&a) ;

120: test linked list();

121: // test multiple leaks at the same location
[0x0039176b]: _ libc start main+235, /lib/tls/libc.so.6

This block was allocated at 0x8048486:

[0x08048486] : test linked list, /user/jmaebe/diota/test/mem8.c:51

50: a=malloc (sizeof (record t));
51: a->next=malloc (sizeof (record t)) ;
52:
[0x08048642] : main, /user/jmaebe/diota/test/mem8.c:120
119: testje2 (&a) ;
120: test linked list();
121: // test multiple leaks at the same location
[0x0039176b]l: _ libc start main+235, /lib/tls/libc.so.6
Figure 3. Example of verbosely reported memory leak
1 enode* result = new_enode (polynomial, exp+l, pos+l/*from 1 to m*/);

for (int i=0;i<exp+1;i++) {
set<map<lstring, int> > new terms =
find terms with var exp(terms, var_name,
5 // fix memory leak found by DIOTA
value clear (result-s>arr[i] .d);

value clear (result-sarr[i] .x.n);

result->arr[i] = translate one term(parameter names,
left_over var names,

new_terms) ;

i);

10

Figure 4. Bug found in FPT using our technique

30



address space of a program using avariant of the mark-and-
sweep algorithm, it can only discover that a pointer got lost
somewhere between two garbage collections.

7 Evaluation

We evaluated our techniques by analysing a few known
free software programs (lynx and vim, which turned out not
to contain any recurring memory leaks), as well as locally
adapted versions of the SimpleScalar simulator and the For-
tran Parallel Transformer (FPT) [3]. The slowdown factor
lies between 200 and 300 times, which is obviously very
significant. The amount of required memory more or less
doubles compared to the original execution.

Both SimpleScalar and FPT were known to contain
memory leaks from testing with other tools, but without the
exact location of the actual leaking, fixing them proved to
be very hard. An example from FPT is shown in figure 4.

Originally, the d and x.n fields in lines 6 and 7 were
long int’s. Afterwards, they were changed into whole
numbers with infinite precision from the GNU Multipreci-
sion Library GMP. Before overwriting such values, one has
tocal thevalue_clear () macrotofreeprevioudly alo-
cated memory.

While adding such calls throughout 50000+ lines of C++
code, the two that are now at lines 6 and 7 were forgot-
ten. Our tool pinpointed what is now line 8 in the fragment
above as the place where the last reference to a block of
memory was overwritten.

8 Futureplans

Oneof our main goals currently isto reduce the overhead
of our backend. It has aready become more than a factor
10 faster since the start of this project, and we are confident
we can reduce it alot more. One way isto adapt DIOTA so
that the backend can better control when exactly it wantsits
callbacks to be called.

Currently, the backend's callback is called before each
memory access (either load, modify or store). This means
that when astoreisreported, the new valueisnot yet written
to memory. As such, we have to log this event and only
when the next memory operation occurs, the result of the
previous store can be examined.

Another issue is detecting when the stack shrinks. At
the moment, every time a memory access occurs, we check
whether the stack has shrunk and whether consequently
some references went out of scope. A much better way
would be to insert these checks only after instructions that
can increase the stack pointer (given a downward growing
stack).

We therefore intend to add a mode to DIOTA whereby
a backend’s callbacks will only be called right after awrite

or modify operation, and add the ability for a backend to
specify on a per-instruction (type) basis whether it wants to
be called or not.

9 Conclusion

In this paper, we described how precise memory leak de-
tector can be performed using the reference counting tech-
nigue. We described implementation details and the prob-
lems of false positives and fal se negatives.

We showed in our evaluation that although the current
slowdown is quite big, the results provided by the technique
help significantly with finding the root cause of memory
leaks. We intend to speed up the implementation and tech-
nigque in the future.

10 Acknowledgements

Jonas Magebe is supported by a grant from the Institute
for the Promotion of Innovation by Science and Technology
in Flanders (IWT). This research was also funded by Ghent
University and by the Fund for Scientific Research-Flanders
(FWO-Flanders).

The authors also wish to thank Kristof Beyls for pro-
viding idess, testing consecutive implementations and his
invaluable feedback throughout this process.

References

[1] E. S. Andreasen. Leaktracer.
http://www.andreasen.org/LeakTracer/.

[2] H. Boehm. Dynamic memory allocation and garbage collec-
tion. In Computers in Physics, volume 9, pages 297-303,
May 1995.

[3] E. D'Hollander, F. Zhang, and Q. Wang. The fortran paral-
lel transformer and its programming environment. Journal of
Information Science, 106:293-317, 7 1998.

[4] T.Z.Group. Zerofault. http://www.zerofault.com.

[5] Insuret++. http://www.parasoft.com/.

[6] J. Maebe, M. Ronsse, and K. D. Bosschere. DIOTA: Dy-
namic Instrumentation, Optimization and Transformation of
Applications. In Compendium of Workshops and Tutorials,
Held in conjunction with PACT’ 02: International Conference
on Parallel Architectures and Compilation Techniques, Char-
lottesville, Virginia, USA, Sept. 2002.

[7] N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. In O. Sokolsky and M. Viswanathan, edi-
tors, Electronic Notes in Theoretical Computer Science, vol-
ume 89. Elsevier, 2003.

[8] E R Rs Purify: Fast  detection
of memory leaks and access errors.
http://citeseer.nj.nec.com/291378.html.

[9] P.R.Wilson. Uniprocessor garbage collection techniques. In
Proc. Int. Workshop on Memory Management, humber 637,
Saint-Malo (France), 1992. Springer-Verlag.

31



On Specifying and Monitoring Epistemic Properties of Distributed Systems
Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Rosu
Department of Computer Science
University of Illinois at Urbana Champaign
{ksen,vardhan,agha,grosu}@cs.uiuc.edu

Abstract

We present an epistemic temporal logic which is suitable
for expressing safety requirements of distributed systems
and whose formulae can be efficiently monitored at runtime.
The monitoring algorithm, whose underlying mechanism is
based on symbolic knowledge vectors, is distributed, decen-
tralized and does not require any messages to be sent solely
for monitoring purposes. These important features of our
approach make it practical and feasible even in the context
of large scale open distributed systems.

1. Introduction

The discovery and prevention of software errors is a dif-
ficult problem involving many different aspects, such as in-
correct or incomplete specifications, errors in coding, faults
and failures in the hardware, operating system or network.
Two prominent formal approaches used in checking for
errors are: theorem proving and model checking. Theo-
rem proving is powerful but labor-intensive, requiring in-
tervention by someone with fairly sophisticated mathemat-
ical training. On the other hand, model checking is more
of a push-button technology, but despite exciting recent ad-
vances, the size of systems for which it is feasible remains
rather limited. As a result, most system builders continue to
rely on testing to identify bugs in their implementation.

There are two problems with software testing. First, test-
ing is generally done in an ad hoc manner: it requires
the software developer to translate properties into specific
checks on the program state. Second, test coverage is rather
limited. To mitigate the first problem, software often in-
cludes dynamic checks on the systems state to identify prob-
lems at run-time. Recently, there has been some interest in
run-time monitoring techniques [1] which provide a little
more rigor in testing. In this approach, monitors are au-
tomatically synthesized from a formal specification. These
monitors may then be deployed off-line for debugging or
on-line for dynamically checking that safety properties are
not being violated during system execution.

In [6] we argue that distributed systems may be effec-
tively monitored against formally specified safety require-
ments. By effective monitoring we mean not only linear ef-
ficiency, but also decentralized monitoring where few or no

32

additional messages need to be passed for monitoring pur-
poses. We introduced an epistemic temporal logic for dis-
tributed knowledge, called past time linear temporal logic
and abbreviated PT-DTL, and showed how monitors can be
synthesized for it. PT-DTL formulae are local to particu-
lar processes and are interpreted over projections of global
state traces that the current process is aware of. In this pa-
per, we increase the expressiveness of PT-DTL and make
it more programmer friendly by adding constructs similar
to value binding in programming languages and quantifica-
tion in first order logic. These constructs allow us to suc-
cinctly specify properties of open distributed systems in-
volving data. The new logic is called XDTL and its novel
features are inspired from EAGLE [3].

Let us assume an environment in which a node a may
send a message to a node b requesting a certain value. The
node b, on receiving the request, computes the value and
sends it back to a. There can be many such nodes, any pair
can be involved in such a transaction, but suppose that a
crucial property to enforce is that no node receives a reply
from another node to which it had not issued a request ear-
lier. One can check this global property by having one lo-
cal monitor on each node, which monitors a single property.
For instance, a monitors “if a has received a value from b
then it must be the case that previously in the past at b the
following held: b has computed the value and at a a request
was made for that value in the past”. Using XDTL, all one
needs to do is to provide the safety policy as a formula:

valueReceived —
@y (¢ (valueComputed A @Q,(®valueRequested)))

@ is an epistemic operator and should be read “at”; Q, F' is
a remote property that should be thought of as the value of
F" in the most recent local state of b that the current process
is aware of, In PT-DTL[6], @ can only take one process as
a subscript. In XDTL, as described later in the paper, Q can
take any set of processes as a subscript together with a uni-
versal or an existential quantifier, so @, becomes “syntactic
sugar” for @y, (or for Q5y;)). © should be read “eventu-
ally in the past”. Monitoring the formula above will involve
sending no additional messages but only a few bits of infor-



mation piggybacked on the messages already being passed
for the computation.

Suppose that we want to restrict the above safety pol-
icy by imposing a further condition that the value received
by a must be same as the value computed by b. To express
this stronger property, we need to compare values in states
at two process that are not directly related. This property
cannot be directly expressed in PT-DTL without introduc-
ing extra variables in the program itself. However, adding
extra variables in the program can potentially result in side-
effects which are not desirable. An elegant way to solve the
problem is to introduce the notion data-binding in the logic
used for monitoring. Informally, we can restate the prop-
erty as follows: a monitors “if a has received a value from
b then remember the value received in a variable & and it
must be the case that previously in the past at b the follow-
ing held: b has computed the value and the computed value
is equal to k and at a a request was made for that value in
the past”. This can be written formally as follows:

valueReceived — let kK = valuein
@p (@ (computedValue A (k = valueComputed)
NQ, (®requestedValue)))

Informally, the construct “let k = £in F” binds the value
of the expressions & at process a with the logic variables k
which can be referred by any expression in the formula F'.
Another example in [6] regards monitoring certain cor-
rectness requirement in a leader-election algorithm. The
key requirement for leader election is that there is at-most
one leader. If there are 3 processes namely a,b,c and
state is a variable in each process that can have values
leader, loser, candidate, sleep, then we can write the
property at every process as: “if a leader is elected then if
the current process is a leader then, to its knowledge, none
of the other processes is a leader”. We can formalize this re-
quirement as the following PT-DTL formula at process a:

leaderElected — (state = leader —
(Qp(state # leader) A Q. (state # leader))

We can write similar formulae with respect to b and c. Given
an implementation of the leader election problem, one can
monitor each formula locally, at every process. If violated
then clearly the leader election implementation is incorrect.

However, the above formula does not specify the re-
quirement that every process must know the name of the
process that has been elected as leader. We cannot ex-
press this stronger requirement in PT-DTL. However, us-
ing the construct “let _ in _” and assuming that the variable
leaderName contains the name of the leader, the require-
ment can easily be stated in XDTL as follows:

leaderElected — let kK = leaderName in
(Qp(leaderName = k) A Q.(leaderName = k))

33

Note that the above formula assumes that the name of ev-
ery process involved in leader election is known to us be-
forehand. Moreover, the size of the formula depends on the
number of processes. In a distributed system involving a
large number of processes, writing such a large formula may
be impractical. The problem becomes even more important
in an open distributed system where we may not know the
name of processes beforehand. To alleviate this difficulty, as
already mentioned, we use a set of indices instead of a sin-
gle index in the operator @. The set of indices denoting a
set of processes can be represented compactly by a predi-
cate on indices. For example, in the above formula, instead
of referring to each process by its name we can refer to the
set of all remote processes by the predicate i # a and use
this set as a subscript to the operator Q:

leaderElected — let k = leaderName in
Qy(;)ia} (leaderName = k)

Qy;|ia) (leaderName = k) denotes the fact that the for-
mula leaderName = k£ must hold true at all processes ¢ sat-
isfying the predicate ¢ # a. This is equivalent to the first or-
der logic formula Vi . ((i # a) — @Q;(leaderName = k)).

The logic XDTL proposed in this paper, extending PT-
DTL with the construct “let _ in _” and with quantified
sets of processes in the subscript of the epistemic operator
@, is more expressive and elegant than PT-DTL. These ben-
efits are attained without sacrificing efficiency and the de-
centralized nature of monitoring.

Many researchers have proposed temporal logics to rea-
son about distributed systems. Most of these logics are in-
spired by the classic work of Aumann [2] and Halpern ez al.
[4] on knowledge in distributed systems. Meenakshi et al.
define a knowledge temporal logic interpreted over a mes-
sage sequence charts in a distributed system [5] and develop
methods for model checking formulae in this logic. How-
ever, in our work we address the problem of monitoring and
investigate an expressive distributed temporal logic that can
be monitored in a decentralized way.

The rest of the paper is organized as follows. Section 2
describes the basic concepts of distributed systems. Sec-
tion 3 introduces the more expressive PT-DTL which we
call XDTL. In Section 4 we conclude by briefly sketching a
decentralized monitoring algorithm.

2. Distributed Systems

We consider a distributed system as a collection of pro-
cesses, each having a unique name and a local state, com-
municating with each other through asynchronous message
exchange. The computation of each process is abstracted
out in terms of events which can be of three types: internal,
an event denoting local state update of a process, send, an
event denoting the sending of a message by a process to an-
other process, and receive, an event denoting the reception



of a message by a process. Let E; denote the set of events
of process ¢ and let E denote | J; E;. Also, let < C E x E
be defined as follows.
1. e < ¢ if e and €’ are events of the same process and e
happens immediately before ¢,

2. e < ¢’ if e is the send event of a message at some pro-
cess and €’ is the corresponding receive event of the
message at the recipient process.

The partial order < is the transitive closure of the relation
<. This partial order captures the causality relation among
the events in different processes and gives an abstraction
of the distributed computation denoted by C = (E, <). In
what follows, we assume an arbitrary but fixed distributed
computation C. Let us define < as the reflexive and transi-
tive closure of <. In Fig. 1, e;; < es3 and therefore also
e11 < e23. However, even though ejo &ea3, we have
e12 < ea3 as process 2 gets a message from process 3 which
contains knowledge of e;5.

The local state of a process is abstracted out in terms of

a set of events. For e € E we define [e %' {e' | e < e},
that is, |e is the set of events that causally precede e. For
e € E;, we can think of |e as the local state of process ¢
when the event e has just occurred.

We extend the definition of <, < and < to local states
suchthat |e< |’ iffe<e/, |e < |e/iffe < ¢/,and |e % |€’
iff e X €/. We use the symbols s;, s;, s/ and so on to repre-
sent the local states of process . We also assume that each
local state s; of each process ¢ associates values to some lo-
cal variables V;, and that s;(v) denotes the value of a vari-
able v € V; in the local state s; at process .

We use the notation causal;(s;) to refer to the latest
state of process j of which process ¢ knows while in state
s;. Formally, causal;(s;) = s; where s; is a state at pro-
cess j such that s; < s; and for all states s; in process
j with s;. < s; we have s;. < s;. For example, in Fig-
ure 1 causaly(less) = |eja. Note that if ¢ j then
causal;(s;) = s;.

p3

e31

\J

.
-

ell el2

Figure 1. Sample Distributed Computation

3. Extended Distributed Temporal Logic

In order to reason about the global distributed computa-
tion locally, XDTL has a set of three new variants of epis-
temic operators, whose role is to evaluate an expression or a

34

formula in the last known state of a remote process. We call
such an expression or a formula remote. In addition to the
epistemic operators, we add the construct “let k= E in
to XDTL to bind expressions to local logic variables that
can be referred by any expression or formula in F'

The intuition underlying XDTL is that each process may
be associated a local formula which, due to the epistemic
operators, can refer to the global state of the distributed sys-
tem. These formulae are required to be valid at the respec-
tive processes during a distributed computation. The dis-
tributed computation satisfies the specification when all the
local formulae are shown to satisfy the computation. Next,
we formally describe the syntax and semantics of XDTL.
3.1. Syntax

In the sequel, whenever we talk about an XDTL formula,
it is in the context of a particular process, having the name i.
We call such formulae i-formulae and let F;, F, etc., denote
them. Additionally, we introduce the notion of expressions
local to a process i called as i-expressions and let &;, £/, etc.,
denote them. Informally, an i-expression is an expression
over the global state of the system that process ¢ is currently
aware of. Local predicates on i-expressions form the atomic
propositions on which the temporal ¢-formulae are built.

We add the epistemic operators Qy;F; and Qs F)
which is true if at all (or some, respectively) processes j
in the set J, F; holds. Similarly, we add the epistemic op-
erator @;&; which returns the set of j-expressions ¢
for all processes j in the set J. The sets J can be ex-
pressed compactly using predicates over j. For example,
J can be the sets {j | j # a} or {j | client(j)}. The fol-
lowing gives the formal syntax of XDTL with respect
to a process ¢, where ¢ and j are the name of any pro-
cess (not necessarily distinct):

Fy == true | false | P(&) | ~F; | F; op Fi propositional
| OF; | OF; |QF; | B3 S Fi temporal
‘ @vJFj ‘ @HJFJ' epistemic
|letk =& in F; binding
Eiu= cluilk|f(&) functional
| @s&; epistemic
&' = (517751)

The infix operator op can be any binary propositional op-
erator such as A, V, —, =. The term &; stands for a tuple of
expressions on process ¢. The term P (5_;) is a (computable)
predicate over the tuple f: and f (é) is a (computable) func-
tion over the tuple. For example, P can be <, <, >, >, =.
Similarly, some examples of f are 4+, —, /, *. Variables v;
belong to the set V; containing all the local state variables
of process ¢. ¢ stays for constants, ¢.g., 0, 1, 3.14.

3.2. Semantics

The semantics of XDTL extends the semantics of PT-
DTL by defining the three variants of epistemic operators



C,si;le] F Qv F;
C,sile] F Q3,F)
C,si,le] = let (k,..., k") = (&,...,&)inF;
(C, si, le, k — wal])[K]
(€, s, [eD[@o¢;5]

= wal

iffvj. (5 € J) —C,sj,le] = Fj where s; = causal;(s;)
iff35.(j € J)AC,sj,[e] E F; where s; = causalj(s;)
iff C,s:,[e,k — (C, si, [eD[&], - - - kK = (C, si, [6])[[5{]] F Fi

={(C,s;,[eD[&] | 85 = causal;(si) Nj € T}

Table 1. Semantics of xXDTL

and the binding operator. The semantics is given by re-
cursively defining the satisfaction relation C, s;, [e] &= F;,
where [e] is an environment carrying the bindings for differ-
ent logic variables which gets introduced by the “let _in _”
operator. (C, s;,[e])[&:] is the value of the expression &;
in the state s; under the environment [e]. Table 1 formally
gives the semantics of the new operators of XDTL. For the
semantics of other operators the readers are referred to [6].
We assume that expressions are properly typed. Typically
these types would be integer, real, strings,etc.
We also assume that s;, s}, s, . .. are states of process ¢ and
Sj, 85,87, .. are states of process j.

4. Monitoring Algorithm

To monitor XDTL formulae in a decentralized way, we
synthesize distributed monitors as follows. For each pro-
cess there is a separate monitor, called a local monitor,
which checks the local XDTL formulae and can attach addi-
tional information to any outgoing message. This informa-
tion can subsequently be extracted by the local monitor on
the receiving side without changing the underlying seman-
tics of the distributed program. The local monitor of each
process ¢ maintains a KNOWLEDGEVECTOR data-structure
KV, storing for each process j in the system the status of
all the safety policy sub-formulae and sub-expressions re-
ferring to j that ¢ is aware of. The knowledge vector K'V; is
appended to any message sent by i. When performing an in-
ternal computation step, the status of the local formulae and
expressions is automatically updated in the local knowledge
vector. When receiving a message from another process, the
knowledge vector is updated if the received message con-
tains more recent knowledge about any process in the sys-
tem. To do this, a sequence number needs also to be main-
tained for each process in the knowledge vector. Unlike [6],
the entries of KNOWLEDGEVECTOR are symbolic expres-
sions instead of values. This is due to the fact that all the
logic variables referred in an expression or a formulae may
not be available at the time of evaluation of the expression
or the formula. Therefore, the evaluation of a formula or an
expression may be partial, containing the various logic vari-
ables. The logic variables in these formulae or expressions
are replaced by actual values once they become available. A
detailed discussion of the algorithm is beyond the scope of

35

this short paper. However, readers are referred to [6, 3] for
some of the similar ideas.

5. Conclusion

We believe that the logic XDTL presented in this pa-
per is a powerful underlying specification formalism for dis-
tributed systems. Specifications expressed as XDTL formu-
lae can be effectively monitored, even in the context of large
scale open distributed systems. However, it is worthwhile to
investigate other extensions that increase its expressiveness
without sacrificing the efficiency of monitoring.

Acknowledgements

The first three authors are supported in part by the DARPA
IPTO TASK Program, contract F30602-00-2-0586, the
DARPA IXO NEST Program, contract F33615-01-
C-1907, the ONR Grant N00014-02-1-0715, and the
Motorola Grant RPS #23 ANT. The last author is sup-
ported in part by the joint NSF/NASA grant CCR-0234524,

References
[11 Ist, 2nd and 3rd CAV Workshops on Runtime Verification
(RV’01 - RV’03), volume 55(2), 70(4), 89(2) of ENTCS. El-
sevier Science: 2001, 2002.

R. Aumann. Agreeing to disagree. Annals of Statistics, 4(6),
1976.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
based runtime verification. In Proceedings of Sth Interna-
tional Conference on Verification, Model Checking and Ab-
stract Interpretation (VM CAI’04), volume 2937 of LNCS.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

B. Meenakshi and R. Ramanujam. Reasoning about mes-
sage passing in finite state environments. In Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP’00), volume 1853 of LNCS.

K. Sen, A. Vardhan, G. Agha, , and G. Rosu. Efficient decen-
tralized monitoring of safety in distributed systems. In Pro-
ceedings of 26th International Conference on Software Engi-
neering (ICSE’04) (1o Appear).

