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With the advancement of genome-wide monitoring technologies, molecular expression data have become
widely used for diagnosing cancer through tumor or blood samples. When mining molecular signature data,
the process of comparing samples through an adaptive distance function is fundamental but difficult, as
such data sets are normally heterogeneous and high dimensional. In this paper, we present kernelized
information-theoretic metric learning (KITML) algorithms that optimize a distance function to tackle the
cancer diagnosis problem and scale to high dimensionality. By learning a nonlinear transformation in the
input space implicitly through kernelization, KITML permits efficient optimization, low storage, and im-
proved learning of distance metric. We propose two novel applications of KITML for diagnosing cancer using
high-dimensional molecular profiling data. (1) For sample-level cancer diagnosis, the learned metric is used
to improve the performance of k-nearest neighbor classification. (2) For estimating the severity level or stage
of a group of samples, we propose a novel set-based ranking approach to extend KITML. For the sample-level
cancer classification task, we have evaluated on fourteen cancer gene microarray data sets and compared
with eight other state-of-the-art approaches. The results show that our approach achieves the best overall
performance for the task of molecular expression driven cancer sample diagnosis. For the group-level cancer
stage estimation, we test the proposed set-KITML approach using three multi-stage cancer microarray data
sets, and correctly estimated the stages of sample groups for all three studies.

Categories and Subject Descriptors: 10010147.10010257.10010321 [Computing methodologies]: Machine
learning algorithms; 10010147.10010257.10010258.10010259.10010263 [Computing methodologies]: Su-
pervised learning by classification; 10010405.10010444.10010450 [Applied computing]: Bioinformatics

General Terms: Algorithms

Additional Key Words and Phrases: Metric Learning; Cancer Diagnosis; High-Dimensional Data

1. BACKGROUND AND MOTIVATION
Modern molecular profiling technologies have enabled researchers to query the ex-
pression values of thousands of genes simultaneously. Information derived from such
genome-wide molecular profiling is important for the identification of cancer tumor
types in patient samples [Ramaswamy et al. 2002]. In this paper, we focus on the
task of cancer diagnosis based on the molecular signatures of patient samples like
those from microarray. Recent advancements in monitoring of gene expression have
enabled researchers to obtain enormous amounts of data across most common cancer
types [Cancer Genome Atlas Research Network et al. 2011; 2012; 2013]. An important
emerging medical application for molecular profiling technologies is in clinical decision
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support systems for diagnosing the existence of certain cancers as well as estimating
of the severity levels or cancer stages of patient samples [Statnikov et al. 2005].

Machine learning techniques such as classification and clustering have been used
for analysis and interpretation of data obtained from molecular profiling measure-
ments [Statnikov et al. 2005; Cancer Genome Atlas Research Network et al. 2012].
These data are characterized by a very high number of measured variables (m genes)
over a relatively small number of (n samples). The number of genes in a single sample
is typically in the thousands and the number of samples is typically in the hundreds,
so the number of feature variables (genes) greatly exceeds the number of samples.
This data situation (m >> n) is referred as “high dimensionality” [Hastie et al. 2003]
and makes machine learning quite challenging. Recent studies have tried to tackle the
“high-dimensionality” issue when predicting the existence of cancer using molecular
expressions, for example, through sparse-learning based approaches [Cawley and Tal-
bot 2006]. As molecular signature data become available for more and more patient
samples, e.g. from the national project The Cancer Genome Atlas (TCGA) [Hudson
et al. 2010], measuring the similarity among patient samples grows to be a critical and
necessary module for mining such signature data. For instance, such similarity mea-
sure could be used for molecular signature-based retrieval of similar cancer patient
cases for a target. Therefore relying on molecular profiling data, we aim to design an
accurate cancer diagnosis system that is able to provide good assessments of patient
similarity as well. Previous studies [Cawley and Talbot 2006; Cancer Genome Atlas
Research Network et al. 2012] were not able to fully address such needs, especially
when having the “curse-of-dimensionality” [Hastie et al. 2003] issue in place.

In this paper, we extend a family of “distance metric learning” – “Information-
Theoretic Metric learning” [Kulis 2013] – for achieving the above goal. Having been
studied over the past few years [Xing et al. 2003; Kulis 2013], distance metric learn-
ing was recently applied to practical areas such as image recognition [Kulis 2013]
and information retrieval [Ying and Li 2012]. This paper presents two novel exten-
sions of metric learning on the tasks of sample-level cancer diagnosis and group-
level stage diagnosis. The intrinsic data issue of “small sample, large feature” is ad-
dressed through “kernelizing” the learned metric from ITML method–i.e. Kernelized
Information-Theoretic Metric Learning (KITML).

Our approach has the following advantages:

— KNN algorithm with learned distance metric from KITML achieves better classifi-
cation performance, for sample-level cancer classification using molecular features,
than other state-of-the-art approaches (see Section 5.1.2).

— Designed to deal with high-dimensional data, KITML needs only to estimate O(n2)
parameters which are much smaller than the O(m2) parameters required for most
other metric learning algorithms.

— The learned metric can be used to find similar patient cases for a target patient
case using nearest neighbor search, which provides a great tool for physicians when
designing relevant prognosis or treatment plans.

The rest of this paper is organized as follows: Section 2 introduces the KITML algo-
rithms under the cancer diagnosis setting. Section 3 discusses related research. Sec-
tion 4 describes our experimental design and Section 5 shows performance evaluations.
The last section states our conclusion.
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2. KERNELIZED INFORMATION-THEORETIC METRIC LEARNING (KITML) FOR
HIGH-DIMENSIONAL MOLECULAR EXPRESSION DATA

The methods we present in this paper belong to the family of “distance metric learn-
ing” algorithms that learn a distance metric when given a set of n training samples
x1, , . . . ,xn in which each xi ∈ Rm is a data vector of m features.

2.1. Basic Distance Metric Learning
Metric learning methods try to learn a Mahalanobis distance defined in Equation 1,
where A is a positive semi-definite m by m matrix of parameters learned from data.
The learning process usually relies on pairwise constraints between sample points as
training signals: (1) equivalent constraints (Equation 2), which state that a given pair
of data points are semantically similar and should be close together in the learned
metric; and (2) inequivalent constraints (Equation 3), which indicate that the given
pairs of samples are semantically dissimilar and should not be close together in the
learned metric [Yang 2006].

dA(xi,xj) =
√

(xi − xj)TA(xi − xj) (1)

S = {(xi,xj)|xi and xj are similar} (2)

D = {(xi,xj)|xi and xj are dissimilar} (3)

A seminal formulation of distance metric learning [Xing et al. 2003] converts the
above constraints to a convex programming task to learn the parameter matrix A:

min
A∈Rm×m

∑
xi,xj∈S

dA(xi,xj) (4)

s.t.
∑

xi,xj∈D

dA(xi,xj) ≥ 1, and A � 0.

The positive semi-definite constraint A � 0 is required to guarantee that the learned
distance between any two points (parameterized by A) cannot be negative and satisfies
the triangle inequality.

2.2. Kullback-Leibler (KL) Divergence and Connecting to Gaussian Distribution
Given a distance metric parameterized by A, a corresponding multivariate Gaussian
distribution can be expressed for describing samples (assuming x has been centered)
where A−1 is the covariance matrix of the distribution , i.e.,

Pr(x|A) = 1

(2π)m/2|A|1/2
exp(−1

2
xTA−1x). (5)

Considering the Euclidean distance (i.e., distance metric with identity matrix A0 = I)
works well as a baseline empirically, we regularize the learned metric matrix A with
A0. Probabilistically, this serves to minimize the distance between the two correspond-
ing Gaussian distributions, denoted by Pr(x|A) and Pr(x|A0). Typically, Kullback-
Leibler (KL) divergence [Kullback and Leibler 1951] is used to measure the distance
between two distributions, thus the distance between Pr(x|A) and Pr(x|A0) is given
by,

d(A0||A) = KL(Pr(x|A0)||Pr(x|A))

=

∫
Pr(x|A0) log

Pr(x|A0)

Pr(x|A)
dx. (6)
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Then the log determinate (LogDet) formulation is used to simplify the d(A0||A) in a
closed form:

d(A0||A) =
1

2
(tr(A−1A0) + log|A| − log|A0| −m), (7)

where m is the dimensionality of the data. The proof of Equation 7 is in Appendix A.

2.3. Information-Theoretic Metric Learning (ITML)
Based on the above formulation, Davis et. al. proposed ITML [Davis et al. 2007;
Davis et al. ] to tackle metric learning by minimizing the LogDet divergence (Equa-
tion 7) along with side constraints (equivalent or inequivalent). The constraints used
in ITML are similar to those described in Section 2.1, in which for two similar sam-
ples, their learned distance is constrained to be smaller than a given upper bound,
i.e., dA(xi,xj) ≤ u for a hyperparameter u, and, for two samples that are known to
be dissimilar, dA(xi,xj) ≥ l for a hyperparameter l. The objective is to learn a dis-
tance metric parameterized by parameter matrix A. To solve this optimization, ITML
uses the so-called Bregman projections (also called Bregmans algorithm) for solving a
strictly convex optimization with respect to multiple linear inequality constraints. Us-
ing this simple first-order technique developed in [Bregman 1967], ITML repeatedly
computes Bregman projections of the current solution onto a single constraint via the
following update

At+1 = At + βAt(xi − xj)(xi − xj)
TAt, (8)

where A0 is chosen as the identity matrix I and β is the projection parameter (La-
grange multiplier) corresponding to the current constraint. It is positive for similar
pairs and negative for dissimilar pairs.

2.4. Kernelized Information-Theoretic Metric Learning (KITML) for High-Dimensional Data
When given a data set X = [x1,x2, . . . ,xn], where each xi ∈ Rm, ITML will learn a dis-
tance metric parameterized by a m ×m matrix A. If the dataset is high-dimensional,
e.g., m is relatively large in gene microarray data sets, ITML needs to estimate
m2 parameters in A which is not ideal when the sample size n is small. To adapt
ITML for datasets with n � m, we employ the kernel trick and present the Ker-
nelized Information-Theoretic Metric Learning (KITML) for learning a kernel matrix
K = XTAX. Under this formulation, we only need to estimate n×n parameters in the
matrix K which is much smaller than m×m parameters in the original A matrix. The
distance between two points based on K can be denoted as

dA(xi,xj)
2 = (ei − ej)

TK(ei − ej), (9)

where ei and ej are the unit basis vectors in which only the entry i or j is 1 and the
rest are 0.

The optimization problem is to search for K that satisfies the similar/dissimilar side
constraints as well as minimizing the KL divergence. Similarly, A0 is transformed to
kernelized K0 = XTA0X for the regularization distribution.

min
A

d(K0||K) (10)

s.t. (ei − ej)
TK(ei − ej) ≤ u, (i, j) ∈ S,

(ei − ej)
TK(ei − ej) ≥ l, (i, j) ∈ D,

K � 0.

The hyperparameters, upper bound u and lower bound l are determined by the dis-
tribution of the data. In this paper, l and u are the 5th and 95th percentiles of the
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observed distribution of distances between pairs of samples within each data set. The
optimization is again solved through Bregman projections [Bregman 1967], where in
each iteration, a constraint (i, j) ∈ S or (i, j) ∈ D is picked to update the matrix K. The
Bregman projection update is similar to Equation 8 and can be denoted as,

Kt+1 = Kt + βKt(ei − ej)(ei − ej)
TKt, (11)

where K0 = XTA0X = XT IX = XTX and β is the same as that in Equation 8.

2.5. Calculating Distance using KITML on Samples with High-Dimensional Features
The kernel matrix K learned above is about the n training samples. During the

testing phase, we need to calculate distances among points that might not be covered
by the kernel K, thus, we can not use Equation 9 directly. Through derivation and a
theorem from [Kulis 2013], we can conclude that A can be constructed in a closed-form
from K as following,

A = αI +XTXT , (12)

where T = K−10 (K − αK0)K
−1
0 , (13)

Here α is suggested to take the value 1 in [Kulis 2013] and K0 = XTX since we use a
Euclidean distance as prior distance function. Therefore, we can calculate the distance
between any two “high-dimensional” sample points using an implicit representation of
A through kernel evaluation, as follows:

dA(x
?
i ,x

?
j)

2 = (x?
i − x?

j)
TA(x?

i − x?
j) (14)

= (x?
i − x?

j)
T (I +XTXT )(x?

i − x?
j)

= (x?
i − x?

j)
T (x?

i − x?
j) + (x?

i − x?
j)

TXTXT (x?
i − x?

j)

= (x?
i − x?

j)
T (x?

i − x?
j)

+(x?
i − x?

j)
TX(K−10 (K − αK0)K

−1
0 )XT (x?

i − x?
j).

where matrix X with size m ∗ n describes the training set, x?
i and x?

j are two testing
samples whose distance is under interest. Clearly instead of learning m2 parameters
in A, only n2 parameters need to be learned by using the kernel formulation K.

Figure 1 provides a flow chart about how we adapt KITML on two applications for
cancer diagnosis using high-dimensional molecular profiling data.

As mentioned in Section 1, one important emerging medical applications for molecu-
lar profiling technologies such as microarray or RNA-Sequencing is in clinical decision
support systems. Possible tasks include (but are not limit to) diagnosing the existence
of certain cancers, estimating the severity levels or cancer stages of patient samples,
estimating the degree of effectiveness from certain treatments, or searching for similar
patient cases for a target patient. All of these tasks may be handled through nearest-
neighbor (NN) based learning strategies and are very easy to interpret (since biomed-
field favors models that are straightforward and easy to understand). For such NN-
based systems, learning effective distance metrics is therefore critical for providing
useful tools to physicians and researchers to help them design relevant prognosis or
treatment plans. Owing to the availability of current relevant datasets, this paper just
shows two sample cases of adapting KITML on cancer diagnosis applications using
molecular signature features. Considering the rapidly-growing biomedical data, the
proposed computational framework will grow to become more crucial, especially for
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Fig. 1. A flow chart for KITML in two applications for cancer diagnosis using high-dimensional molecular
profiling data.

modern healthcare systems where searching or retrieving similar patients, disease,
symptoms or treatments are key functions.

