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ABSTRACT
The primary objective of this research is to develop a simple
and interpretable predictive framework to perform temporal
modeling of individual user’s behavior traits based on each
person’s past observed traits/behavior. Individual-level hu-
man behavior patterns are possibly influenced by various
temporal features (e.g., lag, cycle) and vary across tempo-
ral scales (e.g., hour of the day, day of the week). Most of
the existing forecasting models do not capture such multi-
scale adaptive regularity of human behavior or lack inter-
pretability due to relying on hidden variables. Hence, we
build a multi-scale adaptive personalized (MAPer)
model that quantifies the effect of both lag and behavior cy-
cle for predicting future behavior. MAper includes a novel
basis vector to adaptively learn behavior patterns and cap-
ture the variation of lag and cycle across multi-scale tempo-
ral contexts. We also extend MAPer to capture the inter-
action among multiple behaviors to improve the prediction
performance.

We demonstrate the effectiveness of MAPer on four real
datasets representing different behavior domains, including,
habitual behavior collected from Twitter, need based behav-
ior collected from search logs, and activities of daily living
collected from a single resident and a multi-resident home.
Experimental results indicate that MAPer significantly im-
proves upon the state-of-the-art and baseline methods and
at the same time is able to explain the temporal dynamics
of individual-level human behavior.
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1. INTRODUCTION
Regular human behaviors are constantly being captured

in virtual platforms ( e.g., social media, search logs) as well
as in physical platforms (e.g., smart phone, smart watch)
[16]. The vast amount of individual user data generated by
these platforms facilitates modeling the temporal footprint
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Figure 1: A Twitter user often tweets at hour 14 and hour
15 at the same day. This depiction from real data suggests
an impact of lag on tweeting behavior, i.e., the behavior at
hour 14 is followed by the behavior at hour 15.

of different human behaviors. Accurate and explanatory
temporal behavior models can serve as the building block
of several useful applications.

For example, predicting when an online user is going to be
active (e.g., searching a query, posting a tweet) can be use-
ful for targeted advertising (e.g., finding peak social hours
to maximize visibility of content among target audience) [6],
churn prediction (i.e., predicting users who are likely to leave
a service provider) [27], and temporal user profiling [1, 11].
Similarly, a predictive model that can model human behav-
iors in the context of daily activities (e.g., sleeping, cooking,
or eating) is extremely useful for functional assessment of el-
derly people [9] and designing behavior intervention for reha-
bilitation [26]. Scott et al. demonstrated that dynamically
predicting room occupancy and energy usage patterns of its
residents enable efficient designing of smart thermostats and
thus save energy costs significantly [23]. Explanatory predic-
tive models can serve end users who use smart phones and
smart watches for self monitoring: a sleep monitoring ap-
plication that builds explanatory predictive models of sleep
pattern can help the user to detect sleep anomaly and sug-
gest sleep time.

This paper focuses on a data-driven modeling of temporal
human behavior at a single individual level. Our goal is
to build an accurate and interpretable temporal behavior
model that can serve as a building block for the motivating
examples presented above.

Individual-level temporal behavior is often influenced by
three major temporal features: (1) temporal smoothness
(i.e., lag), (2) behavior rhythms (i.e., cycle), and (3) interac-



tion among multiple behaviors. Temporal smoothness refers
to lag phenomenon: behavior at time t can be influenced by
the behavior at time (t − 1) (Figure 1). Behavior rhythm
refers to the repetitive habits of a human. For instance, some
online users frequently post tweets on Friday night (i.e., cy-
cle length is 7 days). Moreover, often the interaction among
multiple behavior traits/activities needs to be captured to
model a single behavior, e.g., watching TV until late night
can delay sleep time. Quantifying the effects of these fea-
tures on a specific behavior of an individual is challenging,
because they vary with multi-scale temporal contexts (e.g.,
specific hour of the day or day of the week). Such as, working
people may prefer watching TV for a longer duration dur-
ing weekend nights rather than during weekday mornings.
Here, the lag length is changing due to the change in tem-
poral context from a weekday morning to a weekend night.
To address such personalized temporal dynamics, we need a
modeling approach that dynamically adapts with such vari-
ation of features over multiple time scales.

The existing time series prediction models are too general
to be applicable in this context. With regard to the com-
putational behavior modeling methods, the most relevant
existing study is from Zhu et al. where they predict user ac-
tivity level in social media [27]. But their modeling of tem-
poral behavior dynamics is limited to reducing the impact
of out-of-date training data. Another work uses Bayesian
networks to predict future activity based on current activity
in a home setting [20]. Neither of these works quantify the
effect of variation of the temporal features across multi-scale
temporal contexts (e.g., daily, weekly).

The main contributions of this paper are following. (i)
We build a multi-scale adaptive personalized model,
namely MAPer, that models regular temporal human be-
havior by capturing the effects of three temporal features:
lag, cycle, and interaction among multiple behaviors. (ii)
We introduce a novel approach to capture the variation of
these behavior features across multi-scale temporal contexts
and learn adaptively. (iii) Our performance analysis demon-
strates the overall effectiveness of MAPer as compared to
multiple baselines and a state-of-art time series prediction
model (SARIMA). Using behavior data collected from Twit-
ter [7], search logs [21], and two smart homes [3, 13], we
show the effectiveness of the key parts of the model, demon-
strate the value of personalization, and perform a sensitivity
analysis along three dimensions: training set size, temporal
scale, and order of lag. These experiments show MAPer
reduces prediction error by about 15%, 31% and 10% over
the state-of-art SARIMA model for Twitter, search log, and
a single resident smart home data, respectively. (iv) An-
other key value of our solution is its explanatory capability.
As MAPer uses a linear model for prediction based on only
observed behavior, it has higher interpretability over other
predictive models that are non-linear or rely on unobserved
variables (e.g., state space model or hidden Markov model).