(2]

(3]

(4]

(]

[6]



Ideas for Efficient Hardware-Assisted Data Breakpoints

Jonathan E. Cook Mayur Palankar
Department of Computer Science
New Mexico State University

Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

Abstract

Data breakpoints, sometimes called watchpoints,
have long been desirable for debugging and other dy-
namic analyses, but are often prohibitively slow to use.
Current processors have a small number of breakpoint
registers that can be used to trap data read and write
operations at CPU speeds—for example, the Intel 386+
CPUs have four breakpoint registers that can watch one
word of memory each. Current use of these registers is
naive and limited, and so we propose and describe some
investigation into furthering their use.

1. Introduction

While debuggers have long supported efficient
code breakpoints, data breakpoints, sometimes called
watchpoints, have lagged behind in the efficiency. This
is because debuggers have typically resorted to single-
stepping through the program and checking to see if the
current instruction is going to touch the watched data
location. Code breakpoints are easy because there is
only one place in the code to worry about, and a trap
can easily be set at that point. A data location can
be used or assigned in many code locations, and in a
program with pointers it is possibly undecidable as to
which code locations will affect a specific data loca-
tion. One reference cites a slowdown of 85,000 times
for a program running under a debugger with a data
watchpoint set [3].

Current processors have attempted to alleviate this
situation somewhat by including in their design a small
number of breakpoint registers that can be used to trap
data read and write operations at CPU speeds—for ex-
ample, the Intel 386+ CPUs have four breakpoint reg-
isters that can watch one word of memory each. Other

CPUs have just one data breakpoint register.
These registers are a step forward but are obvi-

36

ously a severely limited resource. For example, the gdb
debugger will use the breakpoint registers for simple
variable access breakpoints, but will resort to software
trapping if more data is being watched than there are
registers, or if expressions are used. For example, the
program

int main()

{
int x,y,z;
y =5; z = 3;
for (x=0; x<10000000; x++)
{
if (x == 678456)
y =2
z =x - b;
}
z = (x-2) +y;
return z;
}

when run directly gives an execution time of 0.04 sec-
onds. Running it under gdb with no watchpoints gives
an instantaneous prompt return (meaning essentially
no slowdown), and running it with a “watch y” also
gives an instantaneous program interruption at the
“y=2” line. Unfortunately, running the program while
watching for the expression “y==5" to change takes
6 minutes, 15 seconds in the debugger process and 41
seconds in the program process. This gives a total slow-
down of about 10,400.

Thus, while the data breakpoint registers are being
used currently, their use is basic and naive. We pro-
pose several interesting research questions surrounding
the use of these registers. Can these limited breakpoint
registers be used efficiently to watch a large number of
data locations? If so, what types of extra support are
needed to be able to schedule the registers? Can static
analysis of the program help determine the scheduling
of which locations needs to be watched at each point
in the program runtime? If 100% coverage is too ex-
pensive to obtain, can statistical methods be used to
achieve high but not perfect coverage?



Program
Source

Static

Analysis
DBP
Watched Register
Variables Schedule

Dynamic
Analysis

Dynamic
Analysis
Output

Figure 1. General framework for breakpoint
register usage.

In this paper we explore some not-yet-tested
thoughts on how these data breakpoint (DBP) regis-
ters might be used for efficient dynamic analyses that
need to watch variables. Figure 1 shows our general
framework for efficiently using the DBP registers in
dynamic analyses. We propose that a static analysis
phase is needed to build an efficient (or even feasible)
schedule when trying to use limited DBP registers to
watch a large number of variables.

2. Assumed instrumentation capabilities

Our goal is to improve the efficiency of dynamic
analyses that need to watch variables. Thus, while
in the extreme we might need full instruction-level in-
strumentation capabilities, our goal is to use as little
instrumentation as possible. The two questions regard-
ing watching more variables than are DBP registers are
1) Does a schedule for the DBP registers exist that cov-
ers all accesses to the variables, and 2) What triggers
are needed in the program execution to allow us to
change the current watched variables according to the
schedule? In this section we ignore question 1 for now.

At the initial level, we of course have the DBP regis-
ters themselves. We assume that on each trigger of our
instrumentation, we can know the current statement
in the program. Also note that DBP triggers are not
necessarily lightweight. Our current mechanism (and
the only known capability) places triggers in a parent
process (similar to a debugger); thus a trigger causes a
heavyweight context switch to another process.!

nitial measurements over a simple program where a trigger
occurred every 10th iteration through a counting loop resulted
in a slowdown of about 50—the original unwatched process took

37

If the data breakpoints themselves are not sufficient,
then what other instrumentation do we need? A first
step would be function entry and exit, with a more
generalized notion being basic block entry and exit.
Having access to the scope entry and exit of variables
that are being watched is of obvious benefit. It may
also be the case that schedule changes might need to
be done within a scope but still at the beginning or end
of some intermediate basic block.

The final, most detailed level, would be the ability
to instrument arbitrary points in the program, between
individual statements and even at the expression level.
This would allow schedule changes at any point in the
program. At this level our task seems essentially equiv-
alent to register allocation. It is important to remem-
ber, however, that modifying the DBP registers is likely
to be a heavyweight operation (e.g., involving a context
switch), and thus its frequency needs to be minimized.
Again, experimental evidence will be needed to decide
how often this level of instrumentation will be needed.

It is important to remember that the DBP registers
watch for accesses to a memory location. They do not
attempt to correspond data register accesses to mem-
ory location accesses. Thus, as long as variable values
are in a register and being used in a register, the vari-
able accesses are invisible to the DBP mechanism. The
full implications of this are not yet absorbed by the au-
thors, but it certainly implies that DBP registers do not
necessarily provide full trapping of all variable accesses,
especially in optimized programs and on architectures
with a large number of registers.

3. Watching multiple variables

The first scenario that we consider is the simple case
of watching more variables than there are breakpoint
registers. In this section we are assuming that the pro-
gram does not use pointers.

In considering how to watch the variables, the first
thing we need to look at is the lifetimes of the variables.
If the number of overlapping variable lifetimes is less
than or equal to the number of breakpoint registers,
then watching them is fairly straightforward. It still
requires, however, a schedule for which variables are
watched when, and the selection of triggers on which to
change the schedule. Because DBP registers watch ad-
dresses, it would be incorrect to watch a local variable’s
address while out of scope for that variable. Thus, even
without overlapping lifetimes outnumbering our DBP

12.41 seconds, while the watched process (and the monitor) took
116.1 user seconds and 502.51 system seconds. While much bet-
ter than the 10,400 slowdown of the debugger, this is quite high
for hardware-assisted breakpoints, and the numbers show that
most of the overhead is in the kernel.



registers, scheduling triggers may still need to resort to
instrumentation at the scope entry /exit level. It should
never need any finer level of instrumentation for this
case.

Next is the case where the number of overlapping
lifetimes is greater than the number of DBP registers.
Here there can be no guaranteed minimal instrumen-
tation level. Yet there still can be hope for the higher
levels. If static analysis can determine a set of vari-
able watches that must trigger and that can indicate
a point to change one or more DBP registers to watch
other variables, then even this case might be handled
by the highest level of instrumentation.

We think that the best way to evaluate this is to
analyze some benchmark programs over a variety of
watch sets and determine what is needed.

4. Introducing pointers

Pointers, as always, are the bane of analyzers. More-
over, pointers are probably the exact cause of many of
the problems we might want to find by watching vari-
ables. A programmer wants to know exactly when and
where a variable is first getting clobbered.

Many studies have been done on points-to analyses,
and it is often the case that pointers have very small
points-to sets (e.g., [2]). This is encouraging in that
it provides hope that the potential program sites for
reading and writing watched variables does not greatly
increase with pointers in the code. However, with even
one pointer having a large or all-variables points-to set
(including our watched variables, one of which it may
be clobbering!) and a watch set greater than the num-
ber of DBP registers, we are immediately in trouble in
how to set our DBP registers.

A potential solution is, in these cases, to watch the
pointer rather than the variables in our watch set. This
allows us, with one DBP register while in the scope of
that pointer, to be able to determine if the accesses of
the pointer will read or write any of the variables. We
can then “virtually” trigger the instrumentation on the
variables themselves. This idea can be applied not just
at the scoping level of troublesome pointers, but at the
statement level. Thus, essentially, they become addi-
tional variables to watch, with an even higher priority
than our regular variables.

A downside to this approach is that the slowdown of
the program might greatly increase due to the interrup-
tions caused by pointer accesses. For non-safe point-
ers we would potentially need to trap every read of the
pointer because it could cause a write to one of our vari-
ables. We should be able to eliminate through static
analysis the program locations where the pointers are

38

only being accessed to read the data, but this may be
infrequent or not beneficial in average programs. We
could also skip pointer reads when we know the current
value of the pointer is not one of our watched variables,
and only trap on the next pointer write (assuming no
pointer arithmetic).

5. Static analyses

Since we are considering the problem of watching
data accesses, it seems natural that dataflow analyses
are the types of analyses that would most directly in-
form our dynamic analysis stage.

With def-use information and points-to sets from a
pointer analysis, we would know where in the CFG does
each watched variable need to be watched. If variables
are being watched only for writes, then blocks with
variable definitions matter. If we are watching reads
and writes, then both defs and uses matter.

We assume that we can have a statement or
expression-level CFG if needed, rather than simply a
basic-block CFG. This would allow us to ensure that
there is no CFG node does not indicate more watched
variables than are physically possible.

With the above information, the essential problem
is that of creating an efficient schedule. By efficient we
mean one that is cost-minimally updated. This may
not be the same as one with the minimal number of
updates. For example, since DBP triggers already in-
terrupt the process when they occur, it would prob-
ably be cheaper to update the schedule from within
DBP triggers even if we need extra or more updates
than with a scheme that needed to add special traps
(causing new context switches) to achieve an absolute
minimum number of updates.

Attacking this problem might introduce some new
analyses that have heretofore not been considered. For
example, if we are using write-only DBP triggers, then
if a watched variable write is dominated by a set of
writes on currently watched variables, then that set can
potentially serve as schedule update points to bring in
the new variable needing watched. In other words, we
need to find the def(X)-def(Y) chains, where a defini-
tion of watched variable X is live at the definition of
watched variable Y. Finding dominance relations over
these chains would give us points for potential schedule
changes in the DBP triggers themselves.

Similar inter-variable dataflow analysis would be
needed for variables being watched for read and write
accesses. While it sounds daunting at first, this type of
analysis would only need performed over watched vari-
ables (and some pointers), not all variables, and may
be an effective (or necessary) way of finding schedule



updates based on the DBP triggers themselves.

6. Statistical tracing

For some programs and set of desired variables to
watch, it might be the case that 100% coverage of all
variable accesses is simply too prohibitive in cost to
achieve. This might be because the program has many
ill-defined pointers that need to be watched constantly
and thus cause many program interrupts, or because
the number of watched variables and their interaction
is such that DBP register schedule changes need to be
made so often that it results in too much instrumenta-
tion overhead.

Thus, we may wish to attempt to catch most vari-
able accesses, but with much less instrumentation.
Rather than consider the whole space a continuum over
which to make this tradeoff, for now we simplify the
problem to the following question. With DBP triggers
and function entry/exit triggers, can we schedule the
DBP registers to catch a high percentage of watched
variable accesses?

We feel that an empirical investigation into this will
be the only way to really answer the question, given
the range of possible programs and specifications of
watched variables that can be involved. While there
will likely be no guaranteable achieved coverage, per-
haps a static analysis phase could optimize the schedule
and warn about likely code areas where large numbers
of variable accesses may be missed.

A somewhat tangential but related idea is that of
saving the previous value of each watched variable at
each DBP trigger. This would only require a doubling
(plus some overhead) of the watched variable space,
and would provide a safeguard mechanism for poten-
tially noting missed writes on watched variables. If the
current value at a DBP trigger is the same as the previ-
ous, we cannot say for certain that there was no write
in between (it might have written the same value), but
if it is different we have definitely detected an interven-
ing write that was missed by our DBP triggers.

7. Related work

Wahbe et al. [3] present the closest related work,
in which they attack the problem of data breakpoints.
Their motivation is the same, and they give an exam-
ple of a slowdown of 85,000 when data breakpoints are
used in a debugger. Interestingly enough, they mention
the existence of data breakpoint registers, but do not
use them in their work. They dismiss them because of
their limited numbers (the Intel 386+, at four, seem to
have the most). Rather, they take a code-patching ap-

39

proach, and they do employ some static analysis steps
to reduce the amount of instrumentation.

Ball and Larus discuss the optimization of program
tracing in [1], but their work is focused on control-flow
tracing, and optimal placement of instrumentation to
capture enough information to reconstruct the original
control flow.

8. Conclusion

Data breakpoint registers, although few, offer hard-
ware support for dynamic analyses that need to observe
data accesses. In trying to create efficient instrumen-
tation for dynamic analyses, we should use, as best we
can, every resource that is available. To this end, we
presented ideas for how the data breakpoint registers
might be used and managed to watch a large number
of variables.

Our ideas center around performing some static
analysis in order to determine a schedule of DBP al-
location that will cover the variable accesses we are
interested in. Some harder issues that we have not yet
thought about are multithreaded programs with global
variables, shared memory pages between processes, and
other mechanisms that step outside of the bounds of
single-thread access to data.

On the practical side, it is interesting to note that
the only implementation support for using data break-
point registers is highly inefficient, forcing a context
switch to a monitoring (parent) process. While this
may be natural for user-controlled debuggers to use,
automatic runtime monitors would benefit from new,
efficient support for these hardware resources.

Acknowledgments

This work was supported in part by the National
Science Foundation under grants CCR-0306457, EIA-
9810732, and EIA-0220590. The content of the infor-
mation does not necessarily reflect the position or the
policy of the Government and no official endorsement
should be inferred.

References

[1] T. Ball and J. Larus. Optimally Profiling and Tracing
Programs. 16(4):1319-1360, July 1994.

[2] M. Hind and A. Pioli. Which Pointer Analysis Should

I Use. In Proc. 2000 International Symposium on Soft-

ware Testing and Analysis, Aug. 2000.

R. WAhbe, S. Lucco, and S. Graham. Practical Data

Breakpoints: Design and Implementation. In Proc.

1993 Conference on Programming Language Design and

Implementation, pages 1-12, June 1993.

3]



SAAT: Reverse Engineering for Performance Analysis

Seon-Ah Lee, Seung-Mo Cho, Sung-Kwan Heo
Software Center, Corporate Technology Operations, Samsung Electronics Co. Ltd.
599-4, Shinsa-dong, Kangnam-gu,Seoul, Korea, 135-120
{salee, seungm.cho, sk.heo} @samsung.com

Abstract

It is essential to understand both the static and
dynamic aspects of existing software for performance
analysis. Software reverse engineering reestablishes the
structure and behavior of software and helps with that
understanding. Researchers in reverse engineering,
however, have focused on identifying components and on
static relationships. Efforts on performance engineering
are being made to represent software behavior and
simulate it. However, no one has tried to extract a
simulated model from existing software automatically.

We introduce SAAT, a tool developed at our research
center. SAAT analyzes the dynamic aspects of software
and creates a simulated model for performance analysis.
We explain how the model can be generated, using a case
study of UPnP middleware. This paper contributes to the
bridge between performance analysis and reverse
engineering

1. Introduction

Performance analysis is a process that analyzes
dynamic execution flow, estimates the time and resources
consumed, discovers potential bottleneck points, and
predicts the performance in a real environment. In order
to analyze software performance, information for such
analysis should be provided by software architecture
models and design specifications. This information is
required to help understanding and predict time-
dependent behaviors during performance analysis by
dividing software into modules and by displaying time,
intercommunication, data access frequencies, data
transfer capacity of communication channels and other
data.

If the existing software’s design specifications are
incomplete or incompatible with the current software
version, the design specifications may not be used in the
performance analysis. Additionally, development team
members are sometimes too busy to participate in
performance improvement work. In that scenario, a
reverse engineering methodology will analyze the
performance of the software. However, past studies in

40

reverse engineering have concentrated on static aspects,
which extract relationships among components through
source code analysis. To date, fields of performance
analysis and reverse engineering have not been directly
related.

In this paper, we introduce the SAAT tool that will
analyze and represent the dynamic structures of software
visually for performance analysis. In Section 2, we
introduce previous studies for software performance
analysis and dynamic reverse engineering. In Section 3,
we explain the basic concepts of SAAT. In Section 4, we
explain the technological considerations to implement and
the architecture of SAAT. In Section 5, we present a
sample case of UPnP middleware. In Section 6, we
discuss our results up to this point and any remaining
problems and recommend tasks for future study.

2. Previous Studies

Researchers in performance engineering are studying
how to integrate software architecture with performance
information. In the realm of reverse engineering,
dynamic reverse engineering to extract software
execution models from existing systems is also being
tried. In this section, we discuss the progress of research
in these two areas, sharing the common factor of software
modeling. We will survey research related to the
software performance model (2.1) and we will cover the
reverse engineering research status for existing system
analysis (2.2).

2.1. Softwar e Performance Model

The software performance model enables one to
measure the detailed performance of software. In
addition, the performance model allows quick and
convenient structural investigation when problems are
found. To allow this solution, the performance model
shall precisely describe the system to be improved.
Related researches including the following:

Smith [3,4] pointed out that there is no software
architecture specification documented enough for
performance analysis in general, and proposed the PASA
(Performance Assessment of Software Architecture)



methodology, which extracts architecture information
from developer interviews and work products. PASA has
10 stages. In Stages 1 to 6, performance analysts examine
software architecture and review the important use cases
and scenarios with the development team. In Stages 7 to
10, the performance analysts construct and analyze the
performance model, and announce the result. The PASA
method requires dedicated cooperation from developers
because the accuracy of the performance model depends
on information provided by the developers.

Woodside [5,6] assumed that the contents that were
not dealt with in software architecture documents, were
omitted either because everyone understood the contents
or they were something that didn’t need to be described.
He then presented the PASD (Performance Aware
Software Development) methodology that produces and
analyzes performance models from the design documents.
The PASD has 7 stages. In Stages 1 to 3, performance-
related information is added to the function-oriented
specifications to make the specifications more complete.
In Stages 4 to 5, the scenario model in the complete
specification is transformed into a performance model. In
Stages 6 to 7, performance is evaluated, and feedback is
provided. In the PASD method, the performance model
is created according to the specification’s scenario model,
and the accuracy of the specification affects the
performance analysis.

Pooley [7] asserted that integration of performance
factors with design methods shall precede the
performance analysis framework and made efforts to
integrate performance factors with UML notations. He
also proposed simulation methods of the designmodels
described in UML and performance analysis methods.
The method presented by Pooley analyzes performance
by producing simulation models with sequence diagrams,
etc., used in dynamic modeling of UML or by changing
using Petri-net models. Additionally, in Pooley’s method,
the accuracy of information given affects the performance
analysis results of the model.

Similarly, researchers have made efforts to integrate
the software performance model with software
development methodologies and design models. If such
efforts are connected with dynamic reverse engineering;
more substantial effects can be achieved. First, it is
possible to automate the creation of a performance model
based on existing software. Accordingly, analysts might
reduce time working with development team. In addition,
the performance model does not need to rely on an
incomplete design specification.

2.2. Softwar e Rever se Engineering
In order to understand software, reverse engineering

is used to identify software components and their
interdependence and produces software design-level

41

abstractions [8]. Software reverse engineering is being
researched for various purposes, such as how to add new
functions to existing software, maintain and improve
system efficiency, and recycle modules in new systems.
Recently, so-called dynamic reverse engineering has been
started in an effort to discover software component
interaction using software traces and records. The
following discusses research related to the dynamic
reverse engineering.

Systa[9,10] proposed the Shimba tool that
automatically produces sequence diagrams of Java
programs. With the Shimba tool, trace information is
acquired while such programs are executed, and the
information is then used to create a state diagram and a
scenario diagram. Systa’s papers give a lesson that
dynamic aspects of software can be generated from
monitoring software execution, but it does not propose to
link the information to a performance model. Also,
considering the fact that not many existing systems are
constructed in Java, additional research is required for
other languages.

Walker and Murphy [11,12] proposed an abstraction
method, recognizing the fact that event trace information
at the functional level presents a wide gap from the
subsystem level of developers’ interests. This method
uses a visualization tool and a path query tool. The
visualization tool shows a series of drawings according to
system execution. The path query tool supports the
analyze event flow information, using normal expressions
that map the source codes to components of the
developer’s choice. The method presents the basic
techniques in abstracting event trace information.
However, the method seems to require some more time
for field use, considering that it is limited to object-
oriented languages, and no real application case has yet
been presented.

Bengtsson and Bosch [13] pointed out that there was
no research on architectural reengineering methodology,
and if any, quality attributes were not considered. They
defined a reengineering methodology based on scenarios.
In this methodology, explicit and objective evaluation
methods, such as simulations, mathematical model rings,
etc., are adopted.

These efforts to produce architecture-level execution
models from software execution flow have indeed begun
[8,9,10,11,12,13]. The researches have presented many
fundamental and useful results, but further efforts are
required to make them practical such as expanding to the
languages mainly used in real development. Also, there is
still no attempt to connect the result to a simulation.

3. Concept of SAAT

The Software Architecture Analysis Tool was
developed for performance analysis at the Software



Center, Samsung Electronics Co., Ltd. Since most of
software programs are implemented in C language in
Samsung electronics Co, Ltd., SAAT targets software
constructed in C language. Our purpose was to overcome
delays that accompanied performance analysis. Our
activities of performance analysis are as follows: When a
performance analyst is requested to analyze software
performance, the analyst first has to understand the
software’s structure and its dynamic behaviors. Then, the
analyst finds the component that unnecessarily consumes
much time and resources. Finally, the analyst identifies
improvement issues and solutions using a simulation tool.
We hoped to shorten the time of the performance analysis
in order to make the analyst’s work more efficient. We
tried to automate the analysis process.

The process of analyzing the software performance of
the existing system at Samsung Electronics Co., Ltd., can
be automated as shown in Figure 1. First, the information
of how software modules interact should be recorded
(Software Trace Data). Second, the interaction should be
represented as nodes and edges in drawing a diagram
(Behavior Model). If one would like to understand the
dynamic structure of the software, a composite diagram
explaining several interactions should be drawn
(Execution Model). Last, the composite diagram should
be converted for modeling in a simulation tool
(Simulation Model). In the following subsections, we
review the concepts of each model in Figure 1 in more
detail.

