
MUST-CNN: A Multilayer Shift-and-Stitch Deep Convolutional Architecture for
Sequence-based Protein Structure Prediction

Zeming Lin
Department of Computer Science

University of Virginia
Charlottesville, VA 22904
zl4ry@virginia.edu

Jack Lanchantin
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

jjl5sw@virginia.edu

Yanjun Qi
Assistant Professor

Department of Computer Science
University of Virginia

Charlottesville, VA 22904
yq2h@virginia.edu

Abstract

Predicting protein properties such as solvent accessibil-
ity and secondary structure from its primary amino acid
sequence is an important task in bioinformatics. Re-
cently, a few deep learning models have surpassed the
traditional window based multilayer perceptron. Tak-
ing inspiration from the image classification domain we
propose a deep convolutional neural network architec-
ture, MUST-CNN, to predict protein properties. This
architecture uses a novel multilayer shift-and-stitch
(MUST) technique to generate fully dense per-position
predictions on protein sequences. Our model is signifi-
cantly simpler than the state-of-the-art, yet achieves bet-
ter results. By combining MUST and the efficient con-
volution operation, we can consider far more parameters
while retaining very fast prediction speeds. We beat the
state-of-the-art performance on two large protein prop-
erty prediction datasets.

Introduction
Proteins are vital to the function of living beings. It is easy
to determine the sequence of a protein, yet it is difficult to
determine other properties, such as secondary structure and
solvent accessibility. These properties are hypothesized to
be almost uniquely determined by primary structure, but it
is still computationally difficult to determine them on a large
scale.

Previous state-of-the-art methods for protein secondary
structure prediction use multilayer perceptron (MLP) net-
works (Qi et al. 2012; Drozdetskiy et al. 2015). In order to
predict a per-position label for each amino acid in the input
protein sequence, MLP networks must use a “windowing”
approach where a single label is predicted by feeding the
target amino acid and its surrounding amino acids through
the network. This is then repeated for each amino acid in the
sequence. These architectures generally has two major draw-
backs due to the windowing approach: (1) they take a long
time to train, on the order of days or weeks and (2) they have
smaller window sizes, and thus cannot make longer range
connections. For instance, the PSIPRED algorithm handles
a window size of only 15 amino acids (Jones 1999).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To overcome the windowing issue, we propose to use a
convolutional neural network (CNN) which can label the
properties of each amino acid in the entire target sequence
all at once. CNNs have been used successfully in computer
vision (Pinheiro and Collobert 2013; Szegedy et al. 2014)
and natural language processing (Kim 2014; Collobert and
Weston 2008). In addition to parameter sharing and pooling,
which reduce computation, CNNs are also highly paralleliz-
able. Thus, CNNs can achieve a much greater speedup com-
pared to a windowed MLP approach. The issue when trying
to label each position in an input sequence with a CNN is
that pooling leads to a decreased output resolution. To han-
dle this issue, we propose a new multilayer shift-and-stitch
method which allows us to efficiently label each target input
at full resolution in a computationally efficient manner.

We show that a MUltilayer Shift-and-sTitch CNN
(MUST-CNN) trained end-to-end and per-position on pro-
tein property prediction beats the state-of-the-art without
other machinery. To our knowledge, we are the first to train
convolutional networks end-to-end for per-position protein
property prediction. Both learning and inference are per-
formed on entire arbitrarily sized sequences. Feedforward
computation and backpropagation is made possible by our
novel application of the shift-and-stitch technique on the en-
tire sequence.

In summary we make the following contributions:
1. Beat the state-of-the-art performance on two large

datasets of protein property prediction tasks.
2. Propose a multilayer shift-and-stitch technique for deep

CNNs, which significantly speeds up training and test
time and increases the size of the model we can train.

3. Propose a generic end-to-end system for per-position la-
beling on the sequence level. That is, for a sequence
{ak}nk=1, we can generate labels {yk}nk=1 for each ak.