2. PROBLEM FORMULATION

2.1 Extracting Discrete Time Series from Tem-
poral Behavior Data Stream

We use H(t) to represent a given behavior data with cor-
responding time stamp spanning over a total stream length
T . We divide T into a set of n equal length time intervals
t1, t2, . . . , ti, . . . , tn. Then we summarize H(t) over each in-

Figure 2: An example of behavior sample matrix representa-
tion: demonstrating lag and cycle for modeling an individual
user’s behavior in the context of Twitter usage. The cells
are darkened in proportion to the number of tweets at the
corresponding time interval.

terval to obtain behavior sample Hs(s, ti), such that Hs ap-
plies a summarizing process s over the behavior of interval ti.
The summarizing process s can be frequency/average/length
of some countable behavior measure. With this process
we get a discrete series of n behavior samples: Hs(s, t1),
Hs(s, t2),. . . ,Hs(s, tn) For example, consider a set of tweets
from a Twitter user u, where each tweet has its correspond-
ing time stamp. After sorting the tweets according to their
increasing time stamp, we find the total window length T
that spans from the starting time stamp to the ending time
stamp. Assume there are n different days in T . Next, we
divide T into hourly/daily/weekly intervals. If the chosen
interval is hour and the chosen summarizing process is total
count of tweets then the behavior sample will be total count
of tweets per hour. In this case, the length of the behav-
ior sample time series will be n × 24, since we divide each
day into 24 hours. The choices of interval and summarizing
process depend on a specific application requirement.

We denote the time series Hs(s, ti) as yi in the rest of the
paper. In addition, we denote yi for an activity1 k of a user
(e.g., an activity of daily living) as ykt . Our goal is to predict
yki based on it’s previous values i.e., yk1 , y

k
2 , . . . , y

k
i−1.

Essentially, a more accurate notation would be yk,ut to
indicate modeling specific activity k from an individual u.
Instead, we use the simplified notation ykt since we do not
consider interaction among multiple users for predicting fu-
ture activity of a single user.

2.2 Behavior Sample Matrix Generation
After generating the discrete time series from historical

longitudinal behavior data of a user (uk), we create corre-
sponding behavior-sample matrix (M) to extract features
corresponding to lag, cycle, and interaction with other be-
haviors. This matrix representation encodes the temporal
patterns of behavior concisely. Specifically, each row of M
represents a day (di) and each column of M represents an
hour (hj). The content of a cell Mk

i,j is the sample of a

1We use the terms activity and behavior interchangeably in
this paper.



behavior k from a user u on day di and hour hj . In other
words, Mk

i,j represents the intensity of overall activity level
of the user at the j-th hour of the i-th day.

Figure 2 demonstrates a Twitter behavior sample matrix
where the behavior sample is the count of tweets per hour. It
appears this particular user is most active during weekend
nights. Tweets generated at hour 14 might act as a lag
feature to tweets generated at hour 15. The Twitter user
usually tweets on hour 24 during weekends. So there is a
possible cycle of this behavior that repeats on weekends. As
shown in Figure 2, the contents of same columns contribute
to behavior rhythm or cycle and the contents of same rows
contribute to temporal smoothness or lag.

This matrix representation highlights the lag and cycle
properties of regular human behavior and is easily gener-
alizable to represent more coarse or granular time scales.
After generating behavior sample matrix, we build a gen-
eral temporal model for behavior prediction that extracts
the temporal features from this matrix.

3. MULTI-SCALE ADAPTIVE PERSONAL-
IZED MODEL

In this section we present incrementally the formation of
the MAPer model. Since MAPer combines lag, cycle, and
interaction among multiple behaviors across multiple tem-
poral scales, we first describe extracting lag feature(s) and
then incrementally add features culminating in the complete
model in Section 3.1.4.

3.1 Extracting Features for Temporal Behav-
ior Prediction

3.1.1 Temporal Smoothness/Lag Features
For the purpose of forecasting the lag features can be rep-

resented using auto regression (AR), a standard linear time
series forecasting technique. An l-th order auto-regressive
model for predicting the t-th item of a behavior time series
time series is described as,

ŷt =

l∑
i=1

αi · yt−i + c+ ε (1)

where α1, α2, . . . , αl are lag parameters to learn, c is a
constant, and the random variable ε represents white noise
[12]. The coefficient value of αi quantifies the effect of the
i-th lag component for the current time point. Referring to
Figure 2, for a cell Mk

i,j in a behavior time series matrix Mk,

we consider Mk
i,j−1 as the lag of order 1, Mk

i,j−2 as the lag of
order 2, and so on. We also wrap the matrix to extract lag
features for early hours of a day. Such as, when predicting
for hour 1 of a day and considering a lag of order 4, we
extract lag features from hour 21 to hour 24 of the past day.

3.1.2 Behavioral Rhythm/Cycle Features
Human behaviors often demonstrate cyclic pattern, such

as, cooking meal on every Friday night (i.e., the cycle is 7
days). To capture the behavior rhythm effect, we add a cycle
component in Equation 1. The derived model for a single
individual is presented below.

ŷt =

l∑
i=1

αi · yt−i +

c∑
j=1

βj · yt−cj + c′ + ε (2)

Here, the value of the coefficient βj quantifies the effect of
j-th cyclic component on the current time point of interest.
If the cycle of a behavior time series is found to be 7 days,
we will use Mk

3,16 as a cycle feature to predict the value

of Mk
10,16. We describe the method of selecting cycles of a

behavior time series in Section 3.2.
In the rest of the paper, we refer to the model correspond-

ing to Equation 2 as the auto regression with cycle compo-
nent (AR-C) model.

3.1.3 Interaction Features
So far for predicting future values of time series of activity

k (i.e., ykt ), we have extracted features from only the time
series ykt . But often time series of one activity can influence
another from the same user as the corresponding activities
interact with each other. We define such interaction of hu-
man behaviors/activities in terms of co-occurrence. We hy-
pothesize that, if two activities are frequently observed con-
secutively, the former activities can influence the prediction
of the later for which they interact. For instance, watching
TV and using internet until late night often delay sleeping.
In this case, watching TV and using internet are interacting
with sleeping. Similarly, having a meal is usually followed
by washing dishes. To consider such interactions among ac-
tivity k and other activities, we update equation 2 as below.

ŷt
k ≈

Lk∑
i=1

αk
i · ykt−i +

Ck∑
j=1

βk
j · ykt−cj +

∑
k′∈S

Lk′∑
l′=1

W
(k,k′)
l′ · yk

′

t−l′

(3)

Here, S is a set of activities of a user u and k 6= k′ such
that activity k′ precedes activity k and interacts with it.
Lk′ refers to the length of lag that we are considering for

the behavior time series yk
′

t . Note that we omit c′′ + ε from
Equation 5 and subsequent equations to simplify notations.

Unlike Equation 2, Equation 3 models an individual’s sin-
gle activity k using historical values of k and a set of other
activities (i.e., k′s) that influence k.