On “high dimensional” (m >> n) samples, KITML provides several major computa-
tional advantages over ITML and many other non-kernelized metric learning methods,
(1) Parameter storage: KITML only needs to learn and store O(n2) parameters

which is much smaller than the O(m2) parameters required by ITML metric learn-
ing;

(2) Optimization complexity: Assuming the max-number of side constraints is c,
Equation 11 repeatedly computes Bregman projections of the current solution onto
a single constraint which means optimizing Equation 11 for K will be run c times.
Therefore the time complexity for KITML optimization is O(cn3) (matrix computa-
tion O(n3)), while it is O(cm3) for ITML (Equation 8).

In summary KITML permits efficient optimization and lower storage need in learning
through Equation 11. Equation 13 and Equation 14 make the evaluation of the learned
distance metric (i.e., calculating distances) efficient as well.

2.6. Sample-Level Cancer Classification with KNN KITML
K-Nearest Neighbor (KNN) classification is a natural candidate for using the distance
metric we have just learned from KITML for predicting the existence of certain cancers
in patent samples. For high-dimensional molecular signature data, when using met-
rics like Euclidean distance, KNN is often inferior to more sophisticated approaches
such as Support Vector Machines. In this paper, we use KITML to actively learn a dis-
tance metric to improve the performance of KNN driven cancer classification. KITML
also reduces the heavy computation burden of distance metric learning through ker-
nelization. The process works as following:

(1) Use cross validation to find the optimal number of nearest neighbors, k, based on
training samples.

(2) Compute the distances of a test sample xi to the labeled training samples yi using
Equation 14.

(3) Order the training samples by increasing distances from the test sample.
(4) Use majority vote or inverse distance weighted average based on k nearest neigh-

bors to determine the class of the test sample xi.
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Fig. 2. Problem definition: the severity levels of positive control group G+ and negative control groupG−

are known. The severity level y?i of an unknown sample group G?
i is estimated based on its learned distances

to the two controls.

2.7. Group-Level Severity / Stage Estimation with Set-Ranking KITML
Another important task for molecular profiling based cancer diagnosis is the ability
to further quantify/classify blood or tumor samples into subtypes which have distinct
biomedical properties and result in varied prognoses. For instance, samples of “blood
cancers”– Diffuse Large B-Cell Lymphomas (DLBCLs)–are indistinguishable based on
histological methods yet are clinically heterogeneous: some patients respond well and
exhibit prolonged survival while others do not [Alizadeh et al. 2000a]. It has been
shown that utilizing expression profiling techniques to stratify DLBCL to two sub-
types is necessary [Alizadeh et al. 2000a]. Researchers have developed expert based
diagnostic scores for tracking disease states and predicting clinical outcomes [Birkner
et al. 2007]. However, the process is time consuming and expensive [Birkner et al.
2007]. For most cases of disease severity/stage estimation in practice, the reference
data normally include only positive (e.g. most severe disease state) and negative con-
trols (e.g. least severe disease state) since in many experiments such as blood assay or
clinical trials only positive and negative controls were labeled to verify the success of
their experiments.

Therefore, we feel it is important to design more advanced computational methods
for categorizing subtypes of cancer samples using molecular expression data. Here we
propose a set-based ranking method using metrics learned from KITML for severity
estimation. Normally given a data set with multiple sample groups associated with
different severity levels of a type of cancer, we assume that the positive and negative
control groups’ severity levels are known. The goal is to estimate the severity levels of
unknown sample groups based on their relationship to the known control groups.

The schematic definition of set-KITML is illustrated in Figure 2. When analyzing
a set of sample groups corresponding to a range of severity levels, it is natural to
think that one can calculate the distances between samples with unknown severity to
samples with known severity, in order to estimate the unknown severity. The basic idea
of set-based KITML is maximizing the distances between dissimilar sample groups,
and minimizing the distances between samples in the same group or among similar
groups. The learned metric based on positive control and negative control should give
a maximum distance d(G+, G−) between these two controls. The distances, between a
sample group G? with unknown severity level and two controls, can then be measured
using this learned distance. These distances should be proportional to d(G+, G−) and
can be combined to locate the position of the unknown sample group between the two
controls, where the position indicates the severity level.

In a high-dimensional setting, using the parameter T learned from Equation 13, we
can calculate the distance measure between any data samples. Therefore, we define
and calculate so the distances between an unknown severity sample x?

i (within G?) to
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G+, and to G−, distance between x?
i and G+ is defined as :

dA(x
?
i ,G

+)2 = (

∑
x+
k ∈G+

x+
k

|G+|
− x?

i )
T (I +XTXT )(

∑
x+
k ∈G+

x+
k

|G+|
− x?

i ) (15)

Similarly, the distance between x?
i and G− is defined as :

dA(x
?
i ,G

−)2 = (

∑
x−
k ∈G−

x−k

|G−|
− x?

i )
T (I +XTXT )(

∑
x−
k ∈G−

x−k

|G−|
− x?

i ) (16)

These two distances are then used to determine the predicted severity level y?xi
of x?

i

(Equation 17). When y?xi
is close to 0, the severity of x?

i is similar to that of the negative
controls. On the other hand, if y?xi

is close to 1, the severity of x?
i is similar to that of

the positive controls.

y?xi
=

dA(x
?
i ,G

−)

(dA(x?
i ,G

+) + dA(x?
i ,G

−))
. (17)

The severity y? of G? is then defined as

y? =

∑
x?
i∈G?

y?xi

|G?|
. (18)

2.7.1. Using Mean Points in Set-KITML. In general, measuring the distance between a
sample x? and a sample group G may be defined by one of the following methods:

(1) the distance between the mean point in the group to this sample: dA(x?,E[G])
(2) the distance between the closest point in the group to this sample: argmin

z∈G
dA(x

?, z)

(3) the distance between the farthest point in the group to this sample:
argmax

z∈G
dA(x

?, z)

Essentially Equation 15 and Equation 16 take the above option (1) which uses the
distance between the sample and the mean point of the group.

This is because we assume that data samples in the same group follow the same dis-
tribution. Under this assumption, the Multidimensional Chebyshev’s inequality [Dur-
rett 2010] holds as:

P(
√
(Z − µ)TV −1(Z − µ) > t) ≤ Q

t2
(19)

where Z is an m-dimensional random variable with the expected value µ = E[Z] and
covariance matrix V = Cov(Z) = E[(Z − µ)(Z − µ)T ] . Here t > 0 is a given number
and Q = trace(V −1V ). Chebyshev’s inequality indicates that most data samples will
be centralized around the mean point µ under the Mahalanobis distance measure
dV −1(x, y) =

√
(x− y)TV −1(x− y). Under our assumption that samples in the same

group follow the same probability distribution, it is natural to choose the mean point
µ for measuring the distance between a group and another sample. i.e.,

dA(x
?
i ,G

+)2 = dA(x
?
i ,E[G+])2 = dA(x

?
i ,

∑
x+
k ∈G+

x+
k

|G+|
). (20)
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Combining Equation 20 and Equation 14 results in Equation 15, and similarly Equa-
tion 16. Then we can calculate the predicted severity level y?xi

of sample x?
i using Equa-

tion 17.
Assuming Y ? represents a random variable which represents the severity level of

group G? when corresponding to severity levels of G+ and G−, then using the Law
of Large Numbers [Durrett 2010], we choose the following unbiased estimator as the
predicted severity level for a sample group G? (Equation 18):

y? = E[Y ?] =

∑
x?
i∈G?

y?xi

|G?|
. (21)

3. CONNECTING TO RELATED STUDIES
Our proposed work is closely related (but not limited) to the following research disci-
plines.

3.1. Distance Metric Learning
Distance metric learning methods have caught much attention in the recent literature
and are summarized in a series of recent surveys [Yang 2006][Kulis 2013][Bellet et al.
2013]. As summarized by the survey [Kulis 2013], metric learning has been exten-
sively applied on applications like enhancing bag-of-words models, automated image
tagging, image retrieval or face identification. Targeting the rapidly-growing biomedi-
cal datasets, this paper is the first attempt (to the authors’ knowledge) to adapt met-
ric learning framework on high-dimensional bio-data analysis. Since functions like
searching or retrieving similar patients, diseases or treatments are key to modern
healthcare systems, the proposed framework potentially will become more and more
important.

Since there exist a number of papers about metric learning, we will cover just a few
representative methods, such as ITML and large margin nearest neighbor (LMNN)
[Weinberger and Saul 2009]. Mahalanobis metric learning can be seen as learning
a linear transformation followed by the calculation of the Euclidean metric in the
transformed space. Such learning methods normally vary by the regularization func-
tions they use. For example, LMNN uses the regularization function tr(AU) where
U =

∑
(xi,xj)∈S

(xi − xj)(xi − xj)T . This may result in a low-rank A matrix. As another

example, ITML uses a log-determinant based regularization function tr(A)− logdet(A)
to constrain A to be strictly positive definite. Accordingly, we uses LMNN and ITML
as baselines to compare with KITML in our experiments.

Under the ”high-dimensional” setting, KITML essentially assumes the original ma-
trix A has a low rank plus a diagonal matrix structure through Equation 12. The
baseline ITML method itself will also generate a low rank plus diagonal matrix struc-
ture under the high dimensional situation. This is because that at each update step of
Bregman’s projection (Equation 8),

Rank(At(xi − xj)(xi − xj)
TAt) ≤ min{Rank(At),Rank((xi − xj)(xi − xj)

T )} (22)

which means that Rank(At+1) ≤ Rank(At) + 1. The maximum number of iterations
has an exact upper bound as n2 so we can conclude that Rank(A) < n2. Considering
that n � d and that diagonal matrix A0 = I, we can see that ITML also learns the
parameter matrix A as a low rank plus diagonal structure under a high dimensional
setting.
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Other kernel-based metric learning methods have been proposed, as well. Wang et
al. [Wang et al. 2013] generalized LMNN and ITML into a kernel classification frame-
work through explicit polynomial kernel functions on doublets and triplets from the
training samples. Hertz et.al. [Hertz et al. 2004] utilized a boosting-style strategy ”Dis-
tBoost” to learn distance functions over the product space of sample pairs with a weak
learner based on partitioning the original feature space. We tried to use this method in
our experiments, but abandoned it due to its slow speed. Nguyen et.al., [Nguyen and
Guo 2008] explored local neighborhood constraints to address the metric learning prob-
lem through a margin-based approach and the learning is formulated as a quadratic
semi-definite programming problem (QSDP). Wang et.al. [Wang et al. 2011] proposed
a method based on multiple kernel learning strategy under the metric learning setting
by learning a linear combination of a number of predefined kernels.

A number of recent studies consider sparsity, low-rank, robustness or structured
constraints in metric learning. For instance, Ying et.al., [Ying et al. 2009] proposed a
mixed-norm regularized metric learning algorithm to learn a low-dimensional (sparse)
distance matrix. Qi et.al., [Qi et al. 2009] proposes a sparse metric learning algo-
rithm using an `1-penalized log-determinant regularization to exploits the sparsity
nature underlying the high dimensional feature space. Time-complexity of the block
coordinate descent algorithm proposed to solve this learning is tricky to analyze, as
it depends on a convergence criterion. Compared to O(n2) parameters in KITML, this
methods requires to learn and store O(vm) parameters if the target distance matrix
includes at most v nonzeros per row. Later, [Ying and Li 2012] developed an eigen-
value optimization framework for learning a Mahalanobis metric. As a prior work of
KITML, Davis et.al., [Davis and Dhillon 2008] proposed a structured metric learning
method based on the log-determinant matrix divergence which enables efficient op-
timization of structured, low-parameter Mahalanobis distances. Very recently, Wang
et.al., [Wang et al. 2014] proposed a new objective for distance metric learning us-
ing the L1-norm distances. This robust distance metric learning strategy is solved
through simultaneous L1-norm minimization and maximization. Furthermore, Zhang
et.al. [Zhang et al. 2010] proposed a general kernelization framework for learning al-
gorithms via a two-stage procedure, i.e., transforming data by kernel principal compo-
nent analysis (KPCA), and then directly performing the learning algorithm with the
transformed data. Enlightened by this framework, we also include one more baseline
using PCA+KNN to compare the effectiveness of our proposed methods.

3.2. Learning with Side Constraints
Most metric learning algorithms aim to generalize the standard squared Euclidean
distance, by optimizing a target distance under various types of side constraints. Sim-
ilar ideas of learning from side information have also been explored in a number of
other important machine learning topics. For example, the classic “Semi-Supervised
Clustering” [Basu et al. 2004] uses the pairwise constraints, i.e., pairs of instances
labeled as belonging to the same or different clusters, to improve unsupervised clus-
tering. Others studies [Xiang et al. 2008] have performed better clustering or classifica-
tion by considering pairwise constraints in the form of must-links and cannot-links. In
their formulation, a must-link indicates the two data points must be in the same class,
while a cannot-link indicates that the two data points must be in different classes. We
similarly construct pairwise constraints in S (Similar) and D (Dissimilar) sets. Un-
like [Xiang et al. 2008] which focused on the clustering or classification of samples,
our framework performs efficient metric learning on a high-dimensional feature space
using kernelization.

The idea of “learning from side constraints” has been explored within the “deep
learning” community as well. A Dimensionality Reduction by Learning an Invari-
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ant Mapping (DRLIM) [Hadsell et al. 2006] approach learns a parametric mapping
A : x ∈ Rm 7→ z ∈ RD, such that the embeddings of similar samples attract each
other in the low-dimensional space while the embeddings of dissimilar samples push
each other away in the low-dimensional space. When using a margin-based loss, the
learning of this embedding encourages similar examples to be close, and dissimilar
ones have a distance of at least m from each other. The embedding representations
learned from DRLIM can be used to calculate the distance measure between samples.
The proposed KITML directly computes the distances without the need of embedding
though.

3.3. Ordinal Regression
Our set-ranking KITML method is closely related to the task of “ordinal regression”
which is a type of regression analysis predicting an ordinal variable. The value of an
ordinal variable exists on an arbitrary scale where only the relative ordering between
different values matters. There exists a large body of methods for ordinal regression
in the literature (a thorough tutorial provided in [Agresti 2010]). Similar to “ordinal
regression”, our problem of group-level severity estimation aims to figure out the rel-
ative biomedical severity among sample groups. However, since each of the sample
group is a set of biomedical samples, our framework is more a set “ordinal regression”
task. Due to the small number of groups normally appearing in the biomedical dataset,
estimating regression parameters can rely on only a few number of group instances.
Therefore we argue that our ranking with metric learning framework provides a more
robust solution for the target group-level estimation task.

3.4. Molecular Expression based Cancer Diagnosis
Genome-scale monitoring technologies, especially microarray platforms, have enabled
the measurement of thousands of molecular signatures in cancer cells. Generally, com-
putational analyses on such data sets could be categorized into three types,

— Using machine learning classifiers on such data has been shown to improve the di-
agnosis of patients with cancer [Dudoit et al. 2002] and our KITML framework be-
longs to this category. Various studies [Ramaswamy et al. 2002][Perou et al. 2000]
have shown convincing experimental results that gene expression data can provide
more reliable means to diagnose and predict the existence of cancers than tradi-
tional clinical methods. Several studies have conducted comprehensive comparisons
[Ramaswamy et al. 2002; Perou et al. 2000; Hudson et al. 2010] of popular learn-
ing classifiers for this task and support vector machine and random forest are the
top ranked classifiers from such studies. Therefore we use these two methods as
baselines to compare with KITML in the experimental section of this paper. In ad-
dition, decision tree is also a popular candidate for such patient diagnosis due to its
interpretability [Hudson et al. 2010], so we include it in our analysis as well.

— The second category of studies focus on “biomarker” discovery when analyzing such
molecular profiling datasets. For instance, the studies of differentially expressed
genes have enabled the identification of single gene markers implicated in different
types of cancers such as breast [Perou et al. 2000], lung cancer [Cancer Genome
Atlas Research Network et al. 2012] and other cancers [Tusher et al. 2001]. This
group of significance-test based analyses may indicate possible gene targets for
more detailed molecular studies or drug treatments. Considering data of “high-
dimensionality”, several studies [Leng 2008; Lu et al. 2010; Min et al. 2013] explored
sparse-learning based frameworks to detect gene or gene groups that contribute to
human disease, by enforcing sparsity at the feature or feature group level in a su-
pervised regression framework.
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— A third type of analysis is to perform unsupervised clustering, especially the hi-
erarchical clustering algorithms [Neve et al. 2006][de Souto et al. 2008] on can-
cer/patient samples (tissues). The goal is to find groups of samples that share simi-
lar expression patterns which can lead to identification cancer subtypes. Differently,
our set-based KITML framework focuses on detect the severity-level / stage of the
patient sample groups.

In addition, one previous paper [Xiong and Chen 2006] from bioinformatics litera-
ture claimed to propose ”Kernel-based distance metric learning for microarray data
classification.” Different from our parameterization with matrix K (Equation 11) (i.e.
we are learning K), this paper aimed to learn weights for combining multiple hand-
crafted kernel matrices, which is not comparable to our method.

4. EXPERIMENTAL SETUP
4.1. Sample-Level Cancer Classification Experimental Setup

4.1.1. Algorithms Compared. We compared KITML performance with following algo-
rithms:

(1) KNN Classification with Distance Metric Learned by ITML* Directly learn-
ing distance metric from high-dimensional data set by ITML is quite slow. Thus,
for each data set, we first use a variance feature selection to obtain a reduced fea-
ture set of size 100. The metric learning process and KNN classification are based
on these 100 features with highest variance in the data set. We denote the combi-
nation of feature selection and ITML as ITML*.

(2) K-nearest Neighbor (KNN) Classification with Principal Component Anal-
ysis (PCA) Dimensionality reduction was conducted by a linear transformation
learned by PCA using the first l principal components that accounted for more
than 90% of the variance of the data. The KNN classification is applied to the
transformed data using Euclidean distance as distance metric.

(3) K-nearest Neighbor (KNN) Classification with Euclidean Distance Here we
use Euclidean distance as a baseline and show that KITML can improve the basic
KNN classification.

(4) Multi-class Support Vector Machine (SVM) with Linear Kernel SVM of-
ten achieves superior classification performance compared to other learning al-
gorithms across most domains and tasks [Statnikov et al. 2005]. In this paper, we
compare SVMs implemented by libsvm v3.18 [Chang and Lin 2011] using a linear
kernel K(x, y) = xT y, where x and y are samples.

(5) Multi-class Support Vector Machine (SVM) with Radial Basis Function
Kernel In addition we compare SVM using a radial basis function (RBF) kernel
K(x, y) = exp(−γ|x− y|2), where x and y are samples and γ is kernel parameter.

(6) Large Margin Nearest Neighbor Classification Large Margin Nearest Neigh-
bor (LMNN) [Weinberger and Saul 2009] is a popular metric learning algorithm
that learns a Mahalanobis distance metric for KNN classification from labeled ex-
amples.

(7) Decision Tree Classification (DTC) The C4.5 DTC algorithm [Quinlan 1993]
implemented in the Weka 3.6.6 software [Hall et al. 2009] (University of Waikato,
Hamilton, New Zealand) was used here to analyze the data.

(8) Random Forest Random forest is an ensemble learning method for classification
and regression using multiple decision tree models. We used the Random Forest
algorithm implemented in the Weka 3.6.6 software [Hall et al. 2009] (University of
Waikato, Hamilton, New Zealand) as one baseline to classify the data.
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4.1.2. High-Dimensional Microarray Data Sets. Fourteen publicly available microarray
data sets shown in Table I are used to evaluate our sample-based KITML approach.
These data sets were obtained using two microarray technologies: single-channel Affy-
metric chips (6 sets) and double-channel cDNA chips(8 sets). For each data set, total
number of samples, number of features, number of classes, number of samples in each
class, type of microarray chip, and tissue type are presented in Table I. In summary,
the 14 data sets had 2-10 distinct classes, 28-248 samples, and 1095-4553 features.

4.1.3. Experimental Setup. The experimental setup is designed to obtain reliable per-
formance estimates and avoid over-fitting using two loops. The inner loop is used to
determine the best parameters of the classifier using cross-validation sets. The outer
loop is used to estimate the performance of the classifiers built using the parameters
found by the inner loop. The test data sets used in the outer loop are independent from
cross-validation sets. The outer loop uses a 10-fold cross-validation and the inner loop
uses a 4-fold cross-validation. We run each of the 14 data sets through both our KITML
and the test algorithms baseline 5 times and average the classification results.

4.1.4. KITML Setting. To construct constrained pairs (Section 2.1), we consider the
pairs of samples in the same class are similar and pairs of samples in different classes
are dissimilar. A total of 20C2 constrained pairs are randomly chose in the learning pro-
cess, where C is the number of classes in each data set. The lower and upper bounds
of the right hand side of the constraints (l and u) in Equation 10 are the 5th and 95th

percentiles of the observed distribution of distances between pairs of samples within
each data set.

4.1.5. Performance Metrics. We use two classification performance metrics. The first
performance metric is Macro-averaged F1 (F-measure). The F-measure is a weighted
combination of precision and recall. It is defined as:

F =
(β2 + 1)PmacroRmacro

β2Pmacro +Rmacro
, (23)

where β is typically set to 1. The multi-class precision and recall are defined as:

Pmacro =
1

|C|

|C|∑
i=1

TPi

TPi + FPi
, (24)

Rmacro =
1

|C|

|C|∑
i=1

TPi

TPi + FNi
, (25)

where TPi is the number of true positives for class i, FPi is the number of false posi-
tives for class i, FNi is the number of false negatives for class i, and C is the number
of classes.

Receiver operating characteristics (ROC) graphs are useful for organizing classifiers
and visualizing their performance [Fawcett 2006]. To compare classifiers, a common
method is to calculate the area under the ROC curve, abbreviated AUC. Therefore, the
second metric we use is multi-class AUC in the R package ’pROC’ [Robin et al. 2011].
A multi-class AUC is defined as an average AUC [Hand and Till 2001]:

AUC =
2

|C|(|C| − 1)

|C|∑
i=1

auci (26)

where C is the number of the classes.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14

Table I. Data Set Description for Sample-Level Cancer Classification
Dataset Total Num of Num of Num of Samples Tissue
Name Samples Features Classes in Each Class

Alizadeh [Alizadeh et al. 2000b] 42 1095 2 21, 21 Blood
Bittner [Bittner et al. 2000] 38 2201 2 19, 19 Skin
Bredel [Bredel et al. 2005] 50 1739 3 31, 14, 5 Brain
Garber [Garber et al. 2001] 66 4553 4 17, 40,4, 5 Lung
Golub-v1 [Golub et al. 1999] 72 1877 2 47, 25 Bone marrow
Golub-v2 [Golub et al. 1999] 72 1877 3 38, 9, 25 Bone marrow
Gordon [Gordon et al. 2002] 181 1626 2 31, 150 Lung
Nutt [Nutt et al. 2003] 28 1070 2 14,14 Brian
Pomeroy [Pomeroy et al. 2002] 42 1379 5 10, 10, 10, 4, 8 Brian
Su [Su et al. 2001] 174 1571 10 26, 8, 26, 23,12, 11, 7, 27, 6, 28 Multi-tissue
Tomlins-v1 [Tomlins et al. 2007] 104 2315 5 27, 20, 32, 13, 12 Prostate
Tomlins-v2 [Tomlins et al. 2007] 92 1288 4 27, 20, 32, 13 Prostate
Yeoh-v1 [Yeoh et al. 2002] 248 2526 2 43, 205 Bone marrow
Yeoh-v2 [Yeoh et al. 2002] 248 2526 6 15, 27, 64, 20, 79, 43 Bone marrow

Table II. Data Set Description for Estimating Severity of Sample Subgroups
Dataset Total Num of Num of Features Staging Num of Sample
Name Samples Features after Pre-processing in Each Stage

Bjladder [Dyrskjot et al. 2003] 40 7129 3036 Ta, T1, T2+ 20, 11, 9
Prostate [True et al. 2006] 31 15488 9491 Gleason patterns 3,4,5 11, 12, 9
Ovary [Wu et al. 2007] 37 22283 18091 T1, T2, T3 18,5,14

4.1.6. Statistical Comparison among Classifiers. Statistical comparison is used to verify
that the differences in accuracy between algorithms are non-random. Since we have
only 14 datasets we cannot assume that the difference between results are normally
distributed [Demšar 2006], we used Wilcoxon signed-rank test [Wilcoxon 1945], which
is a non-parametric alternative to paired t-test. Wilcoxon signed-rank test ranks the
difference in performance of two classifiers for each data set, ignoring the signs and
compares the ranks for positive and negative differences.

4.2. Experimental Setup for Estimating Stage/Severity for Sample Subgroups:
4.2.1. High-Dimensional Microarray Data Sets. Three microarray datasets from bladder,

prostate and ovarian multi-stage cancer patient studies (Table II) are used here [Chen
2012]. (1) The bladder dataset contains gene expression data of human bladder tu-
mor samples from a clinical specimen bank. There are 20 Ta (stage 1) samples, 11 T1
(stage 2) samples and 9 T2+ (stage 3) samples, which contain a total of 7129 genes. Af-
ter pre-processing according to [Chen 2012], we removed genes having missing data,
leaving 3036 genes for our analysis. (2) The prostate cancer data set was created in
an attempt to characterize gene expression profiles of specific Gleason patterns. The
dataset contains gene expression data of 11 Gleason pattern three (stage 1) samples,
12 Gleason pattern four (stage 2) samples and 8 Gleason pattern five (stage 3) sam-
ples. After removing the data with missing values, there are 9491 genes left for our
analysis. (3) The ovary data set is from genetically engineered mouse models which
are used to demonstrate the mutations of certain signaling pathways in woman and
mouse ovarian endometrioid adenocarcinomas [Wu et al. 2007]. There are 18 T1 (stage
1) samples, 5 T2 (stage 2) samples and 14 T3 (stage 3) samples. After pre-processing,
there are 18091 genes left for our analysis.

4.2.2. KITML Setting. Since there are 3 stages in each data set, 75% of the stage 1
samples are used as negative control G− and 75% of the stage 3 samples are used as
positive control G+. These controls are used to learn distance metric parameters. The
remaining 25% of both stage 1 samples G?

1 and stage 3 samples G?
3, and all of the stage

2 samples G?
2, are then used as test groups to evaluate the learned metric parameters.

This process is repeated 4 times and averaged. For all three data sets, the constrained
pairs used are formulated by the samples within negative controls G− and positive
controls G+. The lower and upper bounds of the right hand side of the constraint (l
and u) in Equation 10 are the 5th and 95th percentiles of the observed distribution of
distances between pairs of samples within each data set.
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Fig. 3. Comparing cross validation classification accuracy when varying neighbor size k

5. EXPERIMENTAL RESULTS
5.1. Sample-Level Cancer Classification Results

5.1.1. Cross Validation Accuracy When Varying Neighbor Sizes in KNN. In KNN classification,
nearest neighbor size k is a user-defined parameter and the choice of k is very critical to
the classification performance. The optimal value of k is based on the cross validation
accuracy of training samples. Generally, the larger values of k reduce the effect of noise
on the classification, but make boundaries between classes less distinct [Cover and
Hart 1967]. Figure 3 shows the cross validation accuracy of KNN KITML and KNN
with Euclidean distance as a function of different neighbor sizes (from k = 1 to 11) for
all 14 data sets listed in Table I. The purpose of this analysis is finding the k value
that leads to the highest classification accuracy for training data. Then when testing
KNN KITML and KNN with Euclidean distance, this optimal value of k will be used
in the classification. For example, for Alizadeh data set, when k = 7 KNN KITML has
the highest cross validation accuracy and when k = 5 KNN with Euclidean distance
has the highest cross validation accuracy. Moreover, from Figure 3, we can see that
the cross validation accuracy of KNN KITML does not have an obvious trend when
k gets larger. For KNN with Euclidean Distance, it can be seen that except Alizadel,
Bitterner and Bredel data sets, the cross validation accuracy decreases when k gets
larger.
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Table III. Classification algorithm comparision with macro-averaged F1
Dataset KNN KITML KNN ITML* KNN PCA KNN Euclidean SVM Linear SVM RBF DTC Random Forest LMNN
Alizadeh 0.9386±0.0316 0.8762±0.0199 0.7958±0.0554 0.8196±0.0437 0.9240±0.0309 0.9242±0.0260 0.7357±0.0513 0.7042±0.0507 0.9296±0.0351
Bittner 0.9174±0.0219 0.9371±0.0301 0.7339± 0.021 0.7766±0.0627 0.8183±0.0253 0.8199±0.0692 0.5882±0.0686 0.6215±0.1011 0.8300±0.055
Bredel 0.7707±0.0288 0.7442±0.0546 0.7247±0.0217 0.7138±0.0352 0.7254±0.0153 0.7238±0.0168 0.4062±0.1466 0.4640±0.0706 0.7560±0.0195
Garber 0.6118±0.0156 0.6005±0.0425 0.5873± 0.0444 0.5246±0.0301 0.6062±0.0421 0.5796±0.0411 0.5682±0.1329 0.6819±0.0933 0.5823±0.0386
Golub-v1 0.9849±0.0185 0.9637±0.0107 0.9639±0.0162 0.9697±0.0000 0.9758±0.0134 0.9697±0.0106 0.8478±0.0109 0.8609±0.0274 0.9848±0.0107
Golub-v2 0.9662±0.0076 0.9589±0.0078 0.9554±0.0229 0.9472±0.01587 0.9057±0.0167 0.9047±0.0135 0.8256±0.0447 0.8153±0.0247 0.9637±0.0094
Gordon 0.9863±0.0053 0.9823±0.0147 0.9840±0.0006 0.9705±0.0000 0.9824±0.0082 0.9824±0.0044 0.8850±0.0068 0.8888±0.0309 0.9755±0.007
Nutt 0.9402±0.0347 0.9086±0.0253 0.7376±0.0000 0.8517±0.0324 0.9207±0.0169 0.8714±0.0319 0.8309±0.0457 0.7934±0.0951 0.9655±0.0065
Pomeroy 0.8451±0.0306 0.8031±0.0556 0.7814±0.0163 0.7241±0.0379 0.7708±0.0287 0.7698±0.0140 0.2663±0.0390 0.2716±0.0250 0.7621±0.0285
Su 0.9123±0.0100 0.8351±0.0169 0.8325±0.0129 0.8165±0.0048 0.8733±0.0041 0.8640±0.0162 0.3995±0.0642 0.4718±0.0297 0.8326±0.0046
Tomlins-v1 0.9205±0.0186 0.8768±0.0220 0.7891±0.0323 0.8089±0.0085 0.9193±0.0192 0.9065±0.0202 0.5523±0.0317 0.5198±0.0685 0.8770±0.0286
Tomlins-v2 0.9026±0.0232 0.8801±0.0256 0.7477±0.0178 0.7776±0.0153 0.8994±0.0045 0.8818±0.0186 0.5693±0.0564 0.5574±0.0341 0.9215±0.0195
Yeoh-v1 0.9887±0.0039 0.9516±0.0064 0.9453±0.0077 0.9601±0.0065 0.9715±0.0102 0.9599±0.0065 0.9877±0.0030 0.9864±0.0000 0.9930±0.0256
Yeoh-v2 0.8411±0.0204 0.7798±0.0071 0.7020±0.0133 0.6979±0.0082 0.8049±0.0128 0.8047±0.0111 0.4814±0.0146 0.5323±0.0714 0.8264±0.0237
Average 0.8947 0.8656 0.8094 0.8079 0.8641 0.8545 0.6389 0.6550 0.8714

5.1.2. Overall Accuracy and Marco-average F1. The results of the algorithm comparison
with macro-average F1 as the performance metrics are shown in Table III. KNN
KITML has the best average performance among all 9 classification algorithms for
Macro-averaged F1. Specifically, KNN KITML generated best macro-average F1 in 9
out of 14 data sets (Table III). For Nutt, Tomlins-v2 and Yeoh-v1 data sets, LMNN
outperformed KNN KITML. For Garber data set, Random Forest outperformed KNN
KITML. KNN ITML* has the best Macro-averaged F1 for Bittner data set. In gen-
eral, KNN ITML*, SVM Linear and SVM RBF have similar average classification
performance. Our KNN KITML has around 3%-4% performance increase compared
to these three algorithms. KNN PCA used a dimensionality reduction method (PCA)
to reduce features before applying KNN and achieved comparable performance as the
baseline classifier KNN Euclidean. But the performance gap between KNN PCA and
KNN KITML remains large.

The multi-class AUC comparison results are shown in Table IV. KNN KITML has
the highest average multi-class AUC and achieved the best performance in 7 out of 14
data sets. LMNN has comparable results to KNN KITML – it achieved the best per-
formance in 7 out of 14 data sets and its average multi-class AUC is only a little lower
than KNN KITML. For Golub-v2 data set, KNN KITML, KNN ITML* and LMNN have
the same highest multi-class AUC. For Su data set, DTC has the highest multi-class
AUC.

Table IV. Classification algorithm comparision with multi-class AUC
Dataset KNN KITML KNN ITML* KNN PCA KNN Euclidean SVM Linear SVM RBF DTC Random Forest LMNN
Alizadeh 0.9524±0.0211 0.8571±0.0321 0.8333±0.0150 0.7919±0.0102 0.9048±0.0239 0.8992±0.0192 0.7380±0.0067 0.7142±0.0014 0.9523± 0.0223
Bittner 0.9211±0.0065 0.8947±0.0307 0.8421±0.0165 0.7105±0.0089 0.8684±0.0023 0.8571±0.0186 0.6988±0.0105 0.6077±0.0089 0.8421±0.0012
Bredel 0.8129±0.0121 0.8000±0.0002 0.7516±0.0247 0.6871±0.0042 0.7839±0.0129 0.7512±0.0100 0.5035±0.0095 0.5763±0.0128 0.8193±0.0078
Garber 0.4625±0.0094 0.5612±0.0035 0.4875±0.0283 0.4625±0.0133 0.4625±0.0000 0.4875±0.0002 0.7556±0.0237 0.6391±0.0015 0.5687±0.0016
Golub-v1 0.9865±0.0122 0.9800±0.0246 0.9200±0.0026 0.9387±0.0045 0.9600±0.0000 0.9520±0.0112 0.8455±0.0068 0.8548±0.0042 0.9493±0.0052
Golub-v2 0.9444±0.0102 0.9444±0.0045 0.8889±0.0017 0.8889±0.0223 0.7778±0.0263 0.7922±0.0220 0.6562±0.0223 0.6641±0.0189 0.9444±0.0155
Gordon 0.9838±0.0052 0.9805±0.0037 0.9822±0.0002 0.9221±0.0315 0.9677±0.0082 0.9502±0.0196 0.9026±0.0127 0.9026±0.0049 0.9677±0.0089
Nutt 0.8928±0.0012 0.9285±0.0085 0.6785±0.0304 0.6421±0.0088 0.8928±0.0122 0.8815±0.0060 0.8099±0.0241 0.8918±0.0011 0.9642±0.0047
Pomeroy 0.9000±0.0000 0.8650±0.0207 0.8750±0.0263 0.8500±0.0000 0.9100±0.0312 0.9100±0.0000 0.5433±0.0082 0.5971±0.0175 0.9500±0.0002
Su 0.8774±0.0137 0.8512±0.0123 0.7355±0.0010 0.6514±0.0012 0.6322±0.0015 0.6552±0.0450 1.0000±0.0000 0.9381±0.0201 0.7692±0.0083
Tomlins-v1 0.9962±0.0060 0.9629±0.0034 0.8425±0.0032 0.8185±0.0038 0.9259±0.0164 0.8915±0.0109 0.8162±0.0104 0.7758±0.0023 1.0000±0.0000
Tomlins-v2 0.9988±0.0154 0.9027±0.0075 0.8222±0.0369 0.6925±0.0247 0.9148±0.0101 0.9022±0.0133 0.6814±0.0067 0.7943±0.0108 1.0000±0.0000
Yeoh-v1 0.9883±0.0043 0.9764±0.0003 0.9186±0.0103 0.9186±0.0112 0.9419±0.0187 0.9231±0.0020 0.9951±0.0062 0.9951±0.0037 0.9767±0.0012
Yeoh-v2 0.9691±0.0017 0.8098±0.0329 0.9518±0.0006 0.8024±0.0150 0.9333±0.0213 0.8981±0.0060 0.6050±0.0208 0.5617±0.0046 0.8259±0.0203
Average 0.9061 0.8796 0.8235 0.7698 0.8293 0.8414 0.7537 0.7509 0.8950

5.1.3. Wilcoxon Signed-Rank Test Results. Wilcoxon signed-ranks test is used to verify
that the differences in accuracy between algorithms are non-random. The Wilcoxon
signed-rank test ranks the difference in performance of two classifiers for each data
set, ignoring the sign, and compares the ranks for positive and negative differences.
The results of right-sided Wilcoxon signed-ranks test are shown in Table V. The p-
values of the tests for macro-averaged F1 between KITML and the other 8 classifi-
cation algorithms indicate that KNN KITML achieved better performance than all
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the other algorithms in terms of macro-average F1 at 5% significance level. Similarly,
for multi-class AUC, the p-values also indicate KNN KITML is better than the other
algorithms except LMNN. KNN KITML and LMNN have similar classification perfor-
mance in terms of multi-class AUC. But in the next section, we show that KNN KITML
is much faster than LMNN in the classification process.

Table V. p-values of right-sided Wilcoxon signed-rank test between KNN KITML and the other 8 classification
algorithms

KNN ITML* KNN PCA KNN Euclidean SVM Linear SVM RBF DTC Random Forest LMNN
p-values for
macro-averaged
F1

6.1e-04 6.1e-05 6.1e-05 6.1e-05 6.1e-05 6.1e-05 1.8e-04 0.02

p-values for
multi-class AUC

0.0471 3.6e-4 1.2e-04 4.8e-04 4.2e-04 0.0083 0.0034 0.2939

5.1.4. Time Complexity Analysis. The objective of the learning process in KITML is to
learn the n by n parameter matrix in the distance metric, where n is the number
of samples. Therefore, for each constraint defined in Equation 10 (l or u), the time
complexity is O(n3) for matrix multiplication. For the entire learning process looping
through all the constraints, the time complexity is O(cn3), where c is the number of
constraints. We further analyzed the execution times for the two best classification
algorithms ,KNN KITML and LMNN, and KNN ITML* was served as an execution
time baseline. Our experimental setup was designed to obtain reliable performance
estimates and avoid over-fitting using two loops. The inner loop is used to determine
the best parameters of the classifier using cross-validation sets. The outer loop is used
to estimate the performance of the classifiers built using the parameters found by
the inner loop. In the execution time analysis, we only ran outer loop for each of the
algorithms. For the inner loop we used default parameters for each algorithm. Figure 4
shows the execution time analysis. KNN KITML requires much less time, taking 2-
519 seconds to run each data set, while for LMNN this typically exceeded 24 hours
to finish calculation. KNN ITML* was served as an execution time baseline here and
it took 96-9416 seconds to run each data set even when it only used 100 features.
These execution time differences illustrate that our KNN KITML greatly reduced the
computation load comparing to both LMNN and KNN ITML*. All experiments were
executed in Matlab R© 2012a software (The Mathworks, Natick, MA) on a Quad core
Intel 3.5GHz PC.

5.2. Estimating Severity of Sample Subgroups Results
The estimated severity levels as determined by KITML on the three microarray
datasets from bladder, prostate and ovarian multi-stage cancer patient studies (Ta-
ble II) are shown in Figure 5. Each data set contains samples from 3 different cancer
stages, indicating 3 different severity levels. Each yi is the mean of sample severity
levels within E?

i . The standard deviation is shown as the error bar in the figure. We
consider the relative order of y1 < y2 < y3 as the correct severity estimation since it
matches the true group labels and our KITML approach correctly estimated the rel-
ative severity levels of the three test groups. Notably, without any prior information
about E?

2 in each data set, our approach still can estimate the severity level y2 of E?
2 in

the right order – between y1 and y3.

6. CONCLUSION
Recent advancements in genome-wide molecular profiling technologies have eased the
measurement of molecular signatures of cancer cells. In this paper, we have two novel
applications of the KITML approach for cancer diagnosis using distance metric learn-
ing. Our analyses have shown that KITML achieves favorable performance over other

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18

Fig. 4. Comparing execution time between KNN KITML, KNN ITML* and LMNN for all 14 data sets.
KNN KITML used the least execution time in every data set and LMNN used the most time. The execution
time of KNN ITML* fell in between KNN KITML and LMNN in every data set. Since Garber, Golub-v1,
Golub-v2, Gordon, Su, Tomlins-v1, Yeoh-v1 and Yeoh-v2 need more than 24 hours execution time for LMNN,
we draw their bars using the same longest length in the figure.

state-of-the-art methods. In the future, we plan to extend KITML approach to more
biomedical applications and at the same time, to design strategies to reduce computa-
tional complexity.

A. APPENDIX
Proof. Assuming the means of the Gaussian distributions are 0, we have

d(A0||A)
= KL(Pr(x|A0)||Pr(x|A))
=

∫
Pr(x|A0) log

Pr(x|A0)
Pr(x|A) dx

=
∫
[log(Pr(x|A0))− log(Pr(x|A))]Pr(x|A0)dx

=
∫
[ 12 log

|A|
|A0| +

1
2x

TA−10 x+ 1
2x

TA−1x]Pr(x|A0)dx

= 1
2 log

|A|
|A0| −

1
2 tr{E(xTx)A−10 + 1

2E(xTx)A−1}

= 1
2 log

|A|
|A0| −

1
2 tr{Im}+

1
2 tr{A

−1A0}

= 1
2 (tr(A

−1A0) + log|A| − log|A0| −m)

Supplement website: Matlab implementation of the proposed framework is avail-
able at github.com/DataFusion4NetBio/Paper15-MetricLearn4CancerExpression.
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