Related Works
Two of the most used algorithms in bioinformatics liter-
ature for protein property prediction are PSIPRED (Jones
1999) and Jpred (Drozdetskiy et al. 2015). PSIPRED 3.2,
which uses a two layer MLP approach, claims a 3-class
per-position accuracy (Q3) score of 81.6%. The Jpred al-
gorithm uses a very similar structure of a two layer MLP
network. However, Jpred considers more features and uses

a jury based approach with multiple models (Cuff and Bar-
ton 2000). Jpred claims an 81.5% Q3 score on secondary
structure prediction, and also predicts relative solvent ac-
cessibility. (Qi et al. 2012) uses a deep MLP architecture
with multitask learning and achieves 81.7% Q3. (Zhou and
Troyanskaya 2014) created a generative stochastic network
to predict secondary structure from the same data we used,
for a Q8 of 66.4%. Unlike Q3, the Q8 accuracy tries to dis-
tinguish between more classes.

The state-of-the-art protein sequence classification sys-
tem is SSpro, which obtains 91.74% Q3 and 85.88% Q8

on a different unfiltered PDB dataset (Magnan and Baldi
2014). However, this system exploits additional information
via sequence similarity, and their reported accuracies were
only 80% without this module. Our work would comple-
ment their machine learning module and likely result in even
better accuracies.

Recently, work has also been done on the model side, par-
ticularly in natural language processing and image recogni-
tion tasks. (Collobert et al. 2011) created a similar algorithm
in the natural language processing domain, where they la-
beled word properties, such as part of speech or category
of a named entity, on text data. If we consider each pro-
tein chain to be a sentence and each amino acid to be a
word, the techniques transfer easily. (Collobert et al. 2011)
used both a windowed approach and a sentence level ap-
proach with a convolutional network, though their network
was shallow and only outputed predictions for one position
at a time. Long-short term memory networks have been used
very successfully in sequence learning, machine translation
(Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2014) and language modeling (Zaremba, Sutskever, and
Vinyals 2014). We note that machine translation is a much
more general sequence to sequence task where the input and
output sizes are not matched. Language modeling tries to
guess future words based on past words, while protein se-
quences has no innate direction.

In the image domain, (Szegedy et al. 2014) has beaten the
state-of-the-art on image classification by a large percent-
age through using a deep multilayer convolutional network
in the ImageNet Large-Scale Visual Recognition Challenge.
Scene labeling is the task of labeling each pixel of an image
with one of several classes, a 2D analogue of protein prop-
erty prediction. (Pinheiro and Collobert 2013) uses a recur-
rent neural network to obtain state-of-the-art results on scene
labeling without any feature engineering. (Long, Shelhamer,
and Darrell 2014) designs fully convolutional networks for
dense pixel prediction by running several convolutional net-
works on different scales. (Sermanet et al. 2013) increases
the resolution of a bounding box based image classifier by
introducing the shift-and-stitch technique, which we use on
sequences instead of images and on the entire model instead
of only on the last layer.

Method: MUST-CNN
Convolutional Neural Networks (CNN)
Convolutional networks were popularized for the task of
handwriting recognition of 2D images (Lecun et al. 1998).

Figure 1: A diagram for one layer of the convolutional net-
work. We shift and pad the input accordingly to be able to
label every position in our neural network. How the output
is recombined into a fully dense per-position sequence label
is given in Figure 3.

In a similar way, we use a 1D convolution for the protein se-
quence labeling problem. A convolution on sequential data
tensor X of size T × nin with length T , kernel size k and
input hidden layer size nin has output Y of size T × nout:

Yt,i = σ(Bi +

nin∑
j=1

k∑
z=1

Wi,j,kXt+z−1,j)

where W and B are the trainable parameters of the con-
volution kernel, and σ is the nonlinearity. We try three dif-
ferent nonlinearity functions in our experiments: the hyper-
bolic tangent, rectified linear units (ReLU), and piecewise
rectified linear units (PReLU). The hyperbolic tangent is his-
torically the most used in neural networks, since it has nice
computational properties that make optimization easy. Both
ReLU and PReLU have been shown to work very well on
deep convolutional networks for object recognition. ReLU
was shown to perform better than tanh on the same tasks,
and enforces small amounts of sparsity in neural networks
(Glorot, Bordes, and Bengio 2011). By making the activa-
tions trainable and piecewise, PReLUs have shown to match
the state of the art on ILSVRC while converging in only 7%
of the time (He et al. 2015).