3.1.4 Multi-scale Adaptive Features
For regular daily human behavior the two most common

temporal contexts of behavior are day of the week and hour
of the day. Often behavior varies over such multi-scale tem-
poral contexts. The lag length, cycle, and amount of interac-
tion vary with the temporal contexts too. Such as, the order
of lag of watching TV is likely to vary from morning to night
for working class people, as they have to leave home early
in the morning. Here the lag is varying with hour of the
day. Similarly, it can vary with day of the week. Therefore,
we need a feature representation to encode such multi-scale
variation and adapt the prediction model dynamically.

Hence, we introduce a discrete binary vector representa-
tion describing multi-scale temporal contexts whose length
is determined by the corresponding scale (e.g., hour of the
day or day of the week) and whose value is determined by
the current time stamp. Specifically, hour i can be repre-
sented as a 24-dimensional binary vector with a series of
(i− 1) zeroes followed by an one and (24− i) zeroes. Thus,
hour 3 can be represented by a series of two zeroes followed
by an one and 21 zeroes. The corresponding vector B3 is
[00100 . . . 0], where |B3| = 24. Similarly, we obtain a basis
vector representation describing different days of the week.



We denote the combination of daily basis vector and weekly
basis vector as ~Bd, ~Bw. We add this basis vector represen-
tation in Equation 3 to represent the multi-scale temporal
context.

ŷt
k ≈

Lk∑
i=1

αk
i · ykt−i +

Ck∑
j=1

βk
j · ykt−cj + γk · ( ~Bd, ~Bw)

+
∑
k′∈S

Lk′∑
l′=1

W
(k,k′)
l′ · yk

′
t−l′ (4)

We use the model corresponding to Equation 4 when we
consider interaction between multiple streams of behavior.
Otherwise, we use the following model.

ŷt
k ≈

Lk∑
i=1

αk
i · ykt−i +

Ck∑
j=1

βk
j · ykt−cj + γk · ( ~Bd, ~Bw) (5)

It should be noted that unlike lag and cycle features,
the value of ( ~Bd, ~Bw) is not unique for all yt where t ∈
1, 2, . . . , n. ( ~Bd, ~Bw) is same for yi and yj if they represent
same day of the week and same hour of the day. This is nec-
essary to encode the temporal context of behavior: behavior
samples from similar context share similar features. Equa-
tion 4 captures the effect of temporal smoothness, behav-
ior rhythm, interaction, and multi-scale temporal contexts
using parameters αi, βj , γ, and basis vectors ( ~Bd, ~Bw), re-
spectively. This model is personalized for each user and is
customized for each activity of the user. In addition, the
basis vector representation enables the model to learn adap-
tively across multi-scale temporal contexts. Hence we denote
the model corresponding to Equation 4 as the Multi-scale
Adaptive Personalized (MAPer) model.

With different combination of basis vectors, we have two
variations of MAPer: (i) daily scale adaptive personalized

(DAPer) model that uses only daily basis vector ( ~Bd) and
(ii) weekly scale adaptive personalized (WAPer) model that

uses only weekly basis vector ( ~Bw). MAPer uses both daily
and weekly basis vectors. MAPer can be also generalized to
add more coarse/granular temporal contexts.

3.2 Feature Selection
Cycle Features: The cycle of a behavior can vary across

individual users and individual activities. We extract the cy-
cle length of a behavior time series by applying discrete Fast
Fourier Transform (FFT) analysis, a spectral decomposition
technique where we treat the time series as an input signal.
Although there are other time series decomposition tech-
niques including piecewise polynomial, symbolic, wavelets,
etc. [24], they are out of scope of this paper. We derive a set
of frequencies from the FFT analysis and choose the highest
C frequencies as the relevant cycle features, where the fre-
quencies are sorted according to their amplitudes. We plug
in these C frequencies as the cycle features in the models
corresponding to Equation 2 to Equation 5.

Interaction Features: Considering all activities for mod-
eling interaction can introduce noise rather than signal and
increase the feature space prohibitively, since only a subset
of behaviors interact with each other usually. To select a
subset of activities that interact with our target activity k,
we propose a frequent item-set mining approach. Specifi-
cally, for each day we sample every two hours and create

an itemset of activities that took place during that window.
We empirically set the window length to two hours. We do
not use a strict window to create itemsets as (i) it results
into large number of unique itemsets (i.e., occur only once),
(ii) it can not capture fluctuation of routine: one may fre-
quently have dinner at anytime between 7.30pm to 8.30pm.
After all the itemsets are generated over the training set, we
generate the closed itemsets2 using ECLAT [5], a fast algo-
rithm for frequent item set mining. For each activity of our
interest, we sort other activities that appear in the closed
itemsets based on how frequently they co-occur. Finally,
for each activity k we use the top three activities derived
from the closed item set such that they precede the k-th ac-
tivity. The interaction features for activity k are extracted
from these three activities according to Equation 4. Using
frequent itemset mining for interaction features is scalable
as the number of candidates (i.e., ADLs) for interaction is
limited in our case.

4. CONNECTING TO PAST STUDIES
Although the exact problem we are trying to solve is

unique in the literature, there are various relevant areas of
existing research as presented below.

Time series forecasting: For the task of time series
prediction, the existing algorithms can be broadly catego-
rized as parametric and non-parametric approaches. Para-
metric approaches assume the underlying stationary process
has a structure which can be estimated using a number of
parameters. Hence, these methods normally fit a statisti-
cal model on the time series data and have better inter-
pretability. The Autoregressive Integrated Moving Average
(ARIMA) model [15] is used to forecast a stationary time
series3. The ARIMA model predicts a stationary time se-
ries (yt) using lags of the dependent variable (yt−l) and
lags of forecasting error (et = yt − ŷt). A non seasonal
ARIMA model is expressed as ARIMA(p,d,q) where p,d,
and q are the model parameters corresponding to the num-
ber of auto-regressive terms, the number of nonseasonal dif-
ferences needed for stationarity, and the number of lagged
forecast errors used in the prediction equation. Suppose Yt

denotes the d-th difference of yt, i.e., if d = 0 then Yt=yt,
if d = 1 then Yt=yt − yt−1, and so on. Then the general
forecasting equation for the ARIMA model is

Ŷt ≈ µ+

l∑
i=1

φi · Yt−i +

l∑
i=1

θi · et−i (6)

The ARIMA model is one of the most general time series
forecasting models as many forecasting models are merely a
special case of ARIMA model. For instance, ARIMA(l,0,0)
is the l-th order auto-regressive model expressed as Equa-
tion 1. A seasonal ARIMA (SARIMA) model is a state-
of-art parametric model of time series forecasting. It uses
seasonal lag and differencing to fit the seasonal pattern.
The SARIMA model can be expressed as ARIMA (p,d,q) ×
(P,D,Q), where P, D, and Q denote the number of seasonal
autoregressive terms, the number of seasonal differencing,
and the number of seasonal moving-average terms.
2An itemset is closed if none of its immediate supersets has
the same support as the itemset.
3A time series is stationary if its statistical properties are
constant over time. A non stationary time series can be
made stationary by differencing and non-linear transforma-
tion (if required).