Software Behavior Execution Simulation
Trace Data Model Model Model
Software Behavior

Trace Data Model

Figure 1: Automating process for performance analysis

3.1. Software Trace Data

Software Trace Data is a record of the interaction
between the software modules. Because our target
software is written in a procedural language, a software
module is a function. Interaction involves not only call-
relationships among several functions, but also
information about the order of those functions. Hence,
Software Trace Data includes function names, the calling
relationship and execution order. Also, we add the
function’s running time into the data for performance
analysis.

Software Trace Data is recorded as shown in Figure 2.
The record consists of function name, time stamp, and
flags according to the execution order. A line informing a

42

function’s start has information about function name, start
time, and start flag. A line informing a function’s end has
information about function name, finish time, and finish
flag. Also, lines of called functions are nested between
the starting line and the finishing line of a calling function.
As a result, both call-relationship and execution order can
be represented in the Software Trace Data.

Function Main(Q)

call AQ;
call BQ; N A
call cO: A node Time Start/Finish
- Main start time of Main start flag
Function A(parameter order) A start time of A start flag
- - a start time of a start flag
if (order == first _sequence) a finish time of a  finish flag
call aQ; b start time of b start flag
b X b finish time of b finish flag
call bQ; A finish time of A finish flag
else B start time of B start flag
B finish time of B finish flag
call cQ; C start time of C start flag
i c Finish time of C Finish flag
Main Finish time of Main Ffinish flag

3
Function BQ

i
Function CQ
4

Figure 2: A concept of Software Trace Data

Software Trace Data is recorded while running the
software. The easiest method for tracing software is to
insert probing functions into functions of the target
software. These probing functions write events of
functions into a file when the functions start and finish.
After compiling the software instrumented with probing
functions, we can create a Software Trace Data file by
running the software.

3.2. Behavior Modedl

The Behavior Model is a diagram representing
Software Trace Data as nodes and edges. A node stands
for a software module, namely, a function. Edges have
two kinds of meaning. An edge directing below means
the execution order between two connected functions. An
edge directing to the right signifies a call-relationship
between two linked functions. The Behavior Model is
similar to a sequence diagram of UML, a design language
for object-oriented programming. Thus, the Behavior
Model represents one instance of the software executions.

Figure 3 shows an abstract presentation of the
Behavior Model. Software modules are arranged
according to their execution order and call relationship. In
case “Main( )” calls “A( ),” The Behavior model places
“Main( )” left, “A( )” right, and shows an arrow starting
from “Main( )” and arriving at “A( ).” However, in
another case, “Main( )” calls the second function, “B( ),”
Behavior model applies another rule: The second called
function is connected to the first called function. Hence,
the Behavior Model places “B( )” below “A( )” and
shows an arrow starting from “A( )” to “B( ).” The latter



arrow stands for the execution order between “A( )” and
GGB( )"?

First Sequence Second Sequence

‘Main() }»-—--ﬁ AO }»----ﬁ cO ‘

BO

[waino |-+ 40} a0

b

B
(6] o

cO

Figure 3: A concept of the Behavior Model

Rules of creating the Behavior Model from the
Software Trace Data are related to start and finish flags. If
a line has a start flag and the previous line also has a start
flag, the node for the former is placed left of the node for
the latter. Meanwhile, if a line has a start flag and the
previous line has a finish flag, the node for the former is
placed below the node for the latter. Additionally, if a line
has a finish flag, there is no action for arrangement. The
activity of arrangement occurs when reading a line
including a start flag.

3.3. Execution M odel

The Execution Model is a composite of several
Behavior Models to represent the dynamic structure of the
software. Even if each Behavior Model calls for the same
function, the function may have different flows, based on
control conditions and values of the variables. The
Behavior Model can be combined by considering the
control conditions, such as the branch or loop. To
represent these control conditions, the Execution Model
has several shapes of nodes. For example, the branch
condition is represented as a rhomboid and the loop
condition as a circle. We borrowed the concept of the
Execution Model from the Execution Model of PASA[3].

The Execution Model can be extracted as shown in
Figure 4 from the Behavior Models shown in Figure 3. A
calling module nests called sub-modules. If a module has
several different flows, the module possesses nodes
showing the control conditions. For example, “A( )” has
two different execution flows in Figure 3. Thus, “A()” in
Figure 4 has a branch node below the “Begin” node.
After that, two different flows diverge from the branch
node and converge to the “End” node in A().

The internal structure of functions may be extracted
from former static reverse engineering tools. However,
we have discovered that we can construct the Execution
Model using only the information from the Behavior
Models. While each Behavior Model is scanned, a branch
node is inserted in case the Behavior Model has different

43

part from the previous. When a function includes a
repeated series of nodes, a loop node is added. Multiple
Behavior Models are integrated to a single Execution
Model in this way.

MainQ)

AO

End
End

Figure 4: A concept of the Execution Model

3.4. Simulation Model

The Simulation Model is a model running in a
simulation environment to demonstrate architectural
issues of the present system. The Simulation Model is
identical with the Execution Model in containing the
information of software structure and performance
information. Yet, we can modify, animate and simulate
models in the simulation environment, so that we can
predict a result of software implementation.

We can create the Simulation Model mapped from the
Execution Model in figure 4 as follows. We delineate a
model for “main ()” in one module in our simulation tool.
Next, we draw a model for “A( )” in a sub-model of the
module separately. Finally, we create a transaction to
trace models and insert a condition into the branch node
in “A()”. After that, we can simulate the models.

We can create the Simulation Model automatically by
mapping each element of the Execution Model to each
element of the Simulation Model. The Execution Model
is composed of graphs, sub-graphs, nodes, and edges. The
Simulation Model is composed of modules, sub-models,
nodes, and arcs. Therefore, graphs are mapped to
modules; sub-graphs are mapped to sub-models; nodes
are mapped to nodes; and edges are mapped to arcs. The
arrow in the Execution Model is mapped to a transaction
of the Simulation Model.

4. Implementation of SAAT

In this section, we present the Software Architecture
Analysis Tool (SAAT) — a tool to generate a dynamic
model for the performance analysis of software. We
developed the prototype of SAAT to examine the
feasibility of SAAT projects.



The architecture of SAAT may be drawn as the Figure
5. SAAT is related to existing commercial tools. TAU
provides trace data extracted from software execution
[14], while aiSee is a tool showing a model in GDL [15].
aiSee allows users to see the Behavior Model and
Execution Model. Finally Workbench conducts
Simulation Modeling [16]. SAAT is also composed of
three parts: One that extracts the Behavior Model from
trace data (BM); one that integrates several behavior
models into an execution model (EM); and one that
changes the Execution Model to the Simulation Model
(SM).

Commercial
Tool SAAT Program
B
Input: >
TAU | 9 | Reader Writer
Data /
y
[ C =D
lJ
— < :
odel _
Output: R[ * Readiter %
aisee Rl e ] (12
Execution raph Li1s . §
odel \ 3
output: <
) B - Handler Mapper
Workbench[€T]Simulation *l I_’I pp |
odel Graph List ’

Figure 5: Structure of SAAT
4.1. Commercial Tools

4.1.1. TAU. The trace tool had to capture the system’s
response behavior to a user’s request at regular intervals.
Besides this basic role, we additionally had to consider
multi-processors and multi-threads because current
software consists of them. Fortunately, we found a
reliable trace tool called TAU [14] for generating
Software Trace Data. TAU supports multi-processors and
multi-threads and generates data similar to the Software
Trace Data in Figure 2.

4.1.2. aiSee. When we describe the Behavior Model and
the Execution Model, we needed to determine a
description tool. With respect to a description tool, we
need a tool to present nodes and edges. Instead of
implementing the tool, we searched for a convenient tool
to present nodes and edges easily. We found that aiSee
can present a diagram described in Graph Description
Language (GDL). This language is a simple language to
express graphs and has keywords like node, edge, graph,
etc. [15].

44

4.1.3 Workbench. Since we use Workbench [16] as a
simulation environment, we should convert the Execution
Model to a model running in the Workbench. In the
Workbench, one model is composed of nodes, arcs, and
transactions. One model also could have several sub-
models. By transforming the Execution Model into the
simulation tool, we can obtain modeling data for
simulating and analyzing our system’s performance and
verify its functionality.

4.2. SAAT Program

4.2.1 BM. When creating the Behavior Model, we should
consider the abstraction level of the models so that users
understand and manage the models easily. For that, the
function lists should be categorized into modules to the
level of the user’s requirements. Also, low-level functions
that users do not want to see should be eliminated or
hidden to maintain the simplicity of the models. Thus, we
endow a node possessing sub-nodes with a folding option
to solve this issue. In spite of the importance of
abstraction, the implementation was simple because aiSee
supports the option with one token.

The drawing mechanism, used for the Behavior Model,
is a binary tree. Each node in a binary tree has a left child
and a right child. In the concept of Behavior Model, a left
child becomes the first child, and a right childe turns to a
sibling. The first child is the first called sub-function on
the base of a function. A sibling implies the next executed
function from a function. In reading, Reader saves
information on the line to a node and pushes the node into
a stack in temporary. When Reader reads a finish line
related to the node in the stack, it pops the node and the
previous node from the stack and links both to each
other to make a tree. Then, Writer writes files by visiting
from the root to leaf nodes in the tree.

4.2.2 EM. In creating the Execution Model, the internal
structure of a function is needed because the Execution
Model has a structure to fulfill the flows of several
Behavior Models. For that purpose, if a function is called
more than once and sub-operations of the function are
different, loops and branches in the internal structure of
the function need to be recognized. We replaced this
structure of the function with the composition of the
Behavior Models, as we wanted to get rid of cumbersome
tasks like source analysis.

The structuring mechanism, used for the Execution
Model, is a hash table that manages graphs that are
organized in adjacency linked list. The hash key is a
graph name. Once Reader reads tree information, Graph
List recognizes nodes having a sub-tree, converts them to
graphs, and saves the graphs in the hash table. After that
process, Graph List scans the hash table. When Graph
List finds the same name of a graph in the lists of graphs,



it combines the two graphs into one. Finally, Writer
creates a file of the Execution Model by scanning the
hash table. These tasks occur several times if there are
more Behavior Models.

423 SM. When creating the Simulation Model in
Workbench from the Execution Model in GDL, we
should deliberate on the conversion from one language to
another. One parser may be required if we intend to
convert GDL to Simulation language in Workbench. For
that task, we can use Lex and Yacc for analyzing GDL
and converting the language to Workbench graph codes.
However, we omitted the subpart because we used a
hidden file to have the concise information of the graphs
instead of using the GDL file directly. Mapper reads
information on the graphs in a hidden file of the
Execution Model and maps the information to the
Simulation Model. Writer outputs the files to run in a
simulation environment.

5. Case Study

We applied SAAT to Universal Plug and Play (UPnP)
[17], developed by Samsung Electronics Co., Ltd. UPnP
is a home network middleware that supports distributed
and open networks that are used to control devices and
transmit data among devices. UPnP consists of two
components: Controlled Device (CD) and Control Point
(CP). CD provides services, while CP detects and
controls the services. The middleware is implemented in
C language.

Our concern was the feasibility of SAAT. We
wondered whether the tool could be applied to ongoing
development projects and products and how effective the
result of creating a simulation model would be. For that,
we captured the Trace Data of UPnP, using the TAU tool
(5.1) and generated Behavior Models (5.2), Execution
Model (5.3) and Simulation Model (5.4) in order.

5.1. Trace Data of UPnP

We captured the Software Trace Data of UPnP as
Figure 6. We used TAU in order to instrument source
files of UPnP with probing functions. The result files
were five files containing the information of each thread
because UPnP runs in five threads and TAU generates
trace files according to each thread. However, we just
show one trace file here as an example.

The case in Figure 6 is an instance of a concept in
Figure 2, Section 3.1. TAU logs the execution time as 16
digits. With regards to flags, 1 means a start flag and -1
signifies a finish flag. This Software Trace Data has the
information on the execution flow of UPnP. We can
know which executions occurred in what order by

45

looking at the list of functions by time. However, for a
more intuitive understanding, such execution flow must
be graphically represented.

[root@duri93 device]# cat events.0.edf

# creation program: tau_convert -dump

# creation date: jul-08-2003

# number records: 40

# number processors: 0

# max processor num: 0

# first imestamp: 1057631241510426

# last timestamp: 1057631247598443

#=NO= =====EVENT== ==TIME [us]= =NODE= =THRD= ==PARAMETER=
1 (nully 1057631241510426 0 O
2 (null) 1057631241510447 0 O
3 "int main(void) C " 1057631241510456 0 O 1
4 "void TvDeviceStateTablelnit(v 1057631241510563 0 O 1
5 "void TvDeviceStateTablelnit(lv 1057631241510590 0 O -1
6 "int UPnP_CD_Start(int, FunPtr 1057631241510696 0 O 1
7 "int upnpStart() C " 1057631241510732 0 O 1
29 "void UPnP_CD_SetRenewTimel1057631242718027 0 O -1
30 "int UPnP_CD_Finish(void) C " 1057631244597264 0 O 1
31  “void Stop_Threads() C "  1057631244597326 0 O 1
32 "int PrintString(char *, ...) 1057631244597332 0 O 1
33 "int PrintString(char *, ...) 1057631244597366 0 O -1
34 "int PrintString(char *, ...) 1057631247598364 0 O 1
35 "int PrintString(char *, ...) 1057631247598410 0 O -1
36  "void Stop_Threads() C " 1057631247598418 0 O -1
37 "int UPnP_CD_Finish(void) C " 1057631247598423 0 0 -1
38 “int main(void) C " 1057631247598428 0 0O -1
39 (nully 1057631247598440 0 O
40 (null) 1057631247598443 0 O

Figure 6: Tautrace.0.0.0.trc (Main flow of UPnP CD)
5.2. Behavior Model of UPnP

The Behavior Model connected to the Trace Data in
Figure 6 is shown in Figure 7. This Behavior Model
shows the execution order from the Trace Data of TAU.
We can easily know that UPnP CD starts, sets cache
control, sets CD’s timeout, sets renew time, and finishes
by reviewing the diagram in Figure 7. Each node can be
folded or unfolded to hide or show a sub-tree of each
node. Therefore, users can browse the Behavior Model at
the level they want to know.

Behavior Models differ by the user services requested.
Figure 8 shows another Behavior Model of UPnP. The
cases in Figures 7 and 8 are those of the Behavior Model
explained in Section 3.2. In addition to the concept of
Section 3.2, information on the time consumed at each
node is displayed beside the node name. Thus we can
know the candidates for any bottleneck as well as the
execution order and call-relationship.

‘mam : BOBTITZ }—blTvDeviceStateTam elnit: 27|

[UPnP_ED_Start: 1208938 Hupnpstart: 1206857} PrintString: 135]

[UPnP_co_settachetontrolT: 38]

UPnP_CD_SetCDTimeout: 36
+
UPnP_CD_SetRenewTime: 34

[UPP_CD_Finish: 3001158} p[Stop_Threads: 3001092} HFrintSiring: 34 % 2]

getip: 165

PrintString: 36
PrintString: 47

Figure 7: Behavior Model 1 (Main flow of UPnP CD)



main: 76060388 K TvDeviceStateTablelnit: 23]

[uPnP_cD_Start: 1376333} HupnpStart: 1376292 | HPrintString: 138]

[UPrP_co_SetCacheCantrolT : 38]

getip: 175

PrintString: 39
PrintStiring: 38

UPnP_CD_SetCOTimeout: 36

[UPRP_CD_Finish: 3001898} #Stop_Threads : 3001831} HPrintstring: 35]

Figure 8: Behavior Model 2 (Main flow of UPnP CD)
5.3. Execution Model of UPnP

The Execution Model combines different Behavior
Models. Figure 9 shows an Execution Model produced
from the combination of Behavior Models of Figures 7
and 8 in Section 5.2. In Figure 9 below, the internal
structure of “Stop Threads( )” represents the Execution
Model well. The “Stop_Threads ( )” presents a branch to
two different internal flows and a loop showing repetition
of the sub-flows.

fain: EETHZ

[Froceszing: 1519680, TI652020]

[MwDevIcegtataTablaIndt: 27,29]

[Pre_m start: miEm, 57ES|

[-PrF_m setracneContro1T: =,58]

[PrP_m_setEnTineout : 36, 35

[FrP_mZetRereul ne i 54,54]

IFIF_TCF Irdeh: T001059 20 00mT
AT
Procecsing: BT,57
Frop_Threade: SO0109Z, 7001551

[Frocess ing : 3001058, 3001701]

FrintString: 94 46,35

eat_tiner! 4Z(T),45,99,64

BariMeceigeT05tack | S(2),6,7,15]

<t
g

Figure 9: Execution Model (Main flow of UPnP CD)

46

5.4. Simulation M odel of UPnP

The Execution Model in Figure 9 is changed to the
Simulation Model in Figure 10. The upper diagram in
Figure 10 shows a Workbench model for the main func-
tion while the lower diagram shows a model for Stop
Threads( ). The distinctive aspect in the Simulation
Model is the transactions, which move dynamically as
time goes. Therefore, we can modify and simulate a
model to predict the performance of the system to be
implemented and search for a better solution based on the
simulation results.

Main S o [ R, L. -

Stop_Threads

Figure 10: Simulation Model (Main flow of UPnP CD)

At this time, we confirm that the modeling data could
be generated from monitoring software execution.
However, the result of applying SAAT to the UPnP
product is incomplete when comparing the result with that
of a manual result for several reasons. First, SAAT pours
all information into the Simulation Model, while
performance analysts do not care for detailed layers.
Second, the SAAT starts at the thread level while
performance analysts start to model at the critical
modules. Finally, SAAT does not distinguish concrete
conditions, although some conditions could be important
in modeling. We should develop SAAT to customize the
Simulation Model according to user intention.

6. Conclusions

We have explained how we created the Execution
Model from the execution trace data of the software
system and how we constructed the Simulation Model
from the Execution Model for performance analysis.
Through SAAT prototyping, we showed that a simulation
model could be automatically generated from the
execution trace data of software. This case study shows
the possibility of saving the time usually consumed in
making a simulation model for performance analysis of
software.

We propose the following additional research. First,
we should find how to group functions that belong to the
corresponding component. In this case, we may use the



Dali Workbench tool made by Kazman [18, 19]. However,
we did not yet implement this method in SAAT. For this
purpose, user intervention parts or important component-
declaring parts must be added. In addition, we should
complement SAAT by finding additional rules for
converting from the Behavior Model to the Execution
Model and by adding options to modify the Simulation
model for user tastes. In the long term, we want to adapt
this tool to several modeling environments.

7. References

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J.
Ivers, R. Little, R. Nord, and J. Stafford, Documenting
Software Architecture: Views and Beyond, Addison-
Wesley, Sept. 2002.

[2] R.J. Pooley, "Software Engineering and Performance -
a roadmap”, Proceedings of the conference on The future
of Software engineering, Limerick, pp189-200, July 2000.
[3] C.U. Smith and L.G. Williams, Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software, Addison-Wesley, Sept. 2001.

[4] C.U. Smith and L.G. Williams, “PASASM: An
Architectural Approach to Fixing Software Problems”,
Proc. CMG, Reno, Dec., 2002.

[5] K. Siddiqui and M. Woodside, "Performance-Aware
Software Development (PASD) Using Resource Demand
Budgets", Proc. of the 3" WOSP, Rome, July 2002.

[6] D. Petriu and M. Woodside, “Generating a
Performance Model from a Design Specification”, 3"
Workshop on Generative Programming, ECOOP 2001,
June 2001.

[7] R. Pooley and P. King, "The Unified Modeling
Language and Performance Engineering", |EE
Proceedings - Software, Vol 146 No 1, pp 2-10, February
1999.

[8] E. Stroulia and T. Systd, “Dynamic Analysis For
Reverse Engineering and Program Understanding”,
Applied Computing Review, ACM, vol 10, issue 1, 2002.
[9] T. Systd, “Understanding the Behavior of Java
Programs”, Proc. of the 7" WCRE, pp. 214-223,
Brisbane, Australia, November 2000

[10] R. Kollmann, P. Selonen, E. Stroulia, T. Systd and A.
Zindorf, “A Study on the Current State of the Art in
Tool-Supporter UML-Based Static Reverse Engineering”,
Proc. of the 7" WCRE, pp.22-33, 2002.

[11] R. Walker, G. Murphy, J. Steinbok and M. Robillard,
“Efficient Mapping of Software System Traces to
Architecture Views”, CASCON, 2000.

[12] R. Walker, G. Murphy, B. Free-Benson, D. Wright,
D. Swanson and J. Isaak, “Visualizing Dynamic Software
System Information through High-level Models”, Proc. of
the 13" ACM SIGPLAN Conference on OOPSLA, ACM
Press, pp. 271-283, 1998.

47

[13] P. Bengtsson and J. Bosch, “Scenario-based
Software Architecture Reengineering”, Proceedings of
the 5th ICSR, pp. 308-317, June 1998.

[14] University of Oregon, TAU: Tuning and Analysis
Utilities, http://www.cs.uoregon.edu/research/paracomp/
tau/, 1999.

[15] Absint, aiSee, http://www.aisee.com, 2002.

[16] Workbench, Hyperformmix, http://www.hyperformi-
x.com/products/workbench.htm, 2003.

[17] Microsoft Corporation, Universe Plug and Play
Device Architecture, http://www.upnp.org/download/
UPnPDA10 20000613.htm, 2000.

[18] R. Kazman and S.J.Carriere, “Playing Detective:
Reconstructing Software Architecture from Available

Evidence”, CMU/SEI-97-TR-010, Pittsburgh, PA:
Software  Engineering Institute, Canegie Mellon
University, 1997.

[19] L. O’Brien and C. Stoermer, ‘“Architecture

Reconstruction Case Study”, CMU/SEI-2003-TN-008,
Pittsburgh, PA: Software Engineering Institute, Canegie
Mellon University, 2003.



Performance Data Collection: Hybrid Approach

Edu Metz, Raimondas Lencevicius
Nokia Research Center
5 Wayside Road, Burlington, MA 01803, USA
Edu.Metz@nokia.com Raimondas.Lencevicius@nokia.com

1. Introduction

As the complexity of embedded software systems
grows, performance profiling becomes more and more
important. Performance profiling of embedded software
systems requires data collection with low overhead and
high information completeness.

Performance profiling consists of monitoring a
software system during execution and then analyzing the
obtained data. There are two ways to collect profiling
data: either event tracing through code instrumentation or
statistical sampling. Event tracing may be more intrusive
but allows the profiler to record all events of interest.
Statistical sampling may be less intrusive to software
system execution, but cannot provide complete execution
information.