The ReLU nonlinearity is defined as

relu(x) = max(0, x)

and the PReLU nonlinearity is defined as

prelu(x) =

{
αx if x < 0

x if x ≥ 0

with a trainable parameter α.
After the convolution and nonlinearity, we use a pool-

ing layer. The only pooling strategy tested was maxpooling,
which has shown to perform much better than subsampling
as a pooling scheme (Scherer, Müller, and Behnke 2010) and
has generally been the preferred pooling strategy for large
scale computer vision tasks. Maxpooling on a sequence Y
of size T × n with a pooling size of m results in output Z
where

Zt,i =
m

max
j=1

Ym(t−1)+j,i

Finally, the outputs are passed through a dropout layer.
The dropout layer is a randomized mask of the outputs,
equivalent to randomly zeroing out the inputs to the next
layer during training time with probability d (Srivastava et
al. 2014). During testing, the dropout layer is removed and
all weights are used. This acts as a regularizer for the neural
network and prevents overfitting, though the best values for
d must be discovered experimentally.

One layer of the convolutional network is depicted in Fig-
ure 1. In our model design, we apply the CNN module mul-
tiple times for a deep multilayer framework.

Multilayer Shift-and-Stitch (MUST)
Pooling is a dimension reduction operation which takes sev-
eral nearby values and combines them into a single value –
maxpooling uses the max function to do this. Maxpooling is
important because as nearby values are merged into one, the
classifier is encouraged to learn translation invariance. How-
ever, after a single application of maxpooling with a pool
size of m on input sequence X of length T , the resulting
maxpool output has sequence length T

m .
Since the dimensionality of the sequence has been divided

by a factor of m, it is no longer possible to label every po-
sition of the original sequence. A technique to increase the
resolution in convolutional networks was given in (Sermanet
et al. 2013), called “shift-and-stitch”. Their implementation
uses the technique in a two dimensional setting to increase
the resolution of pixel labels in the last layer of a convo-
lutional network, for up to a 4× increase in resolution. We
observe that the limiting factor on applying this to an en-
tire image is the massive slowdown in computation, since
each pooling layer in a two-dimensional case requires the
network to stitch together 4 different outputs and 3 pooling
layers require 64 different stitched outputs.

However, in the sequential case, we need to stitch together
significantly fewer sequences. Using 3 pooling layers with
pooling size 2 will only requires 8 different stitches, mak-
ing computation tractable. Therefore, we propose to apply
shift-and-stitch to every layer of our deep CNN which gen-
erates dense per-position predictions for the entire sequence.
This process is described in Figure 3. This will allow us to
take advantage of the computational speeds provided by the
convolution module, making it feasible to try a much larger
model.

Due to the kernel size, a convolution with kernel size k
removes the bk2 c edge values on each end of the sequence.
Thus, we pad the input with a total of bk2 c − 1 zeros at each
end, colored as red in Figures 1 and 3. Because a maxpool-
ing operation with pooling size m labels every m values in
the input, we duplicate the inputm times and pad the i-th in-
put such that the first convolution window is centered on the
first amino acid. We observe that we can then join the m du-
plicated inputs along the batch dimension and pass it into the
convolution module and take advantage of the batch compu-
tation ability offered by standard linear algebra packages to
train our system even faster. After pooling, the output is a
zipped version of the original input along the batch dimen-
sion. We simply “stitch” together the output in full resolution
for the final result.

Figure 2: An overview of the deep architecture of our model.
Our model accepts an input protein sequence of length T ,
which is fed through the network to generate per-position
predictions of length T for several tasks.

This novel multilayer shift-and-stitch technique makes it
feasible to train a CNN end-to-end and generate dense per-
position protein property prediction. This technique allows
us to use convolution and maxpooling layers to label se-
quences of arbitrary length.

MUST can also be extended to train sequences in mini-
batches if needed, though the operations will be slightly
more complicated. However, we found minibatches not use-
ful, because each amino acid is a training example, and each
sequence already contains many amino acids. Additionally,
sequences are generally of different lengths, which make im-
plementation of minibatches harder.

End-to-end Architecture
In this section we describe the end-to-end model structure
of the MUST-CNN and how we are able to train it to make
fully dense per-position predictions.

The input into the network is a one-hot encoding of an
amino acid base pair sequence and the PSI-BLAST position
specific scoring matrix (PSSM), which is described in more
detail in section Experiments subsection Feature. Dropout
is applied to the amino acid input and then fed through a
Lookup Table, similar to (Collobert et al. 2011), to construct
an embedding representation for each amino acid. Then, the
features from the amino acid embeddings are joined directly
with the PSSM matricies along the feature dimension and
fed into the deep convolutional network.