On the other hand, nonparametric approaches (e.g., neu-
ral network based local forecasting models) approximate the
underlying structure of the stationary process that generates
the time series without making any structural assumption.
A comprehensive survey on time series forecasting can be
found in [8]. There are also several variations of vector au-
toregressive methods that aim at multi-dimensional time se-
ries forecasting [18].

Activity Prediction: Although a lot of works from com-
puter vision and sensing community focus on activity recog-
nition, the problem of daily activity prediction is largely
unexplored. A recent work [20] proposes an activity pre-
diction approach using Bayesian network. Unlike us, they
model the problem as a multi-label classification and predict
activity label and relative start time using current activity
label, location, and temporal context. Although they con-
sider daily and weekly context of behavior, their approach
does not quantify the effect of different temporal features
and lacks explanatory power. Pentland et al. propose that
some human behaviors (e.g., driving, running) can be de-
scribed as a set of dynamic models (e.g., Kalman filters)
sequenced together by a Markov chain. However, as their
application domain involves more granular behavior, it does
not require quantifying the effect of cycle on behavior or how
lag/cycle varies with multi-scale temporal contexts.

Zhu et al. focus on predicting user activity level in social
networks to facilitate churn prediction (i.e., identify users
who are likely to leave a service) [27]. They build a person-
alized and socially regularized time decay model based on
logistic regression to capture effects of user diversity, social
influence on future activity level. A novel approach of ac-
tivity prediction was proposed in [25]. They predict a set
of future popular activities by analyzing textual content of
Twitter posts using keyword matching. Unlike other works
[20, 27], they focus on aggregated behavior rather than indi-
vidual behavior. Although these research focus on behavior
prediction, unlike us they do not explicitly quantify the ef-
fect of different temporal factors (e.g., lag, cycle) on regular
human behavior.

Modeling Temporal Behavior: Recently, the tempo-
ral modeling of online user population has been extensively
studied in order to improve query search performance [22,
4, 17], to understand and model content generation in so-
cial networking sites [1, 2], and to model mobile behavior of
users [10, 19].

For example, aiming to improve the query auto-suggestion
and the ranking results, Radinsky et al. recently developed
a temporal modeling framework that predicts temporal pat-
terns of aggregated web search behavior [22]. Specifically,
they model temporal features, like, trend, periodicity, and
sudden spikes of queries by using dynamic state space mod-
els. Although their work is similar to ours in terms of mod-
eling behavior based on temporal features, they focus on
temporal modeling of search queries, while our study fo-
cuses on directly modeling the temporal behavior of humans.
Baskaya et al. analyzed the effects of a set of search-related
human behaviors (e.g., formulate a query, scan, click a link)
on retrieval performance [4]. In [17] the authors studied how
search behaviors of users evolve over time, e.g., long term
users demonstrate more complex behavior than newbies.

In addition to improving query based content-search, tem-
poral modeling has also been explored to analyze user be-
havior in social media or on content sharing platforms. Abel

Name Entities Span Domain
Search log 1307 users 3 months Need based behavior
Twitter 1274 users 5 months Habitual behavior
ARAS 27 ADLs 1 month Multi-resident home
HOLMES 14 ADLs 3 months Single-resident home

Table 1: Summary of datasets used for evaluation.

et al. demonstrated how temporal profiling of Twitter users
based on their shared contents facilitates personalized news
article recommendation [1]. Although these previous studies
mostly analyzed user generated textual contents for model-
ing the temporal dynamics, our proposed temporal model-
ing of individual-level human behavior could facilitate their
goals as well.

5. EXPERIMENTAL SETUP

5.1 Data
To evaluate the effectiveness and generality of our model

we use four benchmark datasets each representing different
aspects of human behavior. The datasets are summarized
in Table 1. The details are described below4.

Search Log Data Representing Need Based Behavior
We use AOL search log data [21] for predicting temporal
query search behavior. This dataset consists of around 20M
web queries collected from 650k users. The data was col-
lected for over three months starting from March 2006 to
May 2006. The dataset includes anonymized user ID, search
query, time stamp of query, and click information (whether
a search result was clicked or not). The data is sorted by
anonymous user ID and is sequentially arranged according
to their time stamps. We have used a subset of this dataset
containing 1307 unique users so that each user has a search
log spanning 60 days. In our sampled dataset there are
449,423 unique queries in total. However, from our experi-
ments we discover that our modeling approach is generaliz-
able to other cases where the training phase is as small as 2
weeks (Section 6.3.1).

We consider number of unique queries per hour as the be-
havior sample and generate a normalized behavior sample
matrix as described in Section 2.2. Other choices of be-
havior samples include number of queries, number of clicks,
duration of a session. Also, the temporal resolution of the
interval (i.e., hour) can be adjusted to different granularity
(e.g., week, day).

Twitter Data Representing Habitual Behavior
We use a Twitter dataset [7] for predicting users’ temporal
social media behavior. It consists of 121,022 users and more
than 9 million time-stamped tweets that were collected from
September 2009 to January 2010. However, it does not in-
clude any re-tweet and follow relationships. We sample the
dataset to obtain the users who have Twitter posts spanning
over at least 120 days. In total we obtain 1,275,709 tweets
from 1,274 Twitter users for evaluating our predictive model.

We consider number of tweets per hour as the behavior
sample. Alternatively, one can use number of Twitter mes-
sages, number of re-tweets, duration of Twitter session, or
a weighted combination of these as a behavior sample. The

4The datasets are available here: https://goo.gl/Za0YIs



generation of a Twitter behavior sample matrix is similar to
the generation of a search log behavior sample matrix.

ARAS: ADL Data from a Multi Resident Setting
We consider Activities of Daily Living (ADL) data as the
behavior captured from physical world where each activity
corresponds to a behavior.