Our position is that data collection on embedded
software systems should be performed using a hybrid
approach that combines the completeness of event tracing
with the low cost of statistical sampling. The following
sections expand this position.

2. Performance Data Collection

Performance profiling determines where a software
system spends its execution time. Performance profiling
requires data collection during program execution. Such
data collection can be done either by event tracing or by
statistical sampling. Let us consider the implications of
using these two methods.

21. Eventtracing

Event tracing records events that occur during system
execution. Event tracing can track various events, such as
task switches, component entries and exits, function calls,
branches, software execution  states, message
communication, input/output, and resource usage.

Tracing requires changes to the software system
usually called instrumentation. Instrumentation can be
inserted into various program representations: source
code, object code, byte code, and executable code. Time
wise, it can be inserted before program execution or
during it. Adding trace instrumentation can be done
manually, semi-automatically ~ or  automatically.

48

Automatization of the instrumentation may be complex.
Full discussion on complexities of automatic vs. manual
instrumentation goes beyond the scope of this paper. It is
sufficient to say that the instrumentation may be a
burden-some task, especially if some manual work is
needed.

Since an occurrence of any event creates a record,
event tracing is characterized by the completeness of
knowledge: if an event was recorded, it did occur; if it
was not recorded, it did not occur. As we will see, this
does not hold for statistical sampling. Performance
engineers can also learn exactly when each event
occurred since every record is time stamped. This allows
a complete analysis of event relationships in time, for
example, the measurement of precise time distance
between any two events. A performance engineer using
an event trace can reconstruct the dynamic behavior of a
software system.

For example, consider energy consumption by a
mobile device [4]. To map the software execution to the
power consumed, a performance engineer needs to know
exactly when a peripheral is started and stopped. The
information from event tracing directly maps software
execution and power consumption (Figure 1 shows the
measured power consumption as a function of time and
peripheral device activations/deactivations mapped onto
the same timeline).

There are a number of difficulties in using event
tracing. Users have to spend time instrumenting the
software system. Event traces affect the performance of
the software system distorting its execution [8].

Not only does event tracing take some time, adding
traces changes the behavior of the software system
because of additional memory accesses and input/output
[6]. In real-time software systems, the instrumentation
overhead can cause real-time constraint violations.
Therefore, it is important to limit the intrusion by
minimizing the instrumentation overhead [2][5]. One
way to achieve this is by reducing the number of events
traced. However, performance engineers have to choose
carefully, since omitting events from tracing also reduces
the amount of information available. For example, if
only “on” and “off” events are traced in a peripheral, it is
no longer possible to detect and map the peripheral’s
different “on” modes to differences in the system’s
power consumption. In choosing the instrumentation



granularity it is important to address the trade-off between
the amount of event information required and the
performance impact of the trace instrumentation. This
may be hard even for an experienced performance
engineer.

1(A)

t(s)

\- Device 1 I Device 2 = Device 3 — Measured\

Figure 1. Device activations mapped to power
consumption

For small routines, event tracing may not yield an
accurate time comparison with larger routines. A small
routine may suffer much higher relative overhead than a
larger routine. If this is ignored, a great deal of effort may
be wasted optimizing routines that are not real
performance bottlenecks.

The data volume associated with event tracing can be
very large: more than megabyte per second traced. This
can cause a problem in devices that do not have large and
fast storage or external network interfaces.

2.2, Statistical sampling

Statistical sampling relies on intermittent access to the
software system to record its current state. Sampling can
record different information: program counter (execution
location), function call stack, scheduled or blocked tasks,
active peripherals and so on. Sampling can be done
strictly periodically or with certain randomness.

The simplest forms of sampling do not require any
software modifications. A sampler simply copies the
content of some processor registers to memory. In more
complex sampling, the software system may need to be
interrupted to record the needed information. In both of
these cases, a performance engineer would usually spend
much less time to achieve sampling than to instrument the
software system for tracing.

The overhead of sampling may be orders below the
overhead of tracing. For example, branch tracing may
require overheads of over a factor of 10, function tracing
may require overheads up to a factor of 2, while sampling
at up to thousand samples a second may have an overhead
of less than 1% [1]. (This estimation assumes a 100Mhz
processor and 1000 cycles of work per sample, which is

49

enough to read the address of the currently executed
instruction and save this information. Using symbol
information generated at compile time, the profiler can
later correlate the recorded sample with the source code.)
At such frequencies, sampling produces much less data
than event tracing—a positive in storage-limited devices.

With advantages presented above, sampling is a
perfect tool for gathering the performance data in
systems where the low overhead is crucial. For example,
sampling the execution of software in a mobile device
executing real-time tasks may be the only way to obtain
information about long-running functions without
causing the software to miss real-time deadlines due to
tracing overhead.

However, sampling also has downsides. The
sampling frequency determines the granularity of the
gathered information. In addition, the duration for which
the software system executes directly relates to the
number of samples collected. A sampling profiler
requires software systems to execute over a reasonable
period of time to ensure accuracy [7]. The goals of a
performance engineer may require high sampling
frequency that negates the low overhead and small data
production of sampling.

Sampling yields only a statistical measure of the
software’s execution patterns. It does not provide
completely precise numbers: if an event does not occur
in a sampling log, there is no guarantee that it did not
occur in execution. Therefore sampling may not be
useful for situations that need to track exact numbers of
events, for example, a singleton message to a task or an
exact relationship between requests and
acknowledgements. In periodic real-time systems, the
sampling interval needs to be randomized to avoid
sampling the same periodic software entity at every
sampling point.

Sampling may not be able to detect frequently
executed routines whose execution times are smaller
than the sampling frequency. In addition, manual trace
instrumentation usually tracks application-specific
events that could be difficult to capture by sampling. For
example, detecting a transition from a single-person
voice call to a conference call may require event tracing.

Sampling is not a good approach when event
causality is analyzed. Although it may extract a function
call stack at the sample time, it cannot track all function
calls or message exchanges. A performance engineer
who needs a complete message sequence chart or
component interaction graph might be better off
choosing event tracing.

3. Hybrid Data Collection

Let us summarize the previous section. Event tracing
yields the most detailed and complete system execution
data. However, it takes time to instrument software,



tracing has a high overhead and may change the behavior
of the software system [6]. Statistical sampling is simple
to use and less intrusive to software system execution, but
does not provide causality relationships and exact data.

Embedded software systems, such as mobile devices,
have real-time constraints and therefore require
performance-profiling methods with low overheads. On
the other hand, performance analysis of such devices
often involves causality relationships and precision
requirements. For example, a performance engineer needs
to know exactly when a task starts processing a message
in a multiplayer game that changes the game environment,
since this may point to the cause of performance
bottleneck evidenced by numerous file accesses.

Often neither event tracing nor statistical sampling can
satisfy such conflicting requirements. The problem is
further compounded by the fact that test runs are not
entirely deterministic in mobile devices due to
interactions with other systems such as mobile network
elements. Therefore, performance data cannot be
collected during multiple test runs, but instead needs to be
collected during a single test run.

To collect performance data of embedded software
systems with low overhead and adequate completeness,
we propose to use a middleweight approach which is a
hybrid of heavyweight event tracing and lightweight
statistical sampling. Only a subset of all events is traced,
providing limited completeness and causality information.
Additional information is obtained through sampling.

To apply our method, a performance engineer has to
determine which part of the performance data should be
collected with event tracing and which with statistical
sampling. The following subsections describe these
choices using a couple of examples.

3.1. Processor timeprofiling

When the goal of a performance engineer is to
determine which software components and subsystems
spend most time running on a processor, statistical
sampling can provide most information. It can reveal the
approximate amount of time spent in a component, such
as a task, module or function. Event tracing can
supplement this information in a couple of areas. First, it
can precisely identify switches of wvery high-level
components, such as tasks. Second, it can demonstrate the
component execution causality by tracking message
exchanges. For example, consider the synchronization
between tasks A and B in Figure 2. After sending message
ml, task A enters a wait state where it waits for a state
synchronization callback m2 from task B before
continuing its execution. Here, event tracing can record
and timestamp the sending of messages m1 and m2, while
sampling can provide more in depth performance data
during time intervals [tl, t2], [t2, t3], [t3, t4]. Just

50

sampling is not enough to provide the crucial
synchronization information.
t1 t2 t3 t
| | | | [
I I I I L
t(s)
Task A Task A
‘ A
ml m2
Yy
Task B

Figure2: Task state synchronization

Profiling system interrupts requires event tracing as
well. Even though the intrusion cost of tracing interrupts
is high, sampling cannot be used here, because the
execution times of interrupt handlers are much smaller
than the sampling frequency.

3.2.  Resource usage and energy profiling

In mobile devices power consumption varies
depending on the peripherals used. During the system
execution, software accesses peripherals. These accesses
need to be recorded to determine when a peripheral is
used. In resource usage and energy profiling, complete
information about active and inactive peripherals is
required. Event tracing needs to be used to track state
transitions of Bluetooth, GPS or infrared subsystems.
The intrusion cost of recording “on” and “off” events of
peripherals is low since they occur infrequently.

Statistical sampling can complement event tracing by
providing information that is too expensive to obtain
using event tracing. For example, the processor power
management puts the processor in a low power sleep
mode when no software is scheduled to run. Unlike
Bluetooth mode changes, the processor’s transition to the
sleep state may be too frequent and too expensive to
track via instrumentation. Statistical sampling can reveal
the processor’s idle state with enough accuracy as long
as the context switch time is an order of magnitude
larger than the sampling frequency.

Another opportunity for sampling is presented by
devices with multiple active modes. As mentioned in
section 2.1, the overhead of tracing every state transition
of a peripheral may be too high. While tracing could
provide information about major “on” and “off” states,
sampling could complement this information with
infrequent samples of secondary states allowing more
precise system mapping than achieved with just tracing.

3.3. Hybrid approach discussion

The proposed hybrid approach for performance data
acquisition in embedded software systems has the



potential to limit the data collection overhead while

providing partial completeness and causality.

It is important to understand the requirements for
performance data acquisition, which are domain and
application specific. In different domains event tracing,
statistical sampling, or our hybrid approach may provide
the best solution. Our hybrid approach is sensitive to the
choice of which performance data to collect using event
tracing and which by statistical sampling. A couple of
heuristics would be to trace infrequent events and non-
deterministic events that provide causality information.
However, further research is needed on how to make
these choices.

The hybrid approach also yields the following
benefits:

. Can provide useful profiling results in shorter
execution runs than can be provided by pure
statistical sampling.

*  Can be used to profile events that occur infrequently.

. Limits the profiling data volume, which makes
storing, transfer and post processing easier.
Performance engineers are more likely to make use
of profilers if they are easy to use.

*  Allows reconstructing the dynamic behavior of a
software system.

The proposed hybrid approach
limitations:

*  Unless engineered intelligently, our hybrid approach
could still inherit the drawbacks of both event
tracing and statistical sampling.

. Trace instrumentation is still required, which may
alter the behavior of the original software system.

. It yields two separate sets of profiling data. These
two sources of information need to be combined and
synchronized during post-mortem analysis.

Certain information could be reconstructed from
statistical samples gathered during an execution. Events
that deterministically precede events captured in a sample
could be added to the performance data. This direction
needs to be explored in future research.

also has some

4. Related Work

Several tools exist for performance profiling of
software systems. Many of these are sampling based
profilers [1]. Some tools, such as Intel’s Vtune [9],
provide event-tracing capabilities in addition to statistical
sampling. However, the user cannot simultaneously use
event tracing and statistical sampling during a single test
run.

Hollingsworth et all [3] developed a hybrid data
collection approach that uses event tracing to record state
transitions in counter and timer data structures. These
structures are then sampled periodically to collect
performance data. Our hybrid approach uses event tracing

51

to record a subset of all events of interest. The remainder
of events is recorded through statistical sampling.

5. Conclusion

This paper describes a hybrid approach to the
performance data collection. The hybrid approach
involves striking a balance between event tracing and
statistical sampling, combining the completeness of
event tracing with low cost of statistical sampling. In
addition, the proposed approach limits the profiling data
volume. Useful profiling results can be obtained with
relatively short execution runs.

We have described the use of a hybrid data collection
approach for software execution time and resource
consumption analyses. We believe that such an approach
should be incorporated in future profilers. It is likely that
other dynamic analysis domains would also benefit from
incorporating both complete and sampling based data
collection.

6. References

J. Anderson , L. Berc, J. Dean, S. Ghemawat, M.
Henzinger, S. Leung, R. Sites, M. Vandevoorde, C.
Waldspurger, W. Weihl, Continuous Profiling: Where
Have All the Cycles Gone?, Proceedings of the 16th ACM
Symposium on Operating Systems Principles, 1997

M. Arnold, B. Ryder, A Framework for Reducing the Cost
of Instrumented Code, Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI), 2001, pp. 168-179.

J. Hollingsworth, B. Miller, J. Cargille, Dynamic Program
Instrumentation for Scalable Performance Tools,
Proceedings of the Scalable High Performance
Computing Conference, 1994

(1]

R. Lencevicius, E. Metz, A. Ran; Software Validation
using Power Profiles, Proceedings of the 20th IASTED
International Conference on Applied Informatics (AI
2002), Feb 2002.

E. Metz, R. Lencevicius, Efficient Instrumentation for
Performance Profiling, Proceedings of the 1% Workshop
on Dynamic Analysis, 2003, pp. 143-148.

D. Stewart, Measuring Execution Time and Real-Time

Performance, Embedded Systems Conference (ESC),
2001.

K. Subramaniam, M. Thazhuthaveetil, Effectiveness of
Sampling Based Software Profilers, 1% International
Conference on Reliability and Quality Assurance, 1994,
pp. 1-5.

J. Vetter, D. Reed, Managing Performance Analysis with
Dynamic Statistical Projection Pursuit, Proceedings of the
1999 ACM/IEEE Conference on Supercomputing, 1999.

Vtune Performance Analyzer, March 2004.
http://www.intel.com/software/products/vtune/

[5]

[6]

[7]



Using Runtime Information for Adapting Enterprise Java Beans Application
Servers

Mircea Trofin"
Performance Engineering Laboratory
Dublin City University
mtrofin@acm.org

Abstract

Modern component-based technologies, such as
Enterprise Java Beans (EJB), simplify system development
by allowing developers focus on business logic, while
system services are provided by an underlying application
server. A class of system services, such as transactions or
security, control the context in which components run.

The provisioning of such services can introduce
performance overhead, as some system services might be
executed redundantly. As EJB components bind
dynamically, the determination that such an execution is
redundant can be made only at runtime. We present a
runtime mechanism for identifying and removing such
redundant executions.

1. Introduction

Companies increasingly rely on component-oriented
technologies, such as Enterprise Java Beans (EJB) [1], and
Commercial Off-The-Shelf (COTS) components, in order
to build large scale applications, reduce system
development costs and capitalize on third party expertise.

Typically, component-based systems require an
infrastructure that would support components, providing
them with lifecycle services, intermediating component
message interchange, etc. In the context of EJB, the
infrastructure is referred to as an application server.

A trend in component-oriented technologies, especially
the ones targeted at enterprise systems, is the separation of
system-wide logic from business logic. That is, concerns
such as security, transactional isolation, concurrency, or
persistence (system concerns), are separated from concerns
dealing with what actual services the application provides
for its clients (business logic). This trend leads to a
separation in responsibilities, as well: application server
providers (vendors) are responsible for implementing
system logic, leaving application developers with the
responsibility of designing and implementing business
logic. A module of such business logic is an EJB
component, or bean.

Services such as transactions or security deal with the
runtime context of a component, and they can be referred
to as context management services. These services can be

* xk

52

John Murphy™
Department of Computer Science
University College Dublin
j.murphy@ucd.ie

configured by means of deployment descriptors.
Deployment descriptors are XML documents associated
with each component, and include information indicating
the configuration of context management services, on a
per-method level. For example, for the security service, the
configuration can indicate which user roles are allowed to
execute the particular method.

Typical applications built on EJB include e-commerce
and e-banking sites. Such applications are required to be
highly available, while facing a potentially unbounded
request rate. Another characteristic of these applications is
that, while being multi-user, they tend to have little, if any,
inter-user interaction, which makes the handling of various
user requests highly parallel. In such cases, throughput is
heavily impacted by the speed with which user requests are
handled [2].

EJB applications are built by deploying EJB beans on
an application server. The performance of such an
application depends both on the characteristics of the
developer-written code, as well as those of the application
server. The code that ties components to the application
server is called “glue code”; it acts as a proxy, calling
application server services before and after calls to the
component’s methods. In some cases, glue code is referred
to as “container code”, however, since the concept of a
container and the boundary between containers and
application servers is not clearly separated in the EJB
specification, we avoided using the term “container” in this
paper.

Studies [3] have shown that a large proportion of the
time spent to handle a client request is in fact spent within
application server code. It is important, then, to optimize
application servers in order to minimize their impact on
performance.

Currently, the only means available for reducing the
impact the application server has on performance is
application refactoring [4]. Such refactorings can indeed
improve performance, but at the cost of other system
qualities, such as modularity or maintainability.

EJB components bind dynamically, at runtime. Based
on how they bind, some context management services
could be removed, in effect, minimizing the time spent
within application server code. However, given the
dynamic nature of EJB applications, the determination of

The authors’ work is funded by Enterprise Ireland Informatics Research Initiative 2002.



what can be removed has to be done using runtime
information. A more detailed presentation of this aspect of
EJB has previously been made [5].

We present a solution for the analysis and removal of
redundant executions of context management services
between EJB components on an application server. The
execution of a context management service is deemed
redundant if the goal it tries to achieve has already been
achieved by a previous execution. For example, if a
transaction context is available, and the control is passed to
a method requiring such a context, no additional effort is
required for providing this context.

The effect of execution removals is the generation of
new glue code versions for a component.

Our solution is generic with respect to context
properties, i.e. the solution is not applicable only to the
transactions and security services available in EJB.

Note that our effort is not concerned with dealing with
remote method invocations in EJB, and all inter-
component method invocations described here happen
locally, within the same virtual machine. We are also
concerned only with the cases where contexts are managed
by the application server; EJB permits “bean-managed
transactions” for example, which is a case we do not treat.

2. Solution Overview

The solution consists of extracting runtime information
from an application and combining it with static
information, to generate decisions as to which context
management services are redundant.

To deem an execution redundant in a situation, it is
necessary to know the context in which that execution is
performed. That is influenced by the call path followed to
this point, and the context requirements the previous
methods in the path had. However, this is not sufficient at
all times. Suppose that method ml of component A
indicates that only “admin” users can call it, and method
m2 of component B indicates that only “manager” users
can call it. Suppose m1l requests a binding to B and calls
m2. Now suppose that happens under the credentials of
user “Joe”, who is an admin, as well as a manager. In this
case, only one security context check is necessary, before
m1 is called.

This would mean that we can only deem redundant
service executions in cases when these services do not take
into account the runtime value of the context. However, in
the case of the example above, if it were known that “all
admins are managers”, the security context check at m2
could be deemed redundant. We call this kind of
information “application specific facts”.

A second problem that needs to be solved is
accommodating the fact that the same component might
participate in different binding scenarios in which different
services might be deemed redundant.

53

We will first describe the structure of the information
required for our solution, and then describe a system that
uses this information to optimize an application server.

2.1. Representing Runtime Information: Binding
Graphs

Binding graphs are a refinement over the runtime data
the monitoring service is producing. A binding graph
reflects the order in which bindings took place when a
system client request was handled.

A binding graph is essentially a tree. Any node has at
most one parent. One node is associated with a component.
Each node has a list of method elements. Each method
element has a list of binding elements. A binding element
contains at most one node. This structure is depicted in
Figure 1.

{number of methods=1} ﬁ

BindingGraph

Component

1
- component

*

- methods

Meth
ethod Binding

- bindings *
Figure 1 binding graph structure

An example of a binding graph is depicted in Figure 2.
Nodes are illustrated as circles. An arc indicates the act of
binding.

The root node has always only one element in the
method set, as that is the method called by an external
client. In our example (Figure 2), method1 of component A
eventually initiates a binding to B and then C. The order is
not important, as both bindings happen in the context of A,
and, since we assume that the context is not modified
within a method, the contexts these bindings take place in
are identical.

Next, methodl of B initiates a binding to D. It is implied
that methodl of B was called by methodl of A, since the
binding arc ending in this node started there. Note how,
because components B and E are being bound to twice, but
in different contexts, therefore, they are being represented
for each of those cases. For any node in the graph, the



context it is bound in can be determined by identifying its
arents, then tracing down the tree the binding process.

e
(=]
N

/

N

B \\\\ //// C \\\\\
\ i

\ \ | \
/ \

N (=)
- \=

\g/

D

&
E

Figure 2 example of a binding graph?

Note that a method element in a node describes the
context in which calls to the methods in a child (bounded)
node are performed. The purpose of the binding graph is to
allow for the evaluation of the context in which
components are used. For this reason, leaf nodes in a
binding tree do not contain method elements, as they
would not help evaluate anything (no further bindings).
For the same reasons, if methodl of component A called a
method “method0” on component B, which did not lead to
any further bindings, that information would not be
represented in the tree.

In the case of a component calling its own methods, two
possibilities exist: either the methods are called internally,
without application server support (and no context
management being performed), or through the application
server, with context management. The latter would require
a rebinding, which would appear in the binding graph as
such. The former does not introduce any relevant
information. Suppose methodl of C calls method2 of C
internally, which in turn requests the binding to B. That
binding still happens in the context of methodl1: since no
application server support was used to call method2, no
context management services are executed there.

2.1.1  Comparing Binding Graphs and Call Graphs

A call graph describes calls between various components
in a system. Binding graphs filter out only those calls that
lead to other components being bound. For this reason,

more than one call graph can correspond to a single
binding graph. Using our example in Figure 2, method1 of
component A can call some other methods on B after it
binds to it, however, that is not important for our purposes,
as they all happen within the context of methodl of A. In
fact, as it will be seen, what is optimized in this case is the
complete glue code of B, given that any method might be
called in the context of method1 of component A.

2.2. Component Framework Rules

Deployment descriptors include information describing
requirements placed on the context of execution by each
method of a component. This information is encoded as
configuration properties that affect the semantics of the
execution of a corresponding context management service.
For example, “transaction required” means that the method
will be executed in the same transactional context as the
caller, or, if that is not available, a new one will be created.