To apply the shift-and-stitch technique, we shift the amino
acid sequences according to the amount of pooling in each
layer. Then, we pass every shift through each layer as de-
scribed above, and stitch the results together after all con-
volutional layers. This creates a deep embedding for every
amino acid in our sequence. Most previous methods use win-
dowing to label the center amino acid. In our model, we can
run the whole sequence through the model instead of each
window at a time. This allows us to take advantage of the
speed of convolution operations and use much larger mod-
els.

We use a multitask construction similar to (Qi et al. 2012),
where we pass the deep embedding from the convolution
layers into several linear fully connected layers which clas-
sify the protein sequence into each separate task. This as-

Figure 3: Shift-and-stitch allows us to tag every element of an input even though maxpooling downsamples inputs. By zero
padding each sequence correctly, we can join them along the batch dimension and process different shifts at the same time. This
technique generalizes arbitrarily to any number of layers, and we can stitch together the result by rearranging and reshaping the
resultant tensor, making computation very efficient.

sumes a linear relationship between the deep embedding of
a protein chain and the properties predicted. In order for us
to classify the outputs of the network for task τ ∈ T , into
class c ∈ Cτ for sequence s ∈ S, we apply the softmax op-
erator on the outputs ft,τ,c,s of the subclassifiers for task τ at
position t = 1, . . . , T . Given the parameters of the network
θ, this gives us a conditional probability of class c:

pτ (c ∈ Cτ |ft,τ,s, θ) =
eft,τ,c,s∑

c∈Cτ e
ft,τ,c,s

The parameters of the network are trained end-to-end by
minimizing the negative log-likelihood function over the
training set, summing over all tasks and all elements in the
sequence:

L(θ) = −
∑
s∈S

∑
τ∈T

T∑
t=1

ln pτ (ccorrect|ft,τ,s, θ)

where ccorrect is the correct label of the amino acid.
The minimization of the loss function is obtained via the
stochastic gradient descent (SGD) algorithm with momen-
tum, where we update the parameters after every sequence.
After the initial multitask model is trained, we take the top
layers and each task-specific subclassifier and fine-tune the
models by initializing their weights at the weights learned
by the multitask model and training only on each specific
task with 1

10 of the original learning rate. Regularization is
achieved via dropout (Srivastava et al. 2014).

All models are implemented using the Torch7 framework
(Collobert, Kavukcuoglu, and Farabet 2011).

Connecting to Previous Studies
MUST-CNN is closely related to three previous models:
OverFeat (Sermanet et al. 2013), Generative Stochastic net-
works (GSNs) (Zhou and Troyanskaya 2014), and Condi-
tional Neural Fields (CNFs) (Wang et al. 2011).

CNFs are equivalent to a Conditional Random Field
(CRF) with a convolutional feature extractor. As far as we
know, the authors implement a windowed version using
MLP networks. Their model, although able to consider the
entire sequence due to the use of a CRF, is unable to build
deeper representations of models. Our model uses multiple
convolutional layers and multitasking to classify each amino
acid into one of a few classes across multiple tasks. Our
models are much deeper, and hence can learn more efficient
representations for complex dependencies.

The GSN is similar to a Restricted Boltzmann Machine
with interconnections between the hidden states. Training
requires a settling algorithm similar to finding the stationary
distribution of a Markov chain. Although this technique al-
lows for a model that considers the entire protein sequence,
it is less well understood. Convolution layers have the ad-
vantage of being used more often in industry (See Related
Works), and being well understood. Additionally, a fully
feedforward model is almost certainly faster than a model
that requires a distribution to converge, though (Zhou and
Troyanskaya 2014) did not state training or testing time in
their paper.

OverFeat is the most closely related, though it works
on images instead of sequence based classification. The
pipeline of OverFeat takes in images and classifies them
densely to detect objects at every patch. Then the bound-
ing boxes for the objects are combined into a single bound-
ing box, which is used to localize the object. MUST-CNN

is a one dimensional classification algorithm, which takes in
the protein sequence surrounding an amino acid and returns
a dense property prediction of each amino acid. However,
since object localization does not need to be done on every
bounding box, OverFeat only uses shift-and-stitch on the last
layer for a small resolution improvement. We do fully end-
to-end shift-and-stitch, which is difficult on the image do-
main due to the quadratic increase in calculation time.

Experiments
Feature
The features that we use are (1) individual amino acids
and (2) PSI-BLAST information (Altschul et al. 1997) of
a protein sequence. Each amino acid a ∈ A, where A is
the dictionary of amino acids, is coded as a one-hot vec-
tor in R|A|. That is, the encoding x of the i-th amino acid
has xi = 1 and xj 6=i = 0. PSI-BLAST generates a PSSM
of size T × 20 for a T lengthed sequence, where a higher
score represents a higher likelihood of the ith amino acid
replacing the current one in other species. Generally, two
amino acids that are interchangeable in the PSSM indicates
that they are also interchangeable in the protein without sig-
nificantly modifying the functionality of the protein. The
PSI-BLAST profiles were generated in the same way as
the original authors in each of the datasets (Qi et al. 2012;
Zhou and Troyanskaya 2014).

Data
We used two large protein property datasets in our experi-
ments. The train, validation and test splits are given in Table
1. The two datasets we use are as follows:

4prot Derived from (Qi et al. 2012), we use a train-
validation-test split where the model is trained on the
training set, selected via validation set results, and best
results reported by testing on the test set.

CullPDB Derived from (Zhou and Troyanskaya 2014), we
choose to use the CullPDB dataset where sequences with
> 25% identity with the CB513 dataset was removed. The
train and validation sets are derived from CullPDB while
the test set is CB513 in order to compare results with
(Kaae Sønderby and Winther 2014; Wang et al. 2011).

Tasks
Both datasets were formatted to have the same multitask rep-
resentation. These are the four classification tasks we tested
our system on:

dssp The 8 class secondary structure prediction task from
the dssp database (Touw et al. 2015). The class labels are
H = alpha helix, B = residue in isolated beta bridge, E =
extended strand, G = 3-helix, I = 5-helix, T = hydrogen
bonded turn, S = bend, L = loop.

ssp A collapsed version of the 8 class prediction task,
since many protein secondary structure prediction algo-
rithms use a 3 class approach instead of the 8-class ap-
proach given in dssp. {H,G} → H =Helix, {B,E} →
B =Beta sheet, and {I, S, T, L} → C =Coil

Datasets Number of train validation test
4prot Protein chains 7076 2359 2359

Amino Acids 1500k 509k 506k
CullPDB Protein chains 4427 1107 513
& CB513 Amino Acids 949k 235k 85k

Table 1: Size of datasets. We do a 60-20-20 split between
training, test, and validation datasets on 4prot, but a 80-20-0
split on CullPDB, since we are testing on CB513.

MUST-CNN MUST-CNN
small large

Convolution Layers 3 3
Hidden units 189 1024

Convolution Size 9 5
Maxpooling Size 2 2

Input Dropout .35 .1
Dropout 0 {.5, .3}

Nonlinearity ReLU ReLU
Learning Rate 0.0148 0.01

Momentum 0.9 0.9

Table 2: Model parameters for all models. The parameters
on the small model were discovered via Bayesian Optimiza-
tion, while the parameters on the large model were discov-
ered using grid search assisted manual tuning. The dropout
on the large network was 0.5 on CullPDB, but 0.3 on 4prot,
adjusted based on the difference between training and vali-
dation error. All models were trained for 50 iterations.

sar Relative solvent accessibility. Given the most solvent
accessible amino acid in the protein has x Å of accessi-
ble surface area, we label other amino acids as solvent
accessible if they have greater than 0.15x Å of accessible
surface area.

saa Absolute solvent accessibility. Defined as the amino
acid having more than 0.15 Å of accessible surface area.

Training
Model Selection (Small model) We use Bayesian Optimiza-

tion (Snoek, Larochelle, and Adams 2012) to find the
optimal model. This is done using the Spearmint pack-
age (Snoek 2015). We ran Bayesian Optimization for one
week to find the optimal parameters for the small model.

Model Selection (Large model) The large model was found
using a combination of grid search and manual tuning.
The specific architectures we found is detailed in Table
2. Bayesian Optimization could not be used because large
models were too slow to train.
After training of the joint model, we also fine-tuned the
model by considering each individual task and kickstart-
ing the training from the models learned in the joint
model. That is, we started training a model whose param-
eters were the same as the multitask model, but the loss
function only included one specific task. The loss func-
tion for task τ , sequence s indexed from t = 1, . . . , T is
then

L(θ) = −
∑
s∈S

T∑
t=1

ln pτ (ccorrect|ft,τ,s, θ)

This result is labeