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Motivation 
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• String Kernel (SK) is a widely used kernel in machine 
learning and text mining 

•  Fast processing is required, especially for the testing 
phase 

•  Feature vector mapping is the current performance 
bottleneck, which involves a lot of pattern matching 

• Micron’s Automata Processor (AP) can implement 
nondeterministic finite automata (NFA) directly in 
hardware, and match complex regular expressions in 
massive parallelism 

Using the AP to accelerate String Kernel Testing 
 



Contributions 

• Propose a novel AP-accelerated framework for String 
Kernel 

• Present various automata designs that can process 
different mapping functions 
•  E.g. mismatch kernel, gappy kernel, spacial kernel, etc.  

• Compare the proposed method with state-of-the-art CPU 
methods 
•  Performance results show great speedup 
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AP Architecture Overview 
•  An efficient and scalable semiconductor  
  architecture for parallel automata processing 
•  Functional Elements 

•  State Transition Elements (STE) 
- consist of current state memory and next state decoder 

  - start, all-input, reporting 
•  Counter Elements (12-bit) 
•  Boolean Elements 
   - OR, AND, NAND, NOR, sum of products, etc. 

•  Hardware resources of a  
   32-chip AP board: 

•  STEs: 1,572,864 
   Reporting STEs: 196,608 
•  Counter Elements: 24,576 
•  Boolean Elements: 73,728 
•  133 MHz 
•  FPGA 
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Introduction to AP 
• Uses a non-Von-Neumann architecture and directly implements 

NFA in hardware 
• Capable of matching complex regular expressions 
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Introduction to AP 
• Programming 

•  Automata Network Markup Language (ANML): describes 
composition of automata networks 

•  Graphical user interface tool (AP Workbench) 
•  C and Python interfaces 
•  Macro: a container of automata 

 
• Reconfiguration 

•  Symbols in an STE can be reconfigured 
•  Takes 0.24ms for one block 
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Introduction to String Kernel 
• Definition 

• A function to differentiate strings 
 

• Subsequence: 
• Any ordered sequence of K characters 
occurring in input sequence (not necessarily 
contiguously) 

• Also known as K-mers 
• E.g. cart -> car, art, cat, crt 

 
 
 
 

 

8 



Introduction to String Kernel 
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• Mapping function ϕ(x) 
•  Project the input sequence to a high-dimensional feature 

space generated by the K-mers 
•  Make it possible to draw the hyper-plane to classify the input 

sequences 
 

• Kernel function 
•  Inner product in the feature space 
•  K(x , y) = < ϕ(x), ϕ(y) > 
 

• Kernel Matrix (N × N) 
•  Stores all the inner products of input pairs 



Introduction to String Kernel 
• Why is it important? 

• Extension of previous classification methods that cannot 
be vectorized 

• Able to process sequence data 
• A critical kernel for many applications 

E.g. bio-sequence analysis (DNA/RNA/Protein classification) 
text/document classification 
action categorization 
… 

• Challenges 
• Computationally expensive for large data sets 
•  Fast computation of feature vector is required, 

especially for testing 
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String Kernel Method Procedure 

Define 
mapping 
function 

Calculate 
kernel function 

Build  Kernel 
Matrix 

Output to 
following model 

•  Exact K-mers  
•  Mismatch K-mers 
•  Gappy K-mers 
•  Wildcard K-mers 
•  Spatial K-mers 
•  ……. 

Time 
complexity 

improvement 

Space 
complexity 

improvement 
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ca at ar ba rt 
cat 1 1 0 0 0 
car 1 0 1 0 0 
bat 0 1 0 1 0 
bar 0 0 1 1 0 
cart 1 0 1 0 1 

Design in AP 
• Exact Match Kernel  

•  K = 2 
•  Input: cat, car, bat, bar, cart 
•  Kernel Function Results 

k(bat, car) = 0 
k(cat, car) = 1 
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Design in AP 
•  Gappy kernel 

• K = 3 
•  g <= 2 

•  Mismatch kernel 
• K = 3 
• m = 0, 1 
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Design in AP 
• Spatial Kernel 

•  t = 2, k = 1, d < 5 
Input1 = HKYNQLM 
Input2 = HKINQIIM 
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d = 0 d = 1 d = 2 



Time Complexity Improvement 

Method Complexity 
Gappy1 O(gg-knN) 
Mismatch1 O(Km+1|Σ|mnN) 
Wildcard1 O(Km+1nN) 
Spatial(double) 
(Triple)2 

O(dnN) 
O(d2nN) 

• AP time complexity: O(nN) 

• CPU  algorithm time complexity 

N: number of input sequences 
n: sequence length  
K: subsequent length 
 g: gaps allowed 
 m: mismatch allowed 
|Σ|: dictionary size  
d: distance between subsequence 
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Experiment Setup 
• Use PatMaN as the representative CPU method 

• PatMaN: fast tool for searching nucleotide sequence in 
large databases, allowing for a predefined number of 
gaps and mismatches 
https://bioinf.eva.mpg.de/patman/ 

• Different mismatch number: 0, 1, 2, 3, 4, 5 
• Different input length: 50million ~ 500million 
• Experiment data:  

•  Input sequence: DNA sequence  
• Pattern Data: 200,000 25-mers 
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AP design 
• Structure for mismatch kernel 

Sequence “ATGCATGCATGCATCATGCATGCAA”, K = 25, m = 3 

Sequence “AKQ”, K = 3, m = 1 
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Performance Evaluation 
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• Both AP and PatMaN time 
increase linearly as input 
size increases 

• PatMaN increases much 
more severely 

• Different mismatch 
distances: similar trends 

 



Performance Evaluation 
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• PatMaN increases 
exponentially 

• AP increases linearly 

 

• Speedups increases 
exponentially 

  8.5x ~ 3980x 

 



Summary & Future Work 
• Summary 

• Presented an AP-accelerated method for String Kernel 
• Showed various automata designs for mapping 

functions 
• Achieved 8.5x to 3980x speedup 

• Future Work 
• Evaluate accuracy 
• Solve larger data sets 
• Compare with other CPU methods (e.g. GPU, FPGA) 
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Thanks! 
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Questions? 

http://www.cap.virginia.edu 
 


