
STRING KERNEL TESTING ACCELERATION
USING

MICRON’S AUTOMATA PROCESSOR
Chunkun Bo1,2, Ke Wang1,2, Yanjun (Jane) Qi1, Kevin Skadron1,2

1Department of Computer Science
2Center for Automata Processing

University of Virginia
June 14th, 2015

Outline
v  Motivation & Contribution
v  Introduction to Micron’s Automata Processor
v  Introduction to String Kernel (SK)
v  Automata design for various SK mapping

functions
v  Initial Performance Evaluation
v  Summary & Future Work

2

Motivation

3

• String Kernel (SK) is a widely used kernel in machine
learning and text mining

•  Fast processing is required, especially for the testing
phase

•  Feature vector mapping is the current performance
bottleneck, which involves a lot of pattern matching

• Micron’s Automata Processor (AP) can implement
nondeterministic finite automata (NFA) directly in
hardware, and match complex regular expressions in
massive parallelism

Using the AP to accelerate String Kernel Testing

Contributions

• Propose a novel AP-accelerated framework for String
Kernel

• Present various automata designs that can process
different mapping functions
•  E.g. mismatch kernel, gappy kernel, spacial kernel, etc.

• Compare the proposed method with state-of-the-art CPU
methods
•  Performance results show great speedup

4

AP Architecture Overview
•  An efficient and scalable semiconductor
 architecture for parallel automata processing
•  Functional Elements

•  State Transition Elements (STE)
- consist of current state memory and next state decoder

 - start, all-input, reporting
•  Counter Elements (12-bit)
•  Boolean Elements
 - OR, AND, NAND, NOR, sum of products, etc.

•  Hardware resources of a
 32-chip AP board:

•  STEs: 1,572,864
 Reporting STEs: 196,608
•  Counter Elements: 24,576
•  Boolean Elements: 73,728
•  133 MHz
•  FPGA

5

Introduction to AP
• Uses a non-Von-Neumann architecture and directly implements

NFA in hardware
• Capable of matching complex regular expressions

6

Introduction to AP
• Programming

•  Automata Network Markup Language (ANML): describes
composition of automata networks

•  Graphical user interface tool (AP Workbench)
•  C and Python interfaces
•  Macro: a container of automata

• Reconfiguration

•  Symbols in an STE can be reconfigured
•  Takes 0.24ms for one block

7

Introduction to String Kernel
• Definition

• A function to differentiate strings

• Subsequence:
• Any ordered sequence of K characters
occurring in input sequence (not necessarily
contiguously)

• Also known as K-mers
• E.g. cart -> car, art, cat, crt

8

Introduction to String Kernel

9

• Mapping function ϕ(x)
•  Project the input sequence to a high-dimensional feature

space generated by the K-mers
•  Make it possible to draw the hyper-plane to classify the input

sequences

• Kernel function
•  Inner product in the feature space
•  K(x , y) = < ϕ(x), ϕ(y) >

• Kernel Matrix (N × N)
•  Stores all the inner products of input pairs

Introduction to String Kernel
• Why is it important?

• Extension of previous classification methods that cannot
be vectorized

• Able to process sequence data
• A critical kernel for many applications

E.g. bio-sequence analysis (DNA/RNA/Protein classification)
text/document classification
action categorization
…

• Challenges
• Computationally expensive for large data sets
•  Fast computation of feature vector is required,

especially for testing

10

String Kernel Method Procedure

Define
mapping
function

Calculate
kernel function

Build Kernel
Matrix

Output to
following model

•  Exact K-mers
•  Mismatch K-mers
•  Gappy K-mers
•  Wildcard K-mers
•  Spatial K-mers
•  …….

Time
complexity

improvement

Space
complexity

improvement

11

ca at ar ba rt
cat 1 1 0 0 0
car 1 0 1 0 0
bat 0 1 0 1 0
bar 0 0 1 1 0
cart 1 0 1 0 1

Design in AP
• Exact Match Kernel

•  K = 2
•  Input: cat, car, bat, bar, cart
•  Kernel Function Results

k(bat, car) = 0
k(cat, car) = 1

12

Design in AP
•  Gappy kernel

• K = 3
•  g <= 2

•  Mismatch kernel
• K = 3
• m = 0, 1

13

Design in AP
• Spatial Kernel

•  t = 2, k = 1, d < 5
Input1 = HKYNQLM
Input2 = HKINQIIM

14

d = 0 d = 1 d = 2

Time Complexity Improvement

Method Complexity
Gappy1 O(gg-knN)
Mismatch1 O(Km+1|Σ|mnN)
Wildcard1 O(Km+1nN)
Spatial(double)
(Triple)2

O(dnN)
O(d2nN)

• AP time complexity: O(nN)

• CPU algorithm time complexity

N: number of input sequences
n: sequence length
K: subsequent length
 g: gaps allowed
 m: mismatch allowed
|Σ|: dictionary size
d: distance between subsequence

15

1Leslie, Christina, and Rui Kuang. "Fast string kernels using inexact matching for protein sequences."
The Journal of Machine Learning Research, 2004

2Kuksa, Pavel. "Scalable kernel methods and algorithms for general sequence analysis." PhD diss.,
Rutgers University-Graduate School-New Brunswick, 2011.

Experiment Setup
• Use PatMaN as the representative CPU method

• PatMaN: fast tool for searching nucleotide sequence in
large databases, allowing for a predefined number of
gaps and mismatches
https://bioinf.eva.mpg.de/patman/

• Different mismatch number: 0, 1, 2, 3, 4, 5
• Different input length: 50million ~ 500million
• Experiment data:

•  Input sequence: DNA sequence
• Pattern Data: 200,000 25-mers

16

AP design
• Structure for mismatch kernel

Sequence “ATGCATGCATGCATCATGCATGCAA”, K = 25, m = 3

Sequence “AKQ”, K = 3, m = 1

17

Performance Evaluation
18

• Both AP and PatMaN time
increase linearly as input
size increases

• PatMaN increases much
more severely

• Different mismatch
distances: similar trends

Performance Evaluation
19

• PatMaN increases
exponentially

• AP increases linearly

• Speedups increases
exponentially

 8.5x ~ 3980x

Summary & Future Work
• Summary

• Presented an AP-accelerated method for String Kernel
• Showed various automata designs for mapping

functions
• Achieved 8.5x to 3980x speedup

• Future Work
• Evaluate accuracy
• Solve larger data sets
• Compare with other CPU methods (e.g. GPU, FPGA)

20

Thanks!

21

Questions?

http://www.cap.virginia.edu