Currently, the set of possible configurations is
published as part of the EJB specification and it’s
expressed in natural language. However, we can formally
express them in a rule language, like Jess [6]. These rules
describe how the context is transformed and whether
something needs to be done to do that. For example, for
“transaction required”, the rule can indicate that, if no
transaction context is available, the transactional context
management service is to be run, and a new transactional
context will be produced. We can refer to these rules as
“component framework rules”.

An example of such a rule is given in Figure 3.

(defrule transaction_required_noCtx
(transaction required ?method)
(not(transactionCtx))
=>
(assert (transactionSvc execute ?method))
(assert (transactionCtx))

Figure 3 component framework rule example

The rule is written in Jess, a rule language similar in
syntax to lisp. It describes what the “transaction required”
configuration flag in any deployment descriptor means, in
terms of executing the transaction context management
service (transactionSvc) and in terms of the state of the
context (transactionCtx). Here, the rule treats the case in
which there is no transactional context available and so
one has to be created. In order to achieve that, the
transactions context management service has to be
executed.

2.3. Context Requirements as Rule Engine Facts

Context framework rules determine a vocabulary that is
used to describe the individual context requirements each
method of a component. We will refer to such facts as




context requirement facts. The translation between the
syntax used for context requirements in deployment
descriptors, and rule engine facts, is automatic. Translators
can be reified using XSLT documents.

2.4. Application-Specific Facts

Relationships between security roles, as given in a
previous example, constitute static information pertaining
to a particular system. This information is encoded as facts,
digestible by a rule engine. In our example, “all admins are
managers” is such a fact. We will refer to these facts as
application-specific facts.

2.5. Putting It All Together

The information in binding graphs, together with
context requirement facts, describes a runtime scenario in
terms of a succession of context requirements. Such
information, together with application-specific facts, can
be fed for processing by component framework rules in a
rule-based engine. The output of the rules indicates which
context management services need to be run. In other
words, we have a mechanism for determining which
services are redundant.

3. Solution implementation

Our focus is to develop a runtime optimization solution
for application servers. It has to be easily integrated within
existent application servers (R1). Extending it to support
additional context management services should be done
with minimal effort (R2). Implicitly, it is important to
ensure that the overhead introduced by our solution does
not exceed the performance improvements it generates
(R3).

The optimization solution is able to analyze runtime
information about an EJB application and decide in which
cases context management service executions are
redundant. This decision is based on both runtime
information — binding grapsh, as well as static information
pertaining to the system installation and the EJB
framework — component framework rules, application-
specific facts, and the information contained in deployment
descriptors.

3.1. Overview

Our solution is implemented as an application server
service, and consists of: a monitoring service that extracts
runtime information from an application; a binding graph
filter which extracts binding graphs from the runtime
information produced by monitoring (Figure 4). An
optimization coordinator controls the optimization of

55

binding graphs by employing an expert system built on top
of a forward chaining rule engine [7], such as Jess, which
aggregates static and dynamic information and decides
which services are redundant for a particular component.
The glue code generator maps these decisions into the
application server by generating specialized glue code
variants. Finally, the call graph isolator ensures that glue
code variants are called only in the situation they were
optimized for.

Optimizations can be considered valid only for the
period of time the set of components on an application
server remains unchanged. Strategies for dealing with
changes of the component set are under investigation; a
trivial solution is to cancel all optimizations and start re-
optimizing the system.

Our system is initialized with the set of component
framework rules. Application-specific facts can be
inserted, ideally pre-runtime, either manually, or
automatically, if a facility is provided for that; however,
this is outside the scope of our research.

rule engine

%1.1.1: assertfact

binding graph filter

1.1: optirnize —r0ptimization coordinator

"?‘1: event
%’1.1.3: isaolate ¢f1.1.2:generate
call graph isolator gluecode generator
==grtor==
monitoring

Figure 4 system overview

3.2. Overhead Considerations

Here we discuss aspects related to requirement R3. The
optimization of a binding graph might be resource-
consuming, but it occurs only once per graph. The
overhead produced by our solution should be minimal, as
most binding graphs should be optimized immediately
after the application is started and serving requests. The
more diverse the types of requests the server is presented
with early-on, the faster the application will be fully
optimized. Based on this observation, we can distinguish
two different utilization scenarios of our solution
(presented below). They differ in the period of time the
optimizations take place. Since the active entity (the source
of events) is the monitoring service, the differentiator
between the two scenarios is the period of time the
monitoring service is active.



3.2.1  Continuous Monitoring

In this scenario, monitoring is always active; therefore,
optimizations can happen at any time. Since any new
interaction is immediately optimized, the benefit is that all
interactions end up optimized after the first time they are
executed. The drawback is that monitoring imposes an
overhead, which might not be desirable. This scenario is
appropriate for the case in which the application under
optimization is not well known, or in which monitoring is
expected to be constantly turned on.

3.2.2  Training Period

In this case, monitoring is turned on for a period of time
called training period, after which it’s turned off.
Therefore, optimizations can occur only during the training
period. Ideally, the system would be exposed to as many
different interactions as possible during this period, to
minimize the number of un-optimized interactions left at
the end of the training period. Insight into the system
structure and behaviour is expected.

This scenario is appropriate for cases in which
monitoring would not be normally turned on, and in which
the application behaviour is well known. In such cases, it
offers the benefit of having a fully optimized system
(achievable during the training period), at no long-time
extra performance cost due to monitoring.

3.3. Monitoring Service

The monitoring service extracts runtime events from an
application, and makes them available to registered
listeners. Such a listener is the Optimization Coordinator.

The development of this service is not part of our effort,
as there are both academic [8] and commercial efforts in
this area, which we can integrate with.

3.4. Binding Graph Filter

This component is tightly coupled to the monitoring
service and processes whatever runtime information this
service produces, extracting binding graphs. The tight
coupling is due to the fact that there is no standard
monitoring facility for EJB applications, and thus, the
interface the various existing monitoring solutions offer
needs to be adapted.

3.5. Optimization Coordinator

The optimization coordinator receives for processing
one bhinding graph at a time from the binding graph filter. It
maintains a set of binding graphs that it had optimized.
Any binding graph is first checked against the optimized
graph set. If it is not there (un-optimized), the binding
graph is traversed depth first. It passes the context
requirements of the method at the top to the rule engine,

56

and then follows the first binding to the next node. Here, it
passes all the context requirements of all the methods of
the component associated with this node. At this stage, the
rule engine decides, for each such method, which context
management services are required.

The optimization coordinator invokes the glue code
generator with these facts.

Next, the requirements of the methods are retracted, and
we follow the next binding down by pushing the
requirements of the method that owns the binding. The
algorithm is presented in pseudocode in Figure 5.

Given RE, a rule engine

optimize (component c)
for each method m in ¢

push m's requirements in RE

for each binding b in m
c'= the component associated with b
r=the set of requirements of the methods of c'
push r in RE
rc=get redundant context management executions

from rule engine, for c’

generate glue code for c'
optimize (c')
retract r from RE

end

given rc

retract m's requirements from RE

end
end
Figure 5 optimization algorithm
Essentially, the algorithm generates a high-level

specification of the glue code associated with a
component, given a set of facts that can be known about
the runtime environment that component might be run in.

3.6. Glue Code Generation

Requirement R1 governs the design of the integration
between application server and the rule engine. There has
to be minimal coupling between the rule engine and
application server code, in particular, component glue
code. However, we need to make some assumptions.

A strategy employed by some application servers, such
as JOnAS [9], is to generate component glue code when
the component is deployed. Usually, code templates are
used, which are next run through a code generation engine,
such as Velocity [10]. We developed our solution around
the assumption that such a mechanism is being used.

The optimization coordinator has to use the information
from the rule engine in order to generate specialized
versions of glue code for each component. We opted to use
a pre-processor solution. Within the code templates used to
generate glue code, calls to context management services
are tagged. Tagging can either be done with a technology
such Velocity or XDoclet [11].




If the pre-processor is started with a set of properties,
tagged areas of code can be excluded. Essentially, the code
generation process is made aware of assumptions that can
be made about the runtime environment of the code to be
generated, which results in a customization of this code.

There has to be a mapping between facts produced by
the rule engine and tags in the code. This can be ensured,
as the “link” between these two is the set of component
framework rules, which are available at the time glue code
templates are developed.

3.7. Isolation of Call Graphs

In order to inject the optimized glue code back in the
server, a major obstacle has to be overcome: the fact that
the same component can participate in different
interactions, which in turn can yield different glue code
optimizations.

Our solution is to provide variants of glue code
simultaneously, for the same component, and provide
client components with a selection mechanism that allows
them to pick the correct variant. A glue code variant of a
component A is “correct” with respect to a client C in the
following sense: consider the binding graph B that, through
optimization, leads to the production of the glue code
variant GcV-A, for component A. Let B’ be the binding
graph associated with the call path in which C is part of. If
C has the same position (same parents) in B” and B, and C
tries to bind to A, then GcV-A is the correct variant.

Refer to Figure 2. In that case, all external clients would
bind to A via a variant of glue code dedicated to such
clients. In this particular case, when A’s method1 is called,
the glue code installs a specialized naming provider. When
an attempt is made to bind to B, this naming provider
returns a reference to B’s glue code variant which
optimizes for the current situation (i.e. A’s methodl
binding to B). This glue code variant of B installs a naming
provider when B’s methodl is called which “knows”
which version of D’s glue code to chose; similarly, for
method2 and component E.

The call graph isolator requires the modification of the
application server in order to allow for multiple glue code
variants.

3.8. Extensibility

To extend our solution to support other context
management services (R2), the component framework rule
set has to be updated, and glue code templates need to be
tagged accordingly. The ability of extending our solution is
not so much targeted at EJB applications, as more to the
migration of our solution to other frameworks, similar to
EJB, such as CCM [12].

57

4, Related Work

4.1. Operating Systems

Context switching optimizations were analysed in the
domain of operating systems (OS). For example, the
authors of [13] optimize thread-related context switching
overhead, by analysing liveliness information of context
elements (such as registers). In [14], the authors attempt to
avoid context switching incurred at inter-process
communication.

There are two core differences between context
switching optimizations in the OS area and our effort,
which spawn from differences in problem domains. One
lies with the entity that controls the context. In the OS
case, the context of execution of a process is represented
by a set of values (registers, stack pointer, etc) that belong
to the process in the sense that it is the one that
alters/controls them. The OS only saves and loads such
values, but does not control them. In the components case,
contexts are completely out of the scope of a component’s
control. The context is constrained outside the
component’s code, and is managed by the platform
(application server). This allows for greater opportunities
for analysis and optimization in the components case, as all
the information related to context management can be
made accessible by the platform to the agent performing
the optimization.

The other difference lies with the composition of the
context being managed. In the case of operating systems,
this composition is “a given”; it typically consists of CPU
registers. In general case we are focusing on, the
composition of the contexts is variable.

4.2. Programming Language Compilers

The area of code optimization, including redundancy
elimination, in the context of compilers, has been under
extensive research and has achieved maturity. Currently,
the vast majority of programming languages are compiled
by compilers that make use of optimizers. In the case of
interpreted languages, or languages that run over virtual
machines, as the case is for Java, the virtual machine can
provide an additional set of optimizations for a program.

Optimizations operate on information that is extracted
from code, and, sometimes, on information related to the
target platform. Typically, an intermediate representation
is produced, on which optimization algorithms are run.
The result is a modified representation, which is
functionally equivalent to the first one, but optimizes for a
particular aspect (i.e. space, time)

One requirement for redundancy elimination algorithms
is that full data flow information be available [15]. In the



case of EJB applications, this is generally impossible, as
the execution can be distributed: for example, security
checks could happen on a remote machine.

4.3. Optimization of Component Systems

The authors of [16] propose to optimize a component
system at runtime. Their approach consists of recompiling
an application built out of components, as interactions
between components become apparent. The system is
continuously evaluated and recompiled. Initial results
indicated that a continuous evaluation-recompilation cycle
is performance-detrimental.

The authors of [17] suggest that specialization scenarios
for components be packaged together with components.
The methods of specialization suggested are at the code
level.

The most important difference between these
approaches and ours is that code-level optimizations will
miss out the semantics of context management services.
We believe that our approach and the ones presented here
can be applied conjointly, but they will optimize different
aspects of the application in cause.

A number of authors propose that application servers
offer facilities that would allow applications adapt to
changes in their environment. An example is the work
presented in [18]. Enterprise services tied to an EJB
application server can be added/removed or altered. This is
similar to what we propose, in a sense, as the effect of our
optimizations is that the set of services that gets executed
at inter-component calls gets altered. The difference lies
with the scope of the alteration: in our case, it is specific to
a particular interaction scenario in which a particular
component participates, and is done in response to the
discovery of redundant context management service
executions; in [18], modifications affect all such
interactions, and are performed as response to a change in
the application environment (such as battery power or
network conditions).

JBoss [19] offers the capability of adding or removing
services provided by the application server for a
component. Similar to the approach above, this capability
has the shortcoming of affecting all interactions with that
component. This approach cannot support the case in
which the same component participates in different
execution contexts.

5. Current Status and Future Work

5.1. Optimization Study

We conducted feasibility tests for our rule engine based
optimization solution. We started by defining component

58

framework rules for the transaction service, and extracting
context requirements as facts from a set of components. No
application-specific facts were used at this time.

We chose the transactions service for this test as it
offers a larger array of configuration options, when
compared to security.

The experience supports the current solution. The next
immediate step is to include security rules, together with
application-specific facts.

5.2. Call Graph Isolator Implementation

We have implemented a prototype call graph isolator on
JBoss. We have used this prototype in order to gain more
insight into the design implications related to it, as well as
verify whether such a mechanism would introduce any
overhead. A full discussion of the isolator is out of the
scope of this paper. JBoss was used for this prototype
purely for previous experience reasons. Since JB0oss uses a
reflective approach to glue code, it is not suited for
implementing the rest of our solution; however, it proved
sufficient for the purpose of this prototype.

5.3. Future Work

We intend to finalize a prototype optimization
coordinator and engine, together with the corresponding
set of rules for transactions and security services, as
supported by EJB.

The next step will be to analyse the proposed glue code
generation mechanism, in terms of technology used. Its
applicability across various application servers will also be
analysed. As we assume a particular glue code generation
style in-place (template-based code generation), we will
analyse glue code generation solutions for other cases -
JBoss, for example, employs a reflective approach.

6. Conclusions

We presented the problem of determining which context
management service executions are redundant for
applications built on the Enterprise Java Beans component
framework.

The proposed solution consists of aggregating static and
dynamic information and producing variants of glue code
that contain only context management service calls that are
not redundant. Static information consists of component
framework rules, context requirement facts, and
application-specific facts. Dynamic information is encoded
in binding graphs. The decision as to which service calls
are redundant is made by a rule-based engine.

Glue code variants are produced by augmenting a
currently employed method, template-based code
generation.



Glue code variants are bound to the situation they are
specialized for (i.e. a particular position in a call graph). A
method has been presented and prototyped for ensuring
that this binding is respected every time calls are passed
between components.

7. References

[1] Sun  Microsystems. Java Beans
Specification”,
http://java.sun.com/products/ejb/docs.html#specs

[2] The Middleware Company Case Study Team. “J2EE
and .Net (Reloaded). Yet Another Performance Case
Study”. http://www.middleware-
company.com/casestudy/tmc-performance-study-jul-
2003.pdf . June 2003

[3] E. Cecchet, J. Marguerite, W. Zwaenepoel.
“Performance and scalability of EJB applications”. In
Proceedings of the 17th ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA) November 2002, Seattle,
WA

[4] Brett McLaughlin. “Building Java Enterprise
Applications Volume I: Architecture”. O’Reilly, 2002

[5] Mircea Trofin, John Murphy. “A Self-Optimizing
Container Design for Enterprise Java Beans
Applications”. The 8" International Workshop on
Component Oriented Programming (WCOP), part of
the 17th European Conference on Object-Oriented
Programming (ECOOP). July 2003, Darmstadt,
Germany.

[6] Sandia National Laboratories. Jess, the Rule Engine
for the Java™ Platform.

[7]1 S. Russell, P. Norvig. “Artificial Intelligence. A
Modern Approach”. Prentice-Hall, 1995

[8] Adrian Mos, John  Murphy.  “Performance
Management in Component-Oriented Systems using a
Model Driven Architecture Approach”. In proceedings
of The 6th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), September
2002, Lausanne, Switzerland

[9] ObjectWeb. “JOnAS: Java™ Open Application
Server”. http://jonas.objectweb.org/

“Enterprise

[10]The  Apache Jakarta  Project,  “Velocity”.
http://jakarta.apache.org/velocity/
[11]XDoclet - Attribute Oriented Programming.

http://xdoclet.sourceforge.net/

[12] Object Management Group.
Model”
http://www.omg.org/technology/documents/formal/co
mponents.htm

[13]Dirk Grunwald, Richard Neves. “Whole-program
optimization for time and space efficient threads”. In
Proceedings of the seventh international conference on

“Corba Component

59

Acrchitectural support for programming languages and
operating systems, Cambridge, Massachusetts. 1996

[14] Erik Johansson, Sven-Olof Nystrom. “Profile-guided
optimization  across process boundaries”. In
Proceedings of the ACM SIGPLAN workshop on
Dynamic and adaptive compilation and optimization,
2000

[15]Steven S. Muchnick. “Advanced Compiler Design
Implementation”. Morgan Kaufmann Publishers, 1997

[16]A. Gal, P.H. Frohlich, M. Franz. “An Efficient
Execution Model for Dynamically Reconfigurable
Component Software”. In Seventh International
Workshop on Component-Oriented Programming
(WCOP 2002) of the 16th European Conference on
Object-Oriented Programming. June 2002, Malaga,
Spain

[17] Gustavo Bobeff, Jaques Noye. “Molding Components
Using Program Specialization Techniques”. In Eight
International Workshop on Component-Oriented
Programming (WCOP 2003) of the 17th European
Conference on Object-Oriented Programming. July
2003, Darmstadt, Germany

[18] zahi Jarir, Pierre-Charles David, Thomas Ledoux.
“Dynamic Adaptability of Services in Enterprise
JavaBeans Architecture”. In Seventh International
Workshop on Component-Oriented Programming
(WCOP 2002) of the 16th European Conference on
Object-Oriented Programming. June 2002, Malaga,
Spain

[19]1The JBoss Group, “JBoss Administration and
Development Documentation — eBook - 3.2.1”.
http://www.jboss.org




Efficient Specification-Assisted Error Localization

Brian Demsky  Cristian Cadar Daniel Roy  Martin Rinard
Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
{ bdemsky, cristic, droy, rinard }@mit.edu

ABSTRACT the developer cannot assume that the data structures satisfy any prop-

We present a new error localization tool, Archie, that accepts a specE atall—the whole point of the checker is to detect data structures
ification of key data structure consistency constraints, then generateg‘at may arbitrarily violate their |nvar|ants: For example, straightfor-
an algorithm that checks if the data structures satisfy the cons’[raints\."’ard _hand-coded tree traversals may fail to terminate on trees that
We also present a set of specification analyses and optimizations th&entain cycles. .
(for our benchmark software system) significantly improve the per- _Hand-coded consistency checkers are also vulnerable to anoma-
formance of the generated checking algorithm, enabling Archie toIles such as incomplete property coverage, unwarranted assumptions
efficiently support interactive debugging. about the |.nput dgtq structures, and increased deyelopment overhead.
We evaluate Archie’s effectiveness by observing the actions of t\NoOur éxperience indicates that ha_nd-coded consistency chec_kers are
developer populations (one using Archie, the other using standard er'§UbS,tant'ally 'arg.ef an.d more difficult to develop than an equivalent
ror localization techniques) as they attempted to localize and correcEONSIStENcy specification.
three data structure corruption errors in a benchmark software sysl.2 SpeC|flcat|on-Based Approach

tem. With Archie, the developers were able to localize each error in  Archie accepts a specification of key data structure consistency
less than 10 minutes and correct each error in (usually much) lesgroperties (including sophisticated properties characteristic of com-
than 20 minutes. Without Archie, the developers were, with one ex-plex linked data structures), then periodically monitors the data struc-
ception, unable to locate each error after more than an hour of effortiyres to detect and flag violations of these properties. The developer
(potentially assisted by an automated tool) places calls to Archie into
1. INTRODUCTION the software system. If the system contains a data structure corrup-
Error localization is a key prerequisite for eliminating program- tion error, Archie localizes the errorto the.region of the exgcutioq be-
ming errors in software systems and, in many cases, the primaereen t_he first call_that detects an inconsistency and the |n_1med|ately
obstacle to correcting the error — the fix is often obvious once thePreceding call (which found the data structures to be consistent).
developer locates the code responsible for the error. Each Archie specification contains a set of model definition rules

The primary issue in error localization is minimizing the time be- @nd & set of consistency properties. Archie (conceptually) interprets
tween the error and its manifestation as observably incorrect behaythese rules to build an abstract model of the concrete data structures,
ior. The greater this time, the longer the program executes in anthen examines the model to find any violations of the consistency
incorrect state and the harder it can become to trace the manifesroPerties. The conceptual separation of the specification into the
tation back to the original error. This issue can become especially0del construction rules and consistency constraints simplifies the
problematic for data structure corruption errors — these errors of-€XPression of the_ consistency constraints and provndgg important ex-
ten propagate from the original corrupted data structure to manifesPressibility benefits. Specifically, it enables the specification devel-

themselves in distant code that manipulates other derived data stru@Per to 1) classify objects into different sets and apply different con-
tures, obscuring the original source of the error. sistency constraints to objects in different sets, 2) express the consis-

This paper presents a new error localization tool, Arghite- tency constraints at the Ie\_/el ofthe qonceptsinthe dqma_in rather than
scribes the optimizations required to make Archie efficient enough@t the level of the (potentially heavily encoded) realization of these
for practical use, and discusses the results of a case study we pep_oncepts in the _concrete data_ structures, 3) use inverse rglatlons to
formed to evaluate its effectiveness in helping developers to localize®XPress constraints on the objects that may refer (either directly or
and correct data structure corruption errors. Our results indicate thatconceptually) to a given object, 4) construct auxiliary relations that
after optimization, Archie executes efficiently enough for interactive allow the developer to express constraints between objects that are
use on our benchmark software system and that it can dramaticallpeParated by many references in the data structures, and 5) express
improve the ability of developers to localize and correct injected dataConstraints involving abstract relationships such as object ownership.
structure corruption errors in this system. 1.3 Optimizations

1.1 Consistency Checking It is clearly desirable to perform the consistency checks as fre-

. T . quently as possible to minimize the size of the region of the execu-
Consistency checking is currently used as a technique for debugfion that may contain the error. The primary obstacle is the check

tgr:ng [17]. Develope_rs slometlmes h?ﬂd'coie ;:%nsstetncy C_Ir_‘ﬁCkS Rxecution overhead. We found that our initial implementation of
€ Same programming fanguage as the rest ot the system. 1he Cor?gre consistency checking algorithm as described above was too in-

pllcatlon is that de\_/glopers must code data_structure traversals_an fficient for practical use. We therefore implemented the following
implement any auxiliary data structures required to check the desire ptimizations:

properties. Developing this code can be especially difficult because "y Fixed-Point Elimination: The Archie compiler analyzes the

dependences in the specification to, when possible, replace the
fixed-point computation in the model construction phase with a

1Archie is named after Archie Goodwin, the assistant to Rex Stout’s
fictional detective Nero Wolfe. The idea is that, under Wolfe's di-

rection, Archie does all the work required to localize the crime to a more efficient single-pass algorithm. o
specific suspect, then Wolfe uses his superior intelligence to solve e Relation Elimination: The compiler analyzes the specification
the crime. to, when possible, replace the explicit construction of each re-

60



; : : - _structure city { int population; }
lation with a computation that efficiently generates, on the de structure tile { int terrain; city *city; }

mand, the required tuples in the relation. tile grid[EDGE * EDGE];
e Set Elimination: The compiler analyzes the specification to,

when possible, integrate the consistency checking computation

for each set of abstract objects into the data structure traverSét TILE of tile

sal that (in the absence of optimization) constructs that set. Thef;;ti(élr;wm?rfws/:gp- TILE > CITY
S?CC?SS offtmstoptltmlzatlon enables Archie to eliminate the con- g jation TERRAIN: TILE -> int

struction of that set.

Together, these optimizations make Archie run over 800 times
faster on our benchmark software system than the original compiledo, x=0 to EDGE*EDGE, true => grid[x] in TILE
version; the fully optimized instrumented version executes less tharfor t in TILE, true => <ttterrain> in TERRAIN
6.2 times slower than the original uninstrumented version. For ourfor t in TILE, !t.city = NULL =>

Figure 1: Structure Definitions

Figure 2: Set and Relation Declarations

benchmark software system, the optimized version of Archie is ef- <ttcity> in CITYMAP o

ficient enough to be used routinely during development with morefor t in TILE, !tcity = NULL => tcity in CITY

than acceptable performance for interactive debugging. Figure 3: Model Definition Rules

1.4 Case Study erid(0]  grid[1]  grid2]  grid[3]
To evaluate Archie’s effectiveness in supporting error localization terrain: 1 2 3 4

and correction, we obtained a benchmark software system, used man- city: | |

ual fault injection to create three incorrect versions, then asked six L [

developers to localize and correct the errors. Three developers used \/

Archie; the other three used standard techniques. population: C

With Archie, the developers were able to localize each error within
several minutes and correct the error in (usually much) less than
twenty mir}utes. Without Archie, the developers were (with a sin- TILE = {grid[0], grid[1], grid[2], grid[3]}
gle exception) unable to localize each error after more than an houRrgRRAIN= {(grid[0], 1), (grid[1], 2), (grid[2], 3), (grid[3], 4)}
of debugging. The key problem was that continued execution madec|Ty ={C}
the errors manifest themselves far (in both code and data) from theCITYMAP={(grid[2], C), (grid[3],C)}
original source of the error. Although the developers eventually came
to understand what was going wrong, they were unable to trace the

manifestation back to its _root cause wnthl_n the allotted time. Even a data structure this simple has important consistency con-
To place these results in context, consider that our benchmark sySgyaints: in this section we focus on the following constraints: the

tem contains significant numbers of assertions designed to catch daig ain field of each tile contains a legal value, each city is referenced
structure corrup_tlon errors, two of the three errors mannfest them'b)hexactly one tile, and no city is placed on an ocean tile.

selves as assertion violations, but these assertions were still not enou . . .

to enable the developers to locate the errors in a timely manner. Thesg-l Expressing Consistency Properties

results indicate that Archie can provide a substantial improvement To express these constraints, the developer first identifies the sets
over standard error localization techniques. and relations that conceptually model the concrete data structures. In
1.5 Contributions our example there are two sefdLE andCITY, and two relations,
CITYMAPandTERRAIN Figure 2 presents the declarations of these

e Archie: It presents the design, implementation, and evaluation sets and relatio_ns._ THBILE set containsile structures, and the
fArcHie A New s ecification-'based data struc’ture consistenc CITY seF contf'ilnmty structures: 'Each relation consists of a set of

0 L P o . y[uples with objects from two specified sets.
checking tool for error localization and correction. o

« Optimizations: It presents a set of optimizations (fixed point 2-1.1 Model Definition Rules
elimination, relation elimination, and set elimination) that, to-  The developer next provides a set of model definition rules that
gether, increase the performance of Archie on our benchmarkdefine a translation from the concrete data structures to the sets and
software system by over a factor of 800, enabling Archie to be relations in the model. Figure 3 presents the model definition rules
used routinely during interactive development with more than in our example. Each rule consists of a quantifier that identifies the
acceptable performance. scope of the rule, a guard that must be true for the rule to apply, and

e Case Study: It presents a case study that evaluates the effec-an inclusion constraint that specifies an object (or tuple) that must be
tiveness of Archie as an error localization and correctness tool.in a given set (or relation). Conceptually, Archie uses a least fixed-
With Archie, developers were able to quickly localize and cor- point algorithm to repeatedly add objects to sets and tuples to re-
rect errors in our benchmark software system; without Archie, lations until the model satisfies all of the constraints. For the data
developers were unable to localize the errors even after theystructure in Figure 4, Archie constructs the model in Figure 5.
spent significant amounts of time attempting to trace the mani- 2 1 2 Consistency Constraints
festation of the errors back to their root causes.

Figure 4: Concrete Data Structure

Figure 5: Model Constructed for Example

This paper makes the following contributions:

The developer next uses the sets and relations to state the consis-
2. EXAMPLE tency constraints. Each constraint consists of a sequence of quanti-
We next present an example (inspired by the FreeCiv program disfiers that identify the scope of the constraint and a predicate that the
cussed in Section 6) that illustrates how Archie works. The programconstraint must satisfy.
maintains a grid of tiles that implements the map of a multiple-player Figure 6 presents the constraints in our example. The first con-
game. Each tile has a terrain value (i.e. ocean, river, mountain, grassstraint ensures that each tile has a valid terrain, the second ensures
land, etc) and an optional reference to a city that may be built on thatthat each city has exactly one location (i.e., exactly one tile references
tile. Figure 1 presents the relevant data structure definitions. each city), and the final constraint ensures that no city is placed on

61



for t in TILE, MIN <= tTERRAIN and tTERRAIN <= MAX

for c in CITY,sizeof(CITYMAP.c)=1 ¢ = QLE=1 ,
for ¢ in CITY,|(CITYMAP.c).TERRAIN = OCEAN Q = for Vin Sf[for (V,V)in R|for V=FE.E

. . . = ! =

Figure 6: Consistency Constraints G G and G |Gor & |'G_ |[E=E|E<E]|tue |
(G)|Ein S|(E,E)in R

an ocean tile.? As this example illustrates, the ability to freely use I := Ein S|(E,E)in R
inverses substantially increases the expressive power of the specifica- g .= V| number | string | E. field | E. field[E] |
tion language — it enables the gxpressipn of .pro.perties that navigate E-E|E+E|E/E|E+E
backwards through the referencing relationships in the data structures
to capture properties that involve both an object and the objects that Figure 7: Model Definition Language
reference it.
2.2 Instrumentation and Use object (or tuple) that must be in a given set (or relation). Figure 7

Finally, the developer (potentially with the aid of an automated presen_ts t_he grammar for the model ‘?'ef”.““o” Ianguage._ -
In principle, the presence of negation in the model definition lan-

tool) instruments the code to periodically invoke Archie, which ex- S o -
amines the data structures and reports any inconsistencies to the d uage opens up the possibility of unsatisfiable model definition rules.
e address this complication by requiring the set of model definition

veloper. When the instrumented program executes, Archie Iocalizesules to have no cveles that go throuah rules with negated inclusion
the error to the region of the execution between two subsequent call o <y 9 9 9
constraints in their guards.

to Archie and identifies the violated constraint (which, in turn, iden- ]
tifies the corrupt data structure). Our results (as discussed in Sec3.3 The Constraint Language

tion 6) show that this approach can enable the developer to quickly - Figyre 8 presents the grammar for the model constraint language.
localize and correct the error that caused the inconsistency. Withgach constraint consists of a sequence of quanti@iers.., Q. fol-
standard approaches, the program typically continues its executiofipywed by bodyB. The body uses logical connectives (and, or, not)
for some period of time, with the error propagating through the datayg compine basic propositiorfthat constrain the sets and relations
structures. This combination of continued execution and error prop-in the model. Developers use this language to express the key con-

agation makes it difficult to understand and localize the error. sistency constraints.
3. SPECIFICATION LANGUAGE C = Q,C|B
Our specification language consists of several sublanguages: a Q := for Vin S|for (V,V)in R|for V=FE.FE
structure definition language, a model definition language, and a model B = Band B|Bor B|!B|(B)|VE compE |
constraint language. Vin SE|size (SE)comp C
3.1 Structure Definition Language comp = =|<|<=[>|>=
The structure definition language supports the precise specifica- VE = V.R|RV|(VE)|VER|RVE
tion of heavily encoded data structures. It allows the developer to E = V]|number|string| E+E|E—-E|E/E|
declare structure fields that are 8, 16, and 32 bit integers; structures; ExFE|E.R|size (SE)|(E)
pointers to structures; arrays of integers, packed booleans, structures, SE = S|V.R|RV
and pointers to structures. The array bounds can be either constants
or expressions over an application’s variables. The developer can de- Figure 8: Model Constraint Language

clare that a region of memory in a structure is reserved, indicating

that it is unused. Finally, the structure definition language supportsy  COMPILATION AND OPTIMIZATION

a form of structure inheritance. A substructure must have the same ) . . I

size and contain all of the same fields as the superstructure, but it W& implemented a compiler that processes Archie specifications

may define new fields in areas that are unused in the superstructure!© 9enerate C code that implements a basic consistency checking al-
gorithm. This algorithm first uses a work-list-based fixed point al-

3.2 Model Definition Language gorithm to construct the model, then evaluates the consistency con-
The model definition language allows the developer to declare thestraints to detect any possible inconsistencies. Unfortunately, this
sets and relations in the model and to specify the rules that define th&traightforward compilation strategy generates checking algorithms
model. A set declaration of the forset S of T: partition that are too slow for our purposes. We therefore implemented the
Si, ...,Sa declares a se8 that contains objects of typE whereT is following optimizations.
eith.e.r.a primitive type or .ez.;trugt type declared in the structure 4 1 Fixed Point Elimination
definition part of the specification. The sehasn subsets;, ..., S,
which together partitiors. Changing thepartition keyword to
subsets removes the requirement that the subsets partiitut
otherwise leaves the meaning of the declaration unchanged. A re
lation declaration of the formelation R: S ;->S, specifies a

This optimization analyzes the model definition rules to replace,
when possible, the fixed point computation with a more efficient data
structure traversal. The compiler first performs a dependence anal-
ysis on the model definition rules to generate a dependence graph.
relation between the objects in the sgtsands,. This graph captures the depenc_iences between rules which _create sets

The model definition rules define a translation from the concreteand relations and the rules which use those sets and relations. For-

data structures into an abstract model. Each rule has a quantifier thé‘?a"y' the graph consists of a set of nodégone for each rule) and a

identifies the scope of the rule, a guard whose predicate must be truggggigggﬁ él-rart]i?)rr?tir?aavn Zi%ﬁe: A<\]I’\ill|7ejl\1] ;é;oggl(;? eja\]feirai%n
for the rule to apply, and an inclusion constraint that specifies an~—>" L -
PRl P R) if the rule has a quantifier of the forfar Vin S (or of the form

?Note that the notatio€ITYMAP.c denotes the inverse image of for (Vi,V2)in R)orif the rule has a guard of the forll in S
c under the relatiolCITYMAP (the set of allt such that(t,c ) in (or (E1, Eq) in R). Arule definesa setS (or relationR) if it has an
CITYMAB. inclusion constrainf of the formE in S (or (E1, E2) in R).

62



The compiler topologically sorts the strongly connected compo-
nents in the dependence graph. For components that consist of a sin-
gle rule, the compiler generates efficient code that iterates through
all of the rule’s possible quantifier bindings, evaluates the guard for
each binding, and (if the guard is satisfied) executes the actions that
add the appropriate objects to sets or tuples to relations. For compo-
nents that consists of multiple rules, the compiler generates code that
performs a fixed point computation of the sets and relations that the

\ersion Time

No Instrumentation 0.234 sec|
Baseline Compiled 20 min
Fixed point elimination| 25.60 sec
Relation Elimination 10.66 sec
Set removal 1.45 sec

Table 1: Performance Results

component produces. The generated code executes the computatioR4ch as our specification language. We expect that several aspects of
for the components in the topological sort order. This order ensuregArchie will facilitate its acceptance within the developer community:
that each set and relation is completely constructed before it is used ® Black Box Usage: The specifications can be developed by a

to construct additional sets and relations in other components.
4.2 Relation Elimination

Some of the relations constructed in our model correspond to par-
tial functions. For example, a fielfimay generate a relation that re-
lates each objeetto the value of the field. f. Our compiler discov-
ers relations that implement partial functions and verifies that these
relations are used only in the forward direction (i.e., no expression
uses the inverse of the relation). The compiler recognizes that a rela-
tion R is a partial function if the model definition rules use a single
rule of the following form to defingv:

for Vin S, G = (V,E)in R.

The compiler rewrites each expression that uses a partial function
by replacing the use with the computation®and (if G is satisfied)

E. The compiler then removes the rule responsible for constructing
each such relation.

4.3 Set Elimination

Our final optimization attempts to transform the specification to
eliminate set construction and instead perform the checks directly on
the data structures in memory. We use two transformatioredel
definition rule inliningandconstraint inlining Model definition rule
inlining finds a model definition rule of the for@*, G1 = Viin S,

a second model definition rule of the fofior V2 in S, G2 = 1,
then eliminates the use of the $in the second rule by transforming
itto Q*, G1AG2[V1/Va] = I[V1/V5]. To apply the transformation,
the first rule must be the only rule that defirtes

The constraint inlining transformation finds a model definition rule
of the formQ@Q*, G = V7 in S, a consistency constraint of the
formfor V1, in S, C, then eliminates a use of the sg¢thy trans-
forming the consistency constraint*, G = C[Vi/V2]. To ap-
ply the transformation, the model definition rule must be the only
rule that definesS. Note that the new constraint has a predicate
(G = C[V1/V2]) that may involve both concrete values from the
data structures in memory and the sets and relations in the mode
We have extended the internal representation of our compiler so thal
it can generate code to check these kinds of hybrid constraints.

Each transformation eliminates a use of theSetf the transfor-
mations eliminate all uses, the compiler removes the set and the ru

space required to compute and store the set. This optimization ca
be especially useful when (as is the case for our benchmark syste

small number of developers who are familiar with the specifica-
tion language, while the remainder of the developers can sim-
ply use Archie as a black box. We anticipate no need for the
vast majority of the developers to learn the Archie specification
language. There is also no need to change the programming
language, coding style, or other development tools.

Incremental Adoption: Archie supports incremental adoption

— the developer can start with a specification that captures a
small subset of the consistency properties, then incrementally
augment the specification to capture more properties. During
the specification development process the consistency checker
becomes more useful as more properties are added. Calls to
Archie can also be incrementally added to the system. The over-
all result is a smooth integration into the development process
with no major dislocations or disruptions.

Ease of Development:Based on our experience developing
similar specifications in another project [7], we believe that
Archie specifications will prove to be relatively easy to develop
once the developer understands the relevant data struétures.
Because the specifications identify global data structure invari-
ants rather than specific properties of local computations, our
experience indicates that the resulting specifications are quite
small (the largest are several hundred lines long, with the ma-
jority of the lines devoted to structure definitions) in comparison
with the size of the software system as a whole.

We do anticipate that the use of Archie may wind up substantially
changing the testing, error localization, and error correction activ-
ities, but in a positive way — we anticipate that Archie will help
developers find errors earlier and provide them with substantially
improved error localization. The developers in our case study (see
Section 6) had no problem integrating Archie into their debugging
strategy and in fact used Archie almost immediately to eliminate te-
pious activities such as augmenting the code with print statements
(EJI‘ using a debugger to insert breakpoints and examine the values of
selected variables.

We expect that Archie will effectively support usage strategies in
Ié(vhich the initial specifications are developed as part of the software
qdesign process before coding begins and usage strategies in which it
Is integrated into a large existing software system. We also antici-

ate that, once integrated, the developers will be motivated to keep

the compiler is able to eliminate the largest sets or relations. e sp_e_ci_fication up to d_a_te t_o re_zflect changes_ t(.) _the data structures.
The division of the specification into model definition rules and con-
4.4 Performance Impact sistency constraints facilitates this specification maintenance — if
Table 1 presents the execution times of our benchmark softwareonly the representation of the data changes, the developer can simply
system with the consistency checks at different optimization levels.update the model definition rules to reflect the new representation,
As these numbers show, the optimizations produce dramatic perforleaving the consistency constraints intact.
mance improvements. The final optimized version is more than effi- During development, we expect the program to be instrumented
cient enough for interactive debugging use. with calls to the Archie consistency checker. We anticipate two kinds
3Specifically, we have developed specifications for the FreeCiv in-
5. ENVISIONED USAGE STRATEGY tergctive ga¥ne, the CTAS air-}tjrafﬁce:ontrol system [1, 23] (this de-

Obtaining developer acceptance of a new tool can be difficult, es-ployed system consists of over 1 million lines of code), a simplified
pecially when the tool requires the developers to use a new languageersion of the Linux ext2 file system [20], and Microsoft Word files.

63



of instrumentation: calls placed (potentially with the aid of an auto- straint). The third version also contains an error in the server module.
matic call placement tool) at standard locations such as procedur@ he incorrect procedure is 153 lines long; the error causes a city to
entry and exit points as a routine part of the development processbe placed on an ocean tile (violating the last constraint).

and calls placed at chosen locations by developers as they attempt 623 Experimental Setup

localize a specific error. i . . .
We first presented all of the developers with a FreeCiv tutorial,

6. CASE STUDY which gave them an overview of the purpose and structure of the
rogram, an overview of Archie, and an overview of the FreeCiv
ata structures and their consistency properties.
We gave both the Tool and NoTool populations identical instru-
ented copies of the three incorrect versions of FreeCiv. These
opies contain calls to the Archie consistency checker at the begin-
ing and end of each procedure, with the exception of small proce-
ures like structure field getters and setters and I/O procedures that
nterface with the user or the network. For the NoTool population,
hese calls immediately return without performing any consistency
hecking; for the Tool population, each call uses the Archie speci-
fication to perform a complete consistency check. Consistent with
i the expected usage strategy in Section 5, the Tool developers used
6.1 Developer Population Archie as a black box — they simply compiled the pre-generated

We recruited six developers with relatively homogeneous back-consistency checker into their executables.
grounds: all developers had similar educational backgrounds, all rep- The instrumented versions of FreeCiv contain approximately 750
resented their home Country in international programming Competi_statements that invoke the Archie COnSiStenCy checker. For the Tool
tions while they were in high school, and all are currently students atPopulation, each call (whether it detects an inconsistency or not)
MIT. writes an entry to a log indicating the position in the code from which

We Separated the deve|0pers into two popu|ations: the Tool popu]t was invoked. For this Study, we Conﬁgured FreeCiv to use its auto-
lation, which used Archie during the debugging experiments, and thegame mode in which it plays against itself and set the random num-
NoTool population, which did not use Archie. To control for debug- Per generator seed to a fixed value (to ensure repeatability). In this
ging ability, we assigned each developer a pre-study calibration tasknode, the correct version of the program invokes the checker more
of locating and correcting an error in a heapsort implementation. Wethan 20,000 times when it executes.
ordered the developers by the time required to correct this error; the e asked the developers to attempt to locate and eliminate the er-
times varied between 9 and 32 minutes. We then randomly assigne#Prs in the three incorrect versions. We requested that they spend at
one of the first two, the next two, and the last two developers to theléast one hour on each version and allowed them to spend more time

Tool population, with the others assigned to the NoTool population. if they desired. For the NoTool population, each error manifested it-
2 E Ci self as either an assertion violation (the first two errors) or a segmen-
6. reeCiv tation fault (the last error). For the Tool population, each error mani-
We chose the FreeCiv interactive game program (available at  fested itself as an error message from the Archie consistency checker
http://www.freeciv.org ) as our benchmark software system. The— the consistency checker printed out the violated constraint, the lo-
source code consists of roughly 65,000 lines of C in 142 files. It con-cation of the call to the consistency checker, and an explanation of
tains four modules: a server module, a client module, an Al module,the error provided by the developer of the specification.

and a common module. We have made all of the information required  All of the developers used a Linux workstation (RedHat 8.0 Linux)

Our case study attempts to answer the most basic question on
could ask about Archie’s potential effectiveness: Given a specifica-
tion and a data structure corruption error that causes the data stru%
tures to violate this specification, does Archie help developers lo-
calize and correct the error? To answer this question, we obtaine
a benchmark software system and a population of developers, the
performed a study in which the developers attempted to localize aan
correct errors in the system. By comparing the behavior and effec-,
tiveness of the developers that used Archie with the developers tha
did not, we are able to obtain an indication of how well Archie aided
the error localization and correction process for this class of errors.

to replicate our results available at with two 2.8 GHz Pentium 4 processors and 2 GBytes of RAM. We
http:/iwww.mit.edu/ ~cristic/Archie . provided all of the developers with scripts to compile and run the
6.2.1 Consistency Properties three versions. The developers were able to use any development or

FreeCi intai £ til d ¢ | .ddebugging tool available on this platform. The developers were all
reeLlv maintains a map ol les arranged as a rectanguiar gride, qijiar with this computational environment and comfortable using

Eagh tllef contalnts a tbe{raln vaLgeh(pla[nf, .hllls,dgigan,l (.1efsert, ?tc']t. We observed the developers during the experiment and maintained
and a reference to a bitmap which maintains additional information ;"4 +-iiad record of their actions.

(such as pollution levels) about the tile. Each tile may also contain a .
reference to a city data structure. Our FreeCiv specification consist§-3 The Tool Populatlon
of 199 lines (of which 180 contain structure definitions). This specifi-  Table 2 presents the number of minutes required for each member
cation identifies the following five consistency properties: each gameof the Tool population to locate each error; Table 3 presents the total
must have a single map, each game must have a single grid of tilespumber of minutes required to both locate and correct the error. As
each tile must have a valid terrain value, exactly one tile must pointthese numbers show, the developers were able to locate and correct
to each city, and no city may be located on an ocean tile. the errors quite rapidly.
6.2.2 Incorrect Versions The d_evelope.r_s in this population used Arc_hi_e extensivel_y i_n their
. . . . ebugging activities. They all started by examining the Archie incon-

We l_Jsed ma_nual fau!t |nsert|or_1 to create th_ree incorrect versions Ogistency message. If the message came from a call to the Archie con-
FreeCiv. The first version contains an error in the common module.qjgsency checker at the start of a procedure, they examined the Archie
The incorrect procedure is 14 lines long (after error insertion); the 4 4 find the caller of this procedure and (correctly) attributed the
error causes the program to assign an invalid terrain value to a til ., 1 the caller. If the message came from a call to the Archie con-

(causing the data structur_es to viol_ate the third_ constraint identifiedsistency checker at the end of a procedure, they (once again correctly)
above). The second version contains an error in the server mOdu'eattributed the error to this procedure

The incorrect procedure is 18 lines long and causes two tiles to refer
to the same city (causing the data structures to violate the fourth con-

64



Participant| Error 1 | Error 2 | Error 3 ing the error. But because of the complexity of the program and the
T1 1 2 1 time between the generation of the inconsistency and its manifesta-
T2 2 3 2 tion, they were unable to successfully localize the error within the
T3 5 1 5 amount of time they were willing to spend.
After several days we asked the developers in the NoTool pop-
Table 2: Localization Times (Tool) ulation to attempt to use Archie to localize and correct the errors.
_ Tables 6 and 7 present the localization and correction times, respec-
Participant| Error 1 | Error 2 | Error 3 tively.* As these results show, once the NoTool developers were
T1 9 7 3 given access to Archie, they were able to quickly localize and cor-
T2 8 6 8 rect the errors.
T3 17 7 14
Participant| Error 1 | Error 2 | Error 3
Table 3: Correction Times (Tool) NT1 1 2 -
NT 2 3 2 1
They then examined the message to determine which constraint NT 3 3 1 8

was violated, then examined the code of the procedure containing
the error to find the code responsible for the inconsistency. For the
third error (recall that the procedure containing this error is 153 lines

Table 6: Localization Times (NoTool with Archie)

long) the developers inserted additional calls to the Archie consis- Pa’r\};(_:li)ant Err;r 1 Erré)r 2| Error 3
tency checker to further narrow down the source of the inconsistency. _
Eventually all of the developers found and eliminated the error. mi g j g 169

6.4 The NoTool Population

Table 4 presents the number of minutes required for each member Table 7: Correction Times (NoTool with Archie)
of the NoTool population to locate each error; Table 5 presents the . .
total number of minutes required to both locate and correct the er-6.5  Discussion
ror. A dash (-) indicates that the developers were unable to locate or Error localization was the crucial step for debugging the errors
correct the error; a number in parenthesis after the dash indicates thig our study and Archie’s ability to detect and flag each inconsis-
number of minutes spent on the respective task before giving up. Asency immediately after it was generated was primarily responsible
these tables indicate, only one of the developers was able to locateor the divergent experiences of the two populations. Developers in
and correct an error. Moreover, this correction was somewhat fortu-hoth populations had a clear manifestation of the error and started the
itous: the developer spent the last 15 minutes of his attempt to locatelebugging process by examining the code that produced this mani-
the second error examining the correct version of the procedure thafestation. For the Tool population, Archie produced a manifestation
was modified to contain the third error. When he reexamined thisthat quickly directed each developer to the procedure containing the
procedure during his attempt to locate the third error, he noticed thaincorrect code. Once directed to this procedure, the developers were
the code was different and simply replaced the incorrect version withable to quickly and effectively locate and correct the error.
the correct version that he had examined earlier!

_ Significant Procedure Calls Execution Time (%)
Participant| Error 1 | Error 2 | Error 3 Error 1 12689 15%
NT 1 - - 10 Error 2 579 1%
NT 2 - - - Error 3 4142 8.5%
NT 3 - - -

o ) Table 8: Error to Manifestation Distance
Table 4: Localization Times (NoTool)
Without Archie, the program executed for a substantial period of

Participant| Error 1 | Error 2 | Error 3 time before the data structure inconsistency finally manifested itself
NT 1 -(95) | -(65) 11 as an assertion violation or segmentation fault. Table 8 presents num-
NT 2 -(90) | -(70) | -(60) bers that quantify this distance. The first column presents the number
NT 3 -(70) | -(60) | -(60) of significant procedure calls (this number excludes getter, setter, and

I/0 procedure calls) between each error and its manifestation as an
Table 5: Correction Times (NoTool) assertion violation or segmentation fault; the second column presents

' . . . this distance as a percentage of the running time of the correct ver-
For the first two versions of FreeCiv, the developers in the NoTool _; P g g

population started by examining the code that triggered the assert
violation. For the third version, the developers started their examinas; instead caused distant correct code to fail, misleadingly directing

tion with the code that triggered the segm_entatlon fault_. Once it be'the developer to fruitlessly examine correct code instead of incorrect
came clear to them that the code surrounding the assertion or segmecﬁ/

Moreover, the inconsistency did not cause incorrect code to fail —

) : . . ode as the source of the error. Even though the NoTool population
tation fault was not responsible for the inconsistency, they attempte as able to obtain a reasonably accurate understanding of each error.
to trace the execution backwards to locate the code responsible fO{ '

h During thi h d . t adb heir inability to localize the error (even given their understanding)
the error. During this process, they made extensive use of gdb to Sl e anted them from correcting it. And once the NoTool population
break points and examine the values of the program variables. The

. . ) ' Yvas given access to Archie, they were able to use Archie to quickly
also inserted print statements to track the values of different vanablesémd effectively locate and correct the error

and augmented the program with additional assertions to check var-

ious consistency properties. Our observations indicate that all of the*There are no results for developer NT 1 on error 3 because this de-
developers in this group made meaningful progress towards localizveloper localized and corrected this error in the previous experiment.

65



6.5.1 Comparison With Assertions 6.5.3 Applicability

Our results reveal several limitations of assertions as a debugging Our study indicates that consistency checking in general and Archie
tool. Like Archie, assertions test basic consistency constraints andin particular can help developers locate and eliminate data structure
if a constraint is violated, tell the developer which property was vi- corruption errors that violate the checked consistency property. For
olated and where in the execution the violation was detected. It isthis class of errors, Archie provides the developer with information
therefore not clear that Archie should provide any benefit for a pro-that helps the developer to both localize the bug and understand the
gram whose assertions successfully detect inconsistencies. But in owiolated consistency properties.
study, Archie proved to be substantially more useful to the develop- We believe that Archie is less likely to be useful for finding er-
ers than the assertionsyen though two out of the three data struc- rors that do not result in data structure corruption, although it could
ture inconsistencies manifested themselves as assertion violationstill be useful for ruling out classes of errors. However, from our
There are two (related) reasons for this (counterintuitive) result: 1)experiences we believe that data structure corruption errors are a par-
the assertions in FreeCiv detected the inconsistencies long after theiicularly difficult class to debug, and that Archie should prove useful
generation, and 2) the assertions did not direct the developers to inin practice for this class of errors.
consistencies in the initially corrupted data structures — they instead
directed them to inconsistencies in data structures derived from the6'5'.4 Future Work ) ) )
initially corrupted data structures. _ This §tudy I(_eaves many interesting questions u_ljangwered. In par-

The assertions in FreeCiv, as in many other programs, tend to tedlicular, it provides no indication whether a specification-based ap-
easily available values accessed by the surrounding code. The assdt0ach provides any advantages or suffers from any disadvantages
tions therefore test only partial, local properties of the accessed part§S compared with an approach based on manually developing con-
of the data structure, typically properties that the code containing theSistency checkers in the standard implementation language. We an-
assertion relies on for its correct execution. In particular, if a compu-ticipate that in either case an expert would develop the specifica-
tation reads some data structures and produces others, the assertid#a OF consistency checker, most developers would use the consis-
tend to test the read data structures, not the produced data structur§NCy checker as a black box, and the development of the consistency

It is therefore possible (and even likely) for a program to execute checker would require a small fraction of the overall development
successfully through many assertions after it corrupts its data structime. Potential advantages of the specification-based approach in-
tures. And when an assertion finally catches the inconsistency, thélude reduced development time, a clearer and more explicit iden-
execution may be very far away from the code responsible for thetification of the important consistency properties, and consistency
additional data structures. In our incorrect versions of FreeCliv, for targeted optimizations (such as those discussed in Section 4). It re-
structure, but the assertions detect these inconsistencies only after a A _second area of poten_tlal inquiry concerns the_ frequency, rela-
distant phase attempts to read a data structure derived from the origiive importance, and consistency violation properties of data struc-
nal inconsistent data structure — the intervening phases either do ndiiré corruption errors in practice. Our study leaves open questions
attempt to access this data structure or fail to check for the violated®f Whether data structure corruption errors are an important problem
consistency property. in practice and whether developers are a_lble to produce specifications

Because Archie comprehensively checks all of the consistency prot consistency c_hecker§ that catch the kinds of data structure corrup-
erties, it makes the developer aware of the inconsistency as soon as#ons that occur in practice.
occurs. This immediate notification was crucial to its success in our
study, because (unlike the delayed natification characteristic of the/. RELATED WORK
existing FreeCiv assertions) it immediately directed the developers Error localization and correction has been an important issue ever
to the incorrect code and identified the data structure that it corruptedsince people began to develop software. Researchers have developed
(and not some other derived data structure). a host of dynamic and static debugging tools; a small selection of

6.5.2 Ef‘ficiency recent systems includes [9, 4, 25, 11, 2, 5, 26, 15, 16, 8]. We con-

. ) o . . fine our survey of related work to research in specification languages,
The basic benefit of Archie is to localize each error to the region specification-based testing, and invariant inference systems.

of the execution between the failed consistency check and the im- o
mediately preceding successful consistency check. Itis therefore de7.1 ~ Specification Languages

sirable to perform the consistency checks as frequently as possible The hasic concepts in our specification language (objects and rela-
S0 as to better localize the error. The primary obstacle to frequentjons) are the same as in object modeling languages such as UML [22]
consistency checking is the overhead of executing the checks.  and Alloy [13], and the specification language itself has many of the
The optimizations discussed in Section 4 are therefore crucial toggme concepts and constructs as the constraint languages for these

the successful use of Archie. Without optimization, the consistencyobject modeling languages, which are designed, in part, to be easy
checks increase the FreeCiv execution time from less than a second g, developers to use.

twenty minutes. While this kind of time dilation may be acceptable  standard object modeling approaches have traditionally been used
for errors that would otherwise be very difficult to localize, we would g help developers express and explore high-level design properties.
prefer to enable developers to use Archie routinely during all of their one of the potential benefits of our approach is that it may enable de-
executions. velopers establish a checked connection between the high-level con-

Our optimizations enabled us to provide the developers in Ourcepts in the model and their low-level realization in the data struc-
study with a checker that can execute frequently while maintainingyyres in the program.

an interactive debugging environment. We believe that this level of . . .

efficiency was crucial to the successful use of Archie in our study and /-2~ SPecification-Based Testing

that our optimizations will prove to be at least as important for ob-  Specification-based testing (of which Archie is an instance) tests
taining an acceptable combination of check frequency and responsthe correctness of an execution by determining if it satisfies a speci-
time for other applications. fication written in some specification language. Specification-based

66



testing is usually implemented at the granularity of procedure pre- Symposium on Software Testing and Analysis (IS$B4es 123-133,

conditions and postconditions. ADL [24], JML [14], Testera [18], July 2002. N ‘ ‘
Korat [3], and several Eiffel [19] implementations, to name a few, [4] J.-D. Choi et al. Efficient and precise datarace detection for
implement various forms of this kind of specification-based testing. multithreaded object-oriented programsHroceedings of the

. . . - - SIGPLAN '02 Conference on Program Language Design and
Archie, in contrast, implements a global invariant checker with no Implementation2002.

attc_empt to Ve_rify a_ny property of the execut_ior_] other than the prese_r- [5] M. Das, S. Lerner, and M. Seigle. Path-sensitive program verification
vation of the invariant. Advantages of Archie include reduced speci- in polynomial time, 2002.

fication overhead and complete coverage of the global invariants (in- [6] B. Demsky and M. Rinard. Role-based exploration of object-oriented
stead of checking more targeted properties that are intended to char-  programs. IICSE02 May 2002.

acterize procedure executions); the disadvantage is that it is not in-[7] B. Demsky and M. C. Rinard. Automatic detection and repair of errors
tended to find errors that do not violate the invariant. Our evaluation in data structures. IDOPSLA October 2003.

is that the two kinds of checkers address complementary properties[8] M. Ducass. Coca: An automated debugger for d>faceedings of the

and that both provide valuable checking functionality. 21st International Conference on Software Engineerirgpo.
[9] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race

7.3 Invariant Inference and Checking conditions and deadlocks. BOSP October 2003.
Several research groups have developed systems that dynamically©) (';/il'scDo.vlzrrri]r?t’I}Jke(l:ocllfczell!é;v'ir%a(rsigrs]got?’sﬁndoDrt' Nrgtk:g'mDé’\’/‘;m:gi”)I’n
infer likely invariants or other program properties; the same technol- g 1K€ty prog bport prog :

. . ; International Conference on Software Engineeripgges 213224,
ogy can be easily used to check the inferred properties (or, for that 1999 gineeripgg

matter, any property expressed using the same formalism). Specifig11] s. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for

systems include DAIKON [10], Carrot [21], DIDUCE [12], and au- building system-specific, static analysesPInDI, pages 69-82, 2002.
tomatic role inference [6]. [12] S.Hangal and M. S. Lam. Tracking down software bugs using
An important difference between Archie and these previously ex- automatic anomaly detection. Rroceedings of the 24th International

isting systems is that Archie is designed to check the substantially _ Conference on Software Engineerjipgges 291-301, May 2002.
more sophisticated properties characteristic of complex linked datd3] D: Jackson. Alloy: A lightweight object modelling notation. Technical

e . . Report 797, Laboratory for Computer Science, Massachusetts Institute
structures that must satlsfy important structural constraints. The (|n of Technology, 2000.

our view minimal) overhead is the need to provide a specification [14] G.T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:

of these properties instead of automatically inferring the properties.” * a pehavioral interface specification language for Java. Technical
And in fact, it would be feasible to use automatic property discov- Report 98-06i, lowa State University, 2000.

ery tools to generate Archie consistency constraints or to obtain arf15] R. Lencevicius, U. Hizle, and A. K. Singh. Query-based debugging of
initial set of properties that could be refined to obtain a more precise  object-oriented programs. MOPSLA97October 1997.

specification. [16] B. Lewis. Debugging backwards in time. Rroceedings of the Fifth
International Workshop on Automated Debugging AADEBUG 2003
2002.
8. CON_CL_US_ION o _ [17] B. Liskov and J. Guttag?rogram Development in Java: Abstraction,
Error localization is a necessary prerequisite for correcting soft- Specification, and Object-Oriented Desigxdison-Wesley, 2000.

ware errors and often the primary obstacle. Archie addresses thi§18] D. Marinov and S. Khurshid. TestEra: A novel framework for
problem by accepting a specification of key data structure consis-  automated testing of Java programsPhoceedings of the 16th IEEE
tency properties, then automatically checking that the data structures :\’l‘temzaotbolnm Conference on Automated Software Engineering (ASE)
1 : : oVv. .
satisfy these properties. The Archie checker can help developer?lg] B. Mever Eiffel: The LanquagePrentice Hall New York. NY. 1992
quickly localize data structure corruption errors to the region of the 20 D. Poi);iel: Secénd extengedgﬁle svstem ' D :
execution between two subsequent calls to Archie. [20] hitp://www.nongnu org/extz-docly " Aug 2002
Our' set of optimizations enables the Archl_e compiler to generate 21] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated
checking code that executes more than efficiently enough to enable " faylt localization using potential invariants. Froceedings of the 5th
an effective check frequency and support its routine use in an inter- International Workshop on Automated and Algorithmic Debugging
active debugging environment. Moreover, the results from our case  September 2003.
study indicate that developers can almost immediately use Archie td22] Rational Inc. The unified modeling language.
substantially improve their ability to localize and correct errors in a - gttrl;//vsvwv;/.r::\jt|onall.ccom/un/1l _  Devel
substantial software system. We believe that Archie therefore holdd23] o év:IEe?tironeitnat e ﬁgfg'ggfﬁggg;‘;?:}ﬂ? ;%it?:rghtro?ve opment
out the potential to substantially improve the ability of developers to ;

. . . Association Conference Proceedingstober 1993.
first localize, then correct, data structure corruption errors. [24] S. Sankar and R. Hayes. Specifying and testing software components

using ADL. Technical Report TR-94-23, Sun Microsystems, 1994.
ACknOWIedgementS [25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.

; ; _00- Eraser: A dynamic data race detector for multithreaded programs.
This research was supported in part by DARPA Contract F33615-00 ACM Transactions on Computer Systefrf(4):391-411, 1997.
C-1692, NSF Grant CCR00-86154, NSF Grant CCR00-63513, NSF[ZG] A. Zeller. Isolating cause-effect chains from computer programs. In
Grant CCR00-73513, NSF Grant CCR-0209075, NSF Grant CCR-

Proceedings of the tenth ACM SIGSOFT symposium on Foundations of
0341620, and NSF Grant CCR-0325283, software engineering2002.

9. REFERENCES

[1] Center-tracon automation system.
http://www.ctas.arc.nasa.gov/ .

[2] T.Balland S. K. Rajamani. Automatically validating temporal safety
properties of interface&.ecture Notes in Computer Science
2057:103+, 2001.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates Aroceedings of the International

67



Run Time Monitoring of Reactive System Models

Mikhail Auguston
Naval Postgraduate School
Monterey, CA, USA
auguston@cs.nps.navy.mil

Abstract

In model-based development of reactive systems,
statecharts are widely used for formal design of system
behavior, and provide a sound basis for analysis and
verification tools, as well as for code generation from
system models. We present an approach for dynamic
analysis of reactive systems via run-time verification of
code produced with Statemate C and MicroC code
generators [10], [15]. The core of the approach is
automatic creation of monitoring statecharts from
formulas that specify the system's behavioral properties in
a proposed assertion language. Such monitors are then
translated into code together with the system model, and
executed concurrently with the system code. This
approach leads to a more realistic analysis of reactive
systems, as monitoring is supported in the system's actual
operating environment. For models that include design-
level attributes (division into tasks, etc.), this is crucial for
performance-related checks, and helps to overcome
restrictions inherent in simulation and model checking.

1. Introduction

Development of reliable reactive systems is a
significant challenge, especially due to their complex
behavior. There has been a great deal of research on the
development of formal methods for specification, design,
analysis and verification of reactive systems.

For precise specification of system behavioral
properties, various types of temporal logic are widely
used. These include LTL [14], which offers special
temporal operators for reasoning about past and future
properties of behavioral sequences, and MTL [5], which
supports expression of real-time constraints through
definition of duration for future temporal operators. Some
specification formalisms suggest various kinds of syntax
sugar that make the specification task more user friendly
for designers who are not logicians. For example, with the
LA language in [18], temporal properties look as a
combination of stylized English with C-like expressions.

68

Mark Trakhtenbrot
Academic Institute of Technology
Holon, Israel
ilmarktr@yahoo.com

In [3], the temporal logic details are hidden "behind the
scenes", and instead, patterns are used that allow to specify
common properties (such as existence, absence, response,
precedence, etc.) and scope in which the property should
hold. This approach is used, for example, in a Statemate
verification tool called ModelCertifier [16] that offers a
rich library of pre-defined property patterns, where each
pattern looks as a parameterized natural language
sentence. Paper [6] introduces a language for pattern
definition as a way to create extendable sets of property
patterns. Sugar [19] provides several layers for property
specification and verification; in particular, extended
regular expressions are used to describe execution
sequences on which temporal properties are checked.

On the other hand, model-based system development
has become the way to design, implement and validate
reactive systems. Statecharts, first introduced in [9], have
become a standard for behavior design in popular model-
based methodologies such as structured and object-
oriented design [7]. Various tools (e.g., Statemate [10],
Rhapsody [9], BetterState [20]) support the creation of
executable models using statecharts, and their analysis
through simulation, execution of automatically generated
code, and, in Statemate, verification. Ongoing research on
model-based testing covers, among other issues, test
generation from statechart models [4].

One powerful method of dynamic analysis is run-time
monitoring of system execution. A number of tools have
been developed for monitoring various types of programs
(including real-time systems); see, for example [1], [2],
[18]. The relevant assertion languages allow for
expressing a wide range of properties in terms of events
that occur in the running code, and for defining tool
reactions when a violation is found or when the run was
successful. An important problem here is the gap between
the system specification, which usually refers to high-level
objects, and monitors, which refer to implementation-level
events (such as function calls, etc.). Some issues related to
derivation of monitors from system specification are
considered in [17].



Model-based development leads to a narrowing of this
gap, as monitoring can be performed on the model (rather
than the implementation) level. Statemate [10] supports
the use of the so-called watchdog (testbench) statechart.
Such a chart is not part of the system model; its role is
either that of a driver (acting as an environment and
producing system inputs) or a monitor (watching the
system for proper behavior or abnormalities). To perform
its role, the watchdog is executed in parallel with the
model. Violation of the monitored property can be
expressed and observed as entering an error state in the
monitor chart. For example, Fig. 1 shows a simple
statechart for monitoring the following requirement:
"Processing of a request must be accomplished within 5
seconds, and before receiving the next request".

Foequast Requestor

Wait - * Process Timeout5) | Emor
Procassing_
e Figue 1

An important feature of monitor statecharts is that they
have access to all elements in the system model. In other
words, visibility from the monitor is supported both for
observable elements (events, conditions and data items)
that belong to system's interface with the environment, and
for internal elements such as states or events used for
internal communication between system components. This
allows for both black box and more detailed white box
monitoring, and makes localization of design problems
easier.

2. What is in this paper

This paper presents an approach to dynamic analysis of
reactive systems modeled with statecharts using Statemate.
The basic goal here is to reveal errors (rather than to
validate or show correctness).

The analysis is based on run-time monitoring of code
generated from the system model. The code is checked
against the system specification describing the required
and forbidden behaviors; these are expressed in a proposed
assertion language described below. The main idea
underlying this approach is the automatic creation of
monitors directly from the system specification. This is
achieved through translation of the specification into an
equivalent watchdog statechart(s). This step is followed by
generating code from the system model and from the
created monitor (using the existing Statemate C code
generator), and their simultaneous execution. Appropriate
diagnostics is produced during the execution and/or upon
its completion.

The suggested approach has a number of advantages,
and is especially helpful in situations where the use of

69

other analysis tools (e.g. of model checkers such as
Statemate ModelCertifier [16]) becomes problematic:

- There is no restriction on the size of the tested model,
and execution of compiled code (for model and monitor) is
fast. On the other hand, model checking may become slow
for very large real-world models.

- Generated code for the system and its monitor is
executed in real time. Even though such code is usually
considered prototype quality, it is fast enough and allows
for meaningful checks of time constraints (unless they are
tighter than the code performance). Such checks are
beyond the scope of simulation and model checking tools
that are based on simulated time schemes described in
[12]: synchronous (for clock-driven systems) and
asynchronous (for event-driven systems). In the
synchronous scheme duration of all steps is the same,
regardless of how "heavy" the executed actions are. In the
asynchronous scheme, steps take zero time, and the system
executes a chain of steps until stabilization; only then is
the clock advanced and inputs accepted. These
abstractions are based on the assumption that the system is
fast enough to complete its reactions to external stimuli
before the next stimulus arrives. Real time monitoring
allows one to check whether this assumption is correct.

- Our approach allows monitoring of code generated
from the Statemate model augmented by design attributes
(showing the system division into tasks of various types,
mapping model elements into events of the target RTOS,
etc.). For such models, the MicroC code generator [15]
automatically creates a highly optimized production
quality code for the OSEK operating system, widely used
in the automotive industry for embedded microcontroller
development. Thus the code can be executed and
monitored in its realistic hardware-in-the-loop operating
environment. This kind of analysis is impossible with
model checking.

- Model checking requires that all data be properly
restricted, to guarantee that a finite state model is
analyzed. This requirement is problematic for input data, if
there is not enough information about the system
environment. No such restrictions are relevant for
monitoring, and moreover, monitored code derived from
the system model can be connected to real sources of input
data.

3. Assertion language

To specify and monitor real-time properties of reactive
systems, we use an assertion language that integrates a
number of powerful features found in temporal logic and
in FORMAN language (the latter was introduced in [1],
[2], and is used in a number of tools):

- Boolean expressions can refer to any elements in the
system model, and express properties of system




configurations. For example: in(S) and (x>5) means that
currently the system is in state S and x is greater than 5.

- Regular expressions allow for description of state
sequences. Consider for example, the expression:

[SELECT (Open | Read | Write | Close) FROM ex _program ]
SATISFY Open (Read | Write )* Close

This assertion requires to select execution trace states
matching one of the given patterns, and to check the
sequence of selected states for conformance with the
regular expression.

- Temporal formulas express order properties fulfilled
by system execution sequences. They are built using
unrestricted future temporal operators NEXT, ALWAYS,
EVENTUALLY, UNTIL and their past counterparts:
PREVIOUS, ALWAYS WAS, SOMETIME WAS, SINCE.
Following [14], we consider formulas for the following types of
properties (Where P is a past formula):

Safety: ALWAYS (P)

Guarantee: EVENTUALLY (P)

Obligation: Boolean combination of safety and guarantee

Response: ALWAYS (EVENTUALLY(P) )

Persistence: EVENTUALLY (ALWAYS(P) )

Reactivity: Boolean combination of response and persistence.
According to [14], any temporal formula is equivalent to a
reactivity formula; the other five types of formulas are
allowed for more flexibility. For convenient expression of
real-time constraints, we support also a restricted version of
the above operators; it is obtained by attaching appropriate
time characteristics. For example, ALWAYS(10)P means
that P is continuously true during 10 time units after the
current moment, while SOMETIME WAS (10) P denotes that
P was true at least once in the 10 previous time moments.
With this extension, P in the above formulas is now
allowed to be a restricted (future or past) formula. Note
that we don't allow an unrestricted temporal operator to be
nested within a restricted one.

- Actions define what should be done when a property
violation is found, or when the property holds for the
checked run. Typically, this includes sending an
appropriate message. In general, any user-defined
functions can be used here to provide a meaningful report
that may include, for example, interesting statistics and
other profiling information (frequency of occurrence for
certain event, total time spent by the system in certain
state, etc.). For this, actions can use the appropriate
attributes of the referred objects (e.g., the time at which a
certain interval was entered).

The examples in section 4 illustrate the use of this
assertion language. Since the language is based on
constructs described elsewhere (see [14], [12] and [1]),
detailed description of its syntax and semantics is omitted
from this paper. Nevertheless, one delicate issue should be
mentioned here. System specification usually assumes
infinite execution sequences (as a reactive system has an

70

ongoing interaction with its environment).
Correspondingly, the traditional semantics of temporal
operators is also defined for infinite execution sequences.
However, monitoring usually deals with finite (truncated)
runs, and this requires a proper definition of the semantics
for cases when there is doubt as to what would have been
the property formula value if the execution had not been
stopped. Paper [7] studies several ways of reasoning with
temporal logic on truncated executions. We follow the so
called neutral view discussed in [7]; this is illustrated by
the following example. Consider the assertions:

ALWAYS (P = EVENTUALLY (10) O)
ALWAYS (P = ALWAYS (10) Q)

and suppose that the run is completed (truncated) 4
seconds after the last occurrence of event P (we assume
that each of the properties held for all earlier occurrences
of P). If there was no Q after the last P, then the first
assertion is considered to be false for this run (even though
continuation of the run could reveal that O does occur in
10 seconds after P, as required). On the contrary, if O held
continuously after the last P and until the end of the run,
then the second assertion is considered to be true. In
general, it is the user's responsibility to make the on-satisfy
and on-failure actions detailed enough, so that he can
better understand the monitoring results (e.g. whether a
real violation was found, or it is in doubt due to the state at
which the execution was truncated).

4. Examples

To illustrate our approach, we consider the Early
Warning System (EWS) example from [12]. We present
its verbal description followed by the statechart presenting
the behavioral design of the system. We then give
examples of assertions and, for one of them, show its
translation into a monitor statechart according to our
translation scheme.

The EWS receives a signal from an external source.
When the sensor is connected, the EWS performs signal
sampling every 5 seconds; it processes the sampled signal
and checks whether the resulting value is within a
specified range. If the value is out of range, the system
issues a warning message on the operator display. If the
operator does not respond to this warning within a given
time interval (15 seconds), the system prints a fault
message and stops monitoring the signal. The range limits
are set by the operator. The system is ready to start
monitoring the signal only after the range limits are set.
The limits can be redefined after an out-of-range situation
has been detected, or after the operator has deliberately
stopped the monitoring.

Fig. 2 shows a statechart describing the EWS, similar
to the one in [12]. The main part of EWS behavior is



detailed in state ON. It contains two AND-components that
represent the EWS controller and the sensor acting
concurrently. Events DO _SET UP, EXECUTE, and RESET
represent the commands that can be issued by the operator.
Timing requirements are represented by delays that trigger
the corresponding transitions. The AND-components can
communicate; for example, see event CONNECT OFF sent
from the controller component to the sensor component.
Following are four examples of assertions that reflect
some of the above requirements for EWS:
1) ALWAYS (EXECUTE = SOMETIME WAS (DO_SET UP))

(monitoring of signal should be preceded by setting range
limits)
2) ALWAYS (OUT OF RANGE -

EVENTUALLY (15) (RESET or started(PRINT _ALARM))

(in the out-of-range situation, within 15 seconds either the
operator responds or a fault message is printed)

3) ALWAYS (
ALWAYS_WAS (15) (in(DISPLAY ALARM) & not RESET)
> started(PRINT ALARM))

(a similar property, this time expressed using the past
temporal operator)

4) ALWAYS (FINISHED SAMPLING >
ALWAYS (5) in(IDLE) or EVENTUALLY(5)CONNECT _OFF)

(after signal sampling is finished, there is a 5-second pause
before the next sampling, unless the sensor is
disconnected)

Note that the first assertion is violated for the given
statechart; this happens in the following scenario:
POWER_ON; CONNECT ON; EXECUTE. The other
assertions are valid as long as the system remains in its ON
state (i.e., POWER_OFF doesn't occur), but otherwise can
be violated.

Fig. 3 shows how the second of these four assertions is
translated into a monitor statechart. Suppose POWER _OFF
occurs 7 seconds after OUT OF RANGE, and there was no
RESET in this interval. If the system remains in state OFF
for at least the following 8 seconds, then the monitor will
enter its state D, thus indicating a violation of the
monitored assertion.

5. Implementation Outline

Statemate Boolean expressions obtained from basic
predicates (like in(DISPLAY _ALARM)), guarding conditions,
and event occurrences are directly visible from monitor
statechart; in this sense, their monitoring is trivial. In
monitors created to watch temporal and timing properties,
such expressions can be used as transition triggers, similar
to the example in Fig.1.

71

In the rest of this section, we present an outline of a
translation scheme for restricted and unrestricted temporal
formulas allowed by our assertion language (see section 3
above). Though not fully formalized here, the presentation
clearly shows the technique used for generation of
monitors from assertions.

Let P, O, S denote basic Boolean formulas, which do
not contain any temporal operators, and let FRM denote
any formula.

Then P 2 Q means that P is used as a trigger to start
monitoring of formula Q; for each occurrence of P, a new
thread of Q monitoring should be started. Absence of the
trigger (P> ...) means that the start of execution is the
only trigger event.

If a formula includes only restricted future temporal
operators, like in

FRM = P 2 TL Operator (N1) TL_Operator (N2) ....
TL Operator (Nk) S
then its value becomes known after (i.e. it needs to be
monitored during), at most, #FRM) = NI + N2 + ... + Nk
time units from the triggering event P. For example:

P> ALWAYS(5) EVENTUALLY(10) S

is monitored during, at most, 15 time units from the
triggering event P. For each step within the monitoring
interval we have to know the Boolean values of all basic
sub-formulas in the FRM. This is sufficient to determine,
after #(FRM) time units, whether FRM is true or false for the
particular occurrence of the trigger event P.

Every restricted future formula is translated into a chart
containing two designated states: accepting state F, and
rejecting state D; there are no transitions exiting from F
and D in such a chart. The value of the formula is true
when computation ends in F, and false when it ends in D.
If execution of the monitored system is truncated before
completion of the formula computation, then (in the spirit
of the neutral view as defined in [7]) the value is decided
to be true for the ALWAYS-formula and false for the
EVENTUALLY-formula.

As an illustration, Fig. 4 schematically shows the
translation pattern for FRM=ALWAYS (N) P, where P itself
is either a basic or a restricted future formula. Translation
is defined by structured induction, starting from the case
when P is a basic formula. Note that each advance of the
clock by one time unit causes a new thread of computation
for P to be started. Each thread is represented in the chart
by a separate AND-component; there are N such
components. This number is known based on an analysis
of the translated formula.

Fig. 5 shows a translation pattern for a safety assertion
where the unrestricted operator ALWAYS is applied to the
restricted formula P (the actual structure of state P in each
thread is defined by translation rules for restricted
formulas). In this case, as long as P holds the value true,



we should continue the ongoing computation of P.
Whenever the monitor enters its D state, the value of the
formula becomes false; otherwise (including the case of
truncated execution), the value is true. Note that since
obtaining a value of P may require up to #P) time units,
there are #(P) threads computing P. When a cycle of P
computation is completed with the value true (the
component reaches its F state), it is restarted again. Also
note the delays: RESTART P i is defined in such a way that
with each advance of the clock by one time unit, a new
cycle of P computation is started. Restarting P
immediately upon its completion in state £ would have
caused a violation of such synchronization in case a
certain cycle takes less time than #P). This, in turn, could
lead to wrong computation of the entire formula.

To implement EVENTUALLY (ALWAYS(P)), we have to
restart computation of ALWAYS(P) whenever it gets the
value false, i.e., when the chart in Fig. 5 enters state D (at
the top level of the hierarchy). In other words, such
implementation can be obtained by redirecting the
transition from D back to the AND-state.

Implementation of dual formulas (where ALWAYS is
replaced by EVENTUALLY and vice versa) is similar to the
described above, with appropriate replacement of F-states
by D-states and vice versa.

For restricted past formulas we need to monitor only
the finite segment of the execution in order to decide
whether the formula is true or false. Consider, for
example, ALWAYS WAS (N) P which means "during N time
units preceding the current moment, P was continuously
true". Implementation uses a counter CP associated with
the formula; on each advance of the clock, if P is true then
CP is incremented, and if P is false then CP is set to 0.
Now ALWAYS WAS (N) P is true at the current moment, iff
CP=N.

Similarly, for SOMETIME WAS (N) P that means "from
the current moment in at least N previous steps P was true
at least once", the implementation will use the counter CP
in the following way: On each advance of the clock, if P is
true then CP is set to N, and if P is false then CP is
decremented by 1. Now, SOMETIME WAS (N) P is true at
the current moment, iff CP > 0 at the current moment.

6. Conclusions and future work

The paper presents an approach to dynamic analysis of
reactive systems via run-time verification of code
generated from Statemate models. The approach is based
on the automatic creation of monitoring statecharts from
formulas that specify the system's temporal and real-time
properties in a proposed assertion language. The
promising advantage of this approach is in its ability to
analyze realistic models (with attributes reflecting the
various design decisions) in the system's realistic

72

environment. This capability is beyond the scope of
simulation and model checking tools.

Several experiments have been carried out, that
included manual creation of monitor charts from assertion
formulas and their use with C code generated from
Statemate models (EWS considered in section 4, and some
others). This helped in a more accurate definition of the
translation scheme.

The natural next step is actual implementation of the
translation from the assertion language into statechart
monitors, which is the core of the suggested approach, and
use of created monitors with real-world system models.

The assertion language needs to be more convenient
for designers. A possible way to achieve this is to adopt
some of the ideas discussed in [3], [6], [18], [19]. This will
require an appropriate adaptation of the translation
scheme.

The system described above for statechart run time
monitoring is under development. The suggested
translation scheme provides a uniform mechanism for
automatic creation of monitors, although some examples
show that, in certain cases, more compact and optimized
monitors can be produced. Further research is needed to
define a more efficient translation scheme, both for
synchronous and asynchronous time models.

Finally, an interesting challenge is to check a similar
approach with a UML-based design paradigm that uses an
OO version of statecharts for behavior description. Here
an additional advantage could be in monitoring of systems
where objects are created dynamically such that their
amount is not limited in advance (model checking analysis
of such systems is clearly problematic).

7. Acknowledgements

This work has been supported in part by the U.S.
Office of Naval Research Grant # N00014-01-1-0746.

8. References
[1] M. Auguston, Program Behavior Model Based on Event
Grammar and its Application for Debugging Automation,
2nd Int’l Workshop on Automated and Algorithmic
Debugging, AADEBUG'95, May 1995, pp. 277-291.

M. Auguston, A. Gates, M. Lujan, Defining a Program
Behavior Model for Dynamic Analyzers, 9th International
Conference on Software Engineering and Knowledge
Engineering, SEKE'97, June 1997, pp. 257-262.

G.S. Avrunin, J. C. Corbett, and M. B. Dwyer, Property
Specification Patterns for Finite-State Verification, 2nd
Workshop on Formal Methods in Software Practice, March
1998, pp.7-15.

(2]



[4] K.Bogdanov, M.Holcombe, H.Singh. Automated Test Set
Generation for Statecharts. In D. Hutter, W. Stephan, P.
Traverso and M. Ullmann, editors, Applied Formal Methods
- FM-Trends 98, LNCS, v.1641, Springer Verlag, 1999, pp.
107-121.

E.S. Chang, Z.Manna, and A.Pnueli. Compositional

Verification of Real-time Systems. In Proceedings of the 9th

IEEE Symposium Logic in Computer Science (LICS 1994),

IEEE Computer Society Press, 1994, pp. 458-465.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, Robby. A Language

Framework for Expressing Checkable Properties of

Dynamic Software. In Proceedings of the 7th International

SPIN Workshop on SPIN Model Checking and Software

Verification, LNCS, v.1885, Springer-Verlag, 2000, p.205-

223.

B. P. Douglass, D. Harel and M. Trakhtenbrot. Statecharts

in Use: Structured Analysis and Object-Orientation.

Lectures on Embedded Systems (F. Vaandrager and G.

Rozenberg, eds.), LNCS, v.1494, Springer-Verlag, 1998, pp.

368-394.

C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. Mclsaac, D.

Van Campenhout. Reasoning with Temporal Logic on

Truncated Paths, In Proceedings of 15th Computer-Aided

Verification conference (CAV'O3), LNCS, v.2725, Springer-

Verlag , July 2003, pp.27-39,

E. Gery, D. Harel and E. Palatchi. Rhapsody: A Complete

Lifecycle Model-Based Development System, In Proc. 3rd

Int. Conference on Integrated Formal Methods, IFM 2002,

pp-1-10.

[10] D.Harel. Statecharts: A Visual Formalism for Complex
Systems, Science of Computer Programming, 8, 1987, pp.
231-274.

[11] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtul-Trauring and M. Trakhtenbrot.

(5]

(6]

(7]

(8]

(9]

73

STATEMATE: A Working Environment for the
Development of Complex Reactive Systems, IEEE Trans.
on Software Engineering 16:4 (1990), pp.403-414.

[12] D. Harel and A. Naamad. The STATEMATE Semantics of
Statecharts. ACM Trans. on Software Engineering Method.
5:4 (1996), pp.293-333.

[13] D.Harel, and M.Politi, Modeling Reactive Systems with
Statecharts: The STATEMATE Approach McGraw-Hill,
1998

[14] Z.Manna and A.Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1991.

[15] M.Thanne and R.Yerushalmi. Experience with an Advanced
Design Flow with OSEK Compliant Code Generation for
Automotive ECU's. Dedicated Systems Magazine, Special
Issue on Development Methodologies & Tools, pp. 6-11,
2001

[16] OSC — Embedded Systems AG. Statemate ModelCertifier.
http://www.osc-es.de/products/en/modelcertifier.php

[17] D.Richardson, S.Leif Aha, T.Owen O'Malley. Specification-
based Test Oracles for Reactive Systems, In Proc.
Fourteens Intl. Conf. on Software Engineering, Melbourne,
1992, pp.105-118.

[18] O.Strichman, R.Goldring. The 'Logic Assurance (LA)'
System - A Tool for Testing and Controlling Real-Time
Systems, In Proceedings of the 8th Israeli Conference on
Computer Systems and Software Engineering, 1997, pp.47-
56.

[19] L.Beer, S.Ben-David, C.Eisner, D.Fisman, A. Gringauze and
Y.Rodeh. The Temporal Logic Sugar. In /ntl. Conference on
Computer Aided Verification (CAV'01), LNCS, v.2102, July
2001, pp.363-367.

[20] Wind River Systems, Inc. BetterState

http://www.windriver.com/products/betterstate/index.html



o\ in(DISCONNECTED)] \
EXECUTE [in(CONNECTED)]
IDLE e g
Y COMPARING
DO SET
SET_UF dly(15) s OUT_OF_RANGE
POWER_ON s¥!(Pl{INT_ALARM) A
OFF |, | N g /cONNECT_OFF | RISPLAVING_
POWER_OFF
SETTING_UP
\ ~ CONNECTED
\_CONNECT ON . diyG) i
DISCONNECTED|, ‘ WAIT | | SAMPLING
/ CONNECT_OFF SAMPLING_DONE
Figure 2. Statechart for Early Warning System
' COMP1 ~, comp2 N
- | WAIT_START

.

1

- )
 OUT_OF_RANGE /
_4'_' start_ COMP2

l start CORMP2

- — RESET or

-

[ IDLE
o

Al (s) -

in(C OMP1.F) and
in (COMP2.D)

p, . stanted(PRINT ALARNM)
[
&
rlll

—

"—— pae = w
in(C OMPL.F) and D
in (COMP2.F)

Figure 3. Monitor chart for the assertion

ALWAYS (OUT_OF_RANGE 2> EVENTUALLY (15) (RESET or started(PRINT_ALARM)))

74




P a is basic formula

P contains only restricted temporal operators

¢ /RES:=false

o
\/RES:=false
dly (N) /

RES:=true’

= 0| |

0\

IDLE

IDLE ]

§
’ ™
l IDLE l
ﬂ sty (@)
A

dly (N)

dly(2)
A

A 4

oificle

==
) [

.

T
1
1
1
1
1
1
1
1
1
I
I
1
1
1
1
1
1
1
1

Maximum ttme needed to compute value
of formula F.

H(FRM) =N

Computation may finish in less than N time units

All components
v are in F

L= )

/ RES:=true

At least one component
is in D / RES:=false

A4
Lo ]

Maximum time needed to compute value of formula FRM:

#(FRM) =

N+P)

Figure 4. Translation patterns for formula ALWAYS (N) P

P is a resticted formula: ¢t(P) = N
o ~J\RES:=false
\\v 3\
COMP_0 coMp_1 COMP_2 COMP_N

/T0:= .xv .\v *——

URR TIME I IDLE I IDLE ] [ IDLE ]
F dly(1)/ dly(2)/
T1Y=CURR_TT :=CURR_T dly () /

'S \

=

B

RESTART P 0/
RES:=tTue

|F| D

RESTART P 1/
RES :=tTue

p
=) [

RESTART P 2/
RES :=tTrue

TN:=CURR_TI

y

Gjic

RESTART P N/
RES:=tTrue

T
1
1
1
1
1
1
1
1
1
I
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
|

‘ At least one

RESTART P_i=dly(N - mod(CURR_TIME-Ti, N))

component is in D /
RES:=false

Figure 5. Translation pattern for formula ALWAYS P