We use the ARAS smart home project [3] dataset as a
multi-resident ADL dataset. It contains labelled sensor data
from a system deployed in a smart home of 2 residents. This
dataset has 27 annotated activities of daily living for each
user. It contains start time and end time of each activ-
ity. With a preference to model and predict health related
behaviors, we focus on 5 behaviors from each user. They
are: sleeping, snacking, having breakfast, lunch, and dinner.
However, for resident 2, the number of samples for having
breakfast, lunch and dinner are too few. So we model 7
activities for 2 users in total: sleeping of both residents,
snacking of both residents, and breakfast, lunch, and dinner
of resident 1.

HOLMES: ADL Data from a Single Resident Setting
We use HOLMES dataset as a single resident ADL dataset
[13]. We use three months data from this dataset. It con-
tains 15 annotated activities from which we model the fol-
lowing health related activities: sleeping, breakfast, lunch,
dinner, snack, shower, and cooking.

While in case of the Twitter data and the search log data
we model each user separately, in case of the ADL data we
perform forecasting of each activity of each user separately5.
Unlike the Twitter or search log data, we use the duration of
an activity as the behavior sample instead of count of activ-
ity since most of the ADL take place only once per interval.
We sample each activity duration every half an hour for each
day to form a time series of duration of each activity. Later,
we vary the temporal resolution/scale to demonstrate the
effect of temporal resolution on the prediction accuracy. We
normalize the behavior sample matrix, M such that if activ-
ity k takes place over the whole span of interval j on day i,
then Mk

i,j contains 1; if activity ak takes place over half of

the span of interval j of day i, then Mk
i,j contains 0.5 and

so on.

5.2 Comparing with Baseline Methods
1. Moving Average (MA): As one of the simplest time

series forecasting method, the moving average method pre-
dicts average of l lag values as the next value. We modify
the original moving average model to include the effect of
cycle. Specifically, the prediction at yt is the average of all l
lag components and all c cyclic components. Using our be-
havior sample matrix, the lag components are selected from
l previous columns of the same row and the cycle compo-
nents are selected from c previous rows of the same column.
Mathematically,

ŷt ≈ 0.5×

(∑l
i=1 yt−i

l
+

∑c
i=1 y(t−i∗24)

c

)
.

In our experiments we set l = 4 hours and c = 14 days. To
compare the performance of MAPer with a non-parametric

5
Given a Twitter dataset that annotates different activities of a user

(e.g., tweeting, re-tweeting, sending message), we can model each ac-
tivity of a Twitter user separately too.

baseline method that considers both lag and cycle, we use
this method.

2. Auto regression with Cycle Component (AR-
C): Equation 2 refers to this baseline method.

To compare the performance of MAPer with a parametric
baseline method that considers both lag and cycle, we use
this method. It is also used to highlight the effectiveness of
adaptive learning.

5.3 Comparing with state-of-art
We compare MAPer with the SARIMA model, a para-

metric state-of-art forecasting model described in Section 4.
We use an R implementation of SARIMA model provided in
[14]. For parameter estimation of SARIMA model, we use
a function that conducts a search over all possible models
and return the best model according to AIC value. We use
this model to explore the predictive power of MAPer across
different behavior domains.

For the SARIMA model and MAPer, we perform two pa-
rameter estimation settings: global and local. In general, we
divide a chronologically sorted behavior dataset into train-
ing and testing sets. For global parameter estimation, we
estimate the parameters only once using the full training
set. But for local parameter estimation, we take a sliding
window approach to form a separate training set for each
point of test set. Specifically, for predicting i-th point in the
test set, we construct the training set from (i−w) to (i− 1)
point where w is the length of the sliding window.

5.4 Response Variable and Metrics
We evaluate our model mainly in a regression setting to

predict the future intensity of a behavior marker based on
its historical samples. In this setting, the content of each cell
of behavior sample matrix acts as a response variable (yi)
where yi ∈ [ 0, 1] . The features described in Section 3 act
as the predictor variables. We measure the performance in
terms of two standard evaluation metrics: mean square error
(MSE) of prediction and Pearson correlation (PC) between
the actual y and the predicted y.

We compare the baselines described in Section 5.2 with
MAPer and show how effective the various features (de-
scribed in Section 3) of MAPer are. We also evaluate the ef-
fectiveness of (i) multi-scale adaptive features, (ii) personal-
ized modeling, and (iii) interaction among activities. While
comparing different methods, we set the corresponding pa-
rameters to default values. Later, we perform sensitivity
analysis by varying its hyper-parameters.

6. EXPERIMENTAL RESULTS

6.1 Effectiveness of MAPer

6.1.1 Comparing with Baseline Methods

In this section we compare the performance of MAPer
with two baseline methods (Section 5.2). Referring to Ta-
bles 2 and 3, MAPer outperforms all baseline methods
in terms of MSE for search log, Twitter, and HOLMES
data. MAPer increases the Pearson Correlation at least 1.5
times when compared to the baseline methods for all of the
datasets. This highlights the significance of using tempo-
rally adaptive learning method where the significance of lag
and cycle features varies over time.



Baseline Methods state-of-art Multi-scale Adaptive Methods % Improvement
Dataset MA AR-C Global SARIMA Local SARIMA Global MAPer Local MAPer over state-of-art

Search log 0.046 0.045 0.065 0.048 0.045 0.041 14.6
Twitter 0.056 0.052 0.073 0.065 0.049 0.045 30.7
ARAS 0.032 0.017 0.042 0.011 0.018 0.016 -

HOLMES 0.021 0.001 0.082 0.001 0.001 0.0009 10

Table 2: Comparing different methods in terms of mean MSE. The best performing (statistically significant) results are shown
in bold. The right-most column shows the performance improvement of MAPer over the state-of-art (Local SARIMA). Local
models outperforms global models and MAPer results into the lowest prediction error.

Baseline Methods state-of-art Multi-scale Adaptive Methods % Improvement
Dataset MA AR-C Global SARIMA Local SARIMA Global MAPer Local MAPer over state-of-art

Search log 0.180 0.165 0.098 0.479 0.228 0.337 -
Twitter 0.277 0.330 0.079 0.254 0.410 0.491 93.3
ARAS 0.239 0.384 0.204 0.7166 0.446 0.782 9

HOLMES 0.296 0.104 0.136 0.340 0.277 0.583 71.5

Table 3: Comparing different methods in terms of mean Pearson Correlation. MAPer outperforms the SARIMA model
for all datasets except the search log data.

6.1.2 Comparing with SARIMA

Tables 2 and 3 demonstrate that the local model out-
performs the global model for all four datasets in case of
both the SARIMA model and MAPer. This highlights the
dynamic pattern of human behavior. In subsequent sections
we use only the local estimation approach, i.e., MAPer refers
to local MAPer.

In terms of MSE, MAPer with local parameter estimation
outperforms SARIMA for both online behavior dataset and
for HOLMES dataset. Specifically, it reduces MSE from the
SARIMA model by 14.6%, 30.7%, and 10% for search log,
Twitter, and HOLMES dataset, respectively. This perfor-
mance improvement is statistically significant at 95% confi-
dence interval as found in a pair wise t-test. In terms of Pear-
son correlation, MAPer increases the performance by about
93.3%, 9%, and 71.5% for Twitter, ARAS, and HOLMES
data, respectively. The local SARIMA model performs bet-
ter than MAPer in terms of Pearson correlation for search
log data. Because, issuing search query is a need based
behavior and MAPer performs better in case of predicting
habitual behavior.

Overall, MAPer demonstrates better or at least equal pre-
dictive power to SARIMA model for all four datsets. In case
of Twitter, MAPer significantly outperforms the SARIMA
model as Twitter behavior is habitual and MAPer is de-
signed to capture the dynamics of habitual behavior over
multi-scale temporal contexts. Among the ADL datasets,
MAPer performs at least as good as the SARIMA model.
The ground truth suggests more regular activity pattern
for the HOLMES dataset rather than the ARAS data. So
MAPer outperforms the SARIMA in terms of both perfor-
mance metrics for HOLMES dataset.

6.1.3 Effect of Multi-scale Temporal Adaptive Fea-
tures

We measure the effectiveness of using multi-scale adap-
tive features. Specifically, we compare performances of daily
scale adaptive (DAPer), weekly scale adaptive (WAPer), and
multi-scale adptive (MAPer) models (Table 4). For search
log and Twitter, MAPer shows better prediction perfor-
mance as it has lower MSE and higher Pearson correlation.
For the two activities of daily living (ADL) datasets, DAPer
results in better performance. These results suggest for on-

Pearson Correlation Mean Square Error
Dataset DAPer WAPer MAPer DAPer WAPer MAPer

Search log 0.33 0.21 0.34 0.041 0.044 0.041
Twitter 0.49 0.40 0.49 0.045 0.048 0.045
ARAS 0.78 0.68 0.78 0.016 0.019 0.016

HOLMES 0.58 0.33 0.58 0.0009 0.0009 0.0009

Table 4: Analyzing the effect of using multi-scale adaptive
features: the best performing statistically significant results
are shown in bold. For online behavior, considering both
daily and weekly contexts results in better prediction re-
sult while for activities of daily living considering only daily
context yields better results.

line behavior considering both hour of the day and day of the
week as potential temporal contexts results in better perfor-
mance and for ADL behavior considering only the hour of
the day results in better performance in this case. It should
be noted that for both of the ADL datasets, most of the ac-
tivities have very low number of samples when compared to
the number of samples of online behavior datasets. Hence it
is more difficult to capture behavior variation across weekly
scale for the ADL datasets.

6.1.4 Effect of Personalization

So far we have assumed to predict individual level behav-
ior we need to estimate the model parameters from corre-
sponding individual user’s data. In this section we compare
personalized modeling approach with aggregated modeling
approach. In case of aggregated approach we estimate model
parameters using aggregated behavior data and then use
those parameters for individual level prediction. Following
Table 5, personalization drastically increases performance of
prediction for both search log and Twitter behavior: Pearson
correlation increases more than 2.5 times for both datasets
and MSE decreases by as much as 64%. Improvement of
search log data is higher than the improvement of Twitter
data. We perform this experiment only for online behavior
data as for the ADL datasets we have no more than two
individuals.

6.1.5 Effect of Interaction

In this section we present the results of analysing inter-
action among activities and the effect of interaction on pre-
diction. Table 6 presents the set of interactive activities for
each activity that we want to model in case of the ARAS



(a) AR-C model (b) MAPer model

Figure 3: Demonstrating how our modeling approach explains effect of different parameters using heatmap for randomly
chosen 100 search log users. Each row represents a user and each column of a row represents the significance of a parameter
for modeling the users behavior. Red (the darker shade) and green indicate significance and insignificance of corresponding
parameters, respectively. Users who are similar in terms of their behavior model (i.e., set of learned parameters from training
model), are clustered together.

Pearson Correlation Mean Square Error
Search log Twitter Search log Twitter

Personalized 0.337 0.491 0.041 0.045
Aggregated 0.127 0.192 0.114 0.064

Improvement 2.65 times 2.56 times 64% 30%

Table 5: Personalized models for each user significantly
improve the prediction performance for both Twitter and
search log datasets.

dataset. We found these interactive activities by adopting
a frequent itemset mining approach (as described in Section
3.2). It indicates both residents 1 and 2 watch TV before
going to sleep. Both of the residents are found to watch
TV while having snacks. Resident 1 is found to talk on the
phone before having lunch or dinner. These are also con-
firmed in the actual dataset. Although resident 1 washes
dishes often before / after breakfast and lunch, resident 2
washes dishes frequently after dinner and before going to
bed. Hence, for resident 2 washing dishes influences sleep
time. Due to space limitation, we are not showing the inter-
active activities found in HOLMES dataset.

When we consider interaction among activities as features
of prediction we find an increase in prediction performance
of MAPer. The percent improvement of performance due
to adding interaction is presented in Table 7. For exam-
ple, in case of HOLMES dataset, the Pearson correlation of
MAPer without interaction (Equation 5) and MAPer with
interaction (Equation 4) are 0.385 and 0.583, respectively.
So adding interaction features increases Pearson Correlation
by 51% for HOLMES dataset.

6.2 Explanatory Power of MAPer
MAPer is an explanatory model as it uses the features

that are relevant and specific to desirable human behavior.

Activity Influential Activities
R1:sleep brushing teeth, using internet,

watching TV
R2:sleep brushing teeth, watching TV,

washing dishes
R1:snack watching TV, using internet,

talking on the phone
R2:snack watching TV, having shower,

using internet
R1:breakfast preparing breakfast, using internet,

watching TV
R1:lunch preparing lunch, talking on the phone,

watching TV
R1:dinner talking on the phone, watching TV,

preparing dinner

Table 6: Interaction among different activities of ARAS
dataset: the left column contains the activities we want to
predict and the right column contains the activities that in-
teract with them.

Therefore each of the model parameters quantifies the effect
of corresponding feature on the behavior. This is demon-
strated in Figure 3 (a-b) using heatmap representation.
Here we present two heatmaps of model parameters corre-
sponding to the AR-C model and MAPer model for a set of
randomly chosen 100 search log users. Figure 3 (a) demon-
strates the lag and cycle features that are significant in the
AR-C model for the 100 users. Figure 3 (b) demonstrates
the lag, cycle, and multi-scale adaptive features that are sig-
nificant in the MAPer model for the same set of users. Each
row of a heatmap represents a user and each column of a row
represent significance of a parameter (in terms of p-value)
in the behavior model of that user. Here the red cells corre-
spond to the significant parameters. Users who are similar in
terms of their behavior model (i.e., set of learned parameters



Pearson Correlation Mean Square Error
ARAS HOLMES ARAS HOLMES

MAPer
w/o Interaction 0.7169 0.385 0.0184 0.0009

MAPer 0.782 0.583 0.016 0.0009

%Improvement 9 51 15 -

Table 7: Increase in performance due to adding interaction
features.

Parameter Range
Online Behavior Offline Behavior

Scale (hours) 1,2,4,6 1/2,1,2,4

Training set size (weeks) 2,4,6,8 NA6

Lag (hours) 2,3,4,6,8 1/2,1,2,3,4

Table 8: The range of different parameters used in experi-
ments. The default values of parameters are shown in bold.

from training model), are clustered together using hierar-
chical agglomerative clustering algorithm. The explanatory
power of MAPer is multi-fold.

Firstly, when comparing the two figures, we see that MAPer
does not only capture the significance of lag and cycle, but
also the significance of hour of the day and day of the week.
This can serve as a useful behavior model for the end users.
As MAPer not only predicts future behavior but also pro-
vide a set of temporal contexts when the prediction accuracy
of behavior is higher.

Secondly, from Figures 3a and 3b, MAPer has much
higher number of clusters. Here a cluster represents a set
of users who have similar model parameter and thus pre-
sumably similar temporal behavior. So, MAPer essentially
detects similar users in a more granular scale than the AR-C
model. This is useful for detecting user community based on
temporal behavior and finding an equivalent class of users.

Thirdly, unlike several existing methods MAPer directly
quantifies the effect of a feature in behavior modeling. For
instance, from Figure 3b, the feature corresponding to lag
of order 3 is significant for only a handful of users. Thus
we can infer which parameter is more important under dif-
ferent temporal contexts for the behavior modeling of an
individual.

6.3 Sensitivity Analysis
Here we evaluate our model by varying its hyper-parameters:

temporal scale, training set size, and lag length (l). The de-
fault value and range of each parameter are presented in
Table 8.

6.3.1 Varying Training Set Size

Pearson Correlation Mean Square Error
Methods Search log Twitter Search log Twitter

2 weeks 0.4 0.52 0.039 0.044
4 weeks 0.34 0.49 0.041 0.045
6 weeks 0.31 0.45 0.042 0.048
8 weeks - 0.44 - 0.048

% Improvement 31 18 7 8

Table 9: Training set with more recent data results into
better prediction.

In the previous sections we have used a dynamic training
approach where for each data point in test set, we consider
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As the sample size for most of the activities of both ADL dataset

is too small to vary training period, this experiment was performed
only on online behavior data

behavior data from the immediate previous 4 weeks as the
training set. In this section we vary the training set size
according to Table 9 and analyze its effect on prediction
performance.

For search log data we vary training set size as 2, 4, and
6 weeks. For Twitter data, we vary training set size as 2,
4, 6, and 8 weeks. In both cases, smaller training set size
results into smaller MSE and higher Pearson correlation.
This indicates that human behavior changes over time and
recent behavior is a better predictor of future behavior.

6.3.2 Varying Temporal Scale

Pearson Correlation Mean Square Error
Scale Search log Twitter Search log Twitter

1 hour 0.337 0.49 0.041 0.045
2 hours 0.38 0.45 0.022 0.0261
4 hours 0.427 0.49 0.011 0.0138
6 hours 0.431 0.50 0.008 0.0094

Improvement 27% 11% 5 times 4.7 times

Table 10: Varying temporal scale: larger scale results into
better prediction performance for online behavior data.

So far, we have analyzed performance of different baseline
methods and MAPer by keeping the temporal scale 1 hour
for search log and Twitter data and half hour for ADL data.
In this experiment we vary the temporal scale according to
Table 8 and investigate its effect on prediction performance.
We fix the other parameters in their default values.

For search log and Twitter data, higher temporal scale
results into lower MSE and higher Pearson correlation (PC)
(Table 10). Specifically, as we move from 1 hour to 6 hours’
scale, MSE decreases by about 5 times for both datasets. In
terms of PC, with an increase in temporal scale there is 27%
and 11% improvement in case of search log and Twitter data,
respectively. This is because as we move to larger temporal
scale the sparsity of data reduces and the task of parameter
estimation gets less difficult.

On the other hand, in case of both of the ADL datasets
the results vary with different scales without conforming to
any particular trend. Because different temporal scales are
suitable for modeling different activities. For example, while
predicting sleep, half hourly scale results in better perfor-
mance. But for predicting dinner, breakfast, and lunch, 2
hourly scale is more effective as the start time of these activ-
ities slightly vary across different days. On average, there is
45% and 42% performance improvement due to scale varia-
tion in terms of Pearson correlation and mean square error,
respectively. Due to space limit we are not tabulating the
results from the two ADL datasets.

6.3.3 Varying Order of Lag

In this experiment we vary the lag length as described in
Table 8 while keeping the other parameters in their default
values. The MSE values decrease very slightly with increase
of lag for all four datasets. The Pearson correlation increases
by 6.5%, 8.4%, 2% and 3% with increase of lag for search log,
Twitter, ARAS, and HOLMES dataset, respectively. Over
all the effect of changing lag is limited for all datasets. Due
to space limitation, we are skipping the detailed results here.

7. DISCUSSION
Our extensive experiments with four real world behav-

ior data suggest that by using a combination of lag, cy-



cle, and interaction of activities, MAPer improves prediction
performance significantly. They also demonstrate the effec-
tiveness of using an adaptive learning approach that adapts
with multi-scale temporal contexts. These features enable
MAPer to perform equally or better than the parametric
state-of-art SARIMA model. From an extensive sensitivity
analysis, we discover that (i) using only 2 weeks data can
result in higher accuracy for most of the online users, (ii)
using recent training data is more useful as human behav-
ior changes over time, and (iii) the suitable temporal scale
vary over activities. In addition, MAPer yields explanatory
results which can be useful for several interesting applica-
tions. Such as, detecting user community or recommending
friends based on similarity of temporal behavior as explained
in Section 6.2. MAPer can be paired with text mining ap-
proaches to provide personalized information retrieval, i.e.,
retrieving entertainment related queries during weekends.
Other potential application domains where our model is ap-
plicable include personalized human activity understanding,
temporal user profiling, or social recommendations from an
individual user’s online behavior.

We also find that MAPer is not generalizable to all human
behavior as it assumes regularity in behavior. Hence, it’s
performance is limited in case of predicting the need based
behavior (e.g., issuing search query) or random behavior. In
addition, using more granular temporal scales like minutes
instead of hours can incur significant computational cost.
Finally, evaluation using longer ADL datasets can yield more
comprehensive results.

8. CONCLUSION
With the surge of easy online access and ubiquitous sens-

ing, abundant data contents have been generated that cap-
ture the individual human behavior over time. In spite of
having great potentials to provide real-time insights, per-
sonalized temporal modeling of human behavior patterns
remains largely unexplored. In this work, we introduce a
multi-scale adaptive personalized MAPer model, an easy-
to-interpret and simple-to-build predictive method for mod-
eling the temporal dynamics of human behavior. Through
results obtained from four real datasets of multiple individ-
uals’ behavior records over time, our model yields statisti-
cally significantly better predictions than a parametric state-
of-art method (SARIMA model). Specifically, MAPer re-
duces the mean square error of the SARIMA model by about
15%, 31%, and 10% for the Twitter, ARAS, and HOLMES
datasets, respectively.

Currently we are using only temporal footprint of activi-
ties. In the future, we want to model behavior by extracting
textual features from user generated contents. We also want
to combine virtual and physical world behaviors of an indi-
vidual using smart devices.

9. ACKNOWLEDGMENTS
This paper was supported, in part, by NSF grant CNS-

1319302.

10. REFERENCES
[1] F. Abel, Q. Gao, G.-J. Houben, and K. Tao. Analyzing user

modeling on twitter for personalized news recommendations. In
User Modeling, Adaption and Personalization, pages 1–12.
Springer, 2011.

[2] E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. Why we
search: visualizing and predicting user behavior. In Proceedings

of the 16th international conference on World Wide Web
(WWW), pages 161–170. ACM, 2007.

[3] H. Alerndar, H. Ertan, O. D. Incel, and C. Ersoy. Aras human
activity datasets in multiple homes with multiple residents. In
IEEE PervasiveHealth, 2013.

[4] F. Baskaya, H. Keskustalo, and K. Järvelin. Modeling
behavioral factors ininteractive information retrieval. In
Proceedings of the 22nd ACM international conference on
information & knowledge management (CIKM), pages
2297–2302. ACM, 2013.

[5] C. Borgelt. Frequent item set mining. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery,
2(6):437–456, 2012.

[6] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral
targeting. In ACM SIGKDD, 2009.

[7] Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a
content-based approach to geo-locating twitter users. In ACM
SIGKDD, 2010.

[8] M. Clements and D. Hendry. Forecasting economic time series.
Cambridge University Press, 1998.

[9] J. F. Desforges, W. B. Applegate, J. P. Blass, and T. F.
Williams. Instruments for the functional assessment of older
patients. New England Journal of Medicine,
322(17):1207–1214, 1990.

[10] H. Gao, J. Tang, X. Hu, and H. Liu. Modeling temporal effects
of human mobile behavior on location-based social networks. In
ACM CIKM, 2013.

[11] S. A. Golder, D. M. Wilkinson, and B. A. Huberman. Rhythms
of social interaction: Messaging within a massive online
network. In Communities and Technologies 2007, pages 41–66.
Springer, 2007.

[12] J. D. Hamilton. Time series analysis, volume 2. Princeton
university press Princeton, 1994.

[13] E. Hoque, R. F. Dickerson, S. M. Preum, M. Hanson, A. Barth,
and J. A. Stankovic. Holmes: A comprehensive anomaly
detection system for daily in-home activities. In Proceedings of
the 11th IEEE international conference on distributed
computing in sensor systems, 2015.

[14] R. J. Hyndman, Y. Khandakar, et al. Automatic time series for
forecasting: the forecast package for r. Technical report,
Monash University, Department of Econometrics and Business
Statistics, 2007.

[15] M. G. Kendall and J. K. Ord. Time-series, volume 296.
Edward Arnold London, 1990.

[16] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity
recognition using cell phone accelerometers. ACM SigKDD
Explorations Newsletter, 12(2):74–82, 2011.

[17] J. Liu, Y. Liu, M. Zhang, and S. Ma. How do users grow up
along with search engines?: a study of long-term users’
behavior. In ACM CIKM, 2013.

[18] H. Lütkepohl. Vector autoregressive models. Springer, 2011.

[19] M. Naaman, A. X. Zhang, S. Brody, and G. Lotan. On the
study of diurnal urban routines on twitter. In ICWSM, 2012.

[20] E. Nazerfard and D. J. Cook. Using bayesian networks for daily
activity prediction. In AAAI Workshop: Plan, Activity, and
Intent Recognition, 2013.

[21] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search.
In InfoScale, volume 152, page 1. Citeseer, 2006.

[22] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and
E. Horvitz. Modeling and predicting behavioral dynamics on
the web. In ACM WWW, 2012.

[23] J. Scott, A. Bernheim Brush, J. Krumm, B. Meyers, M. Hazas,
S. Hodges, and N. Villar. Preheat: controlling home heating
using occupancy prediction. In Proceedings of the 13th
international conference on Ubiquitous computing, pages
281–290. ACM, 2011.

[24] P. V. Senin. Literature review on time series indexing. 2009.

[25] W. Weerkamp and M. De Rijke. Activity prediction: A
twitter-based exploration. In SIGIR Workshop on Time-aware
Information Access, 2012.

[26] M. Ylvisaker and T. J. Feeney. Collaborative brain injury
intervention: Positive everyday routines. Singular Publishing
Group, 1998.

[27] Y. Zhu, E. Zhong, S. J. Pan, X. Wang, M. Zhou, and Q. Yang.
Predicting user activity level in social networks. In ACM
CIKM, 2013.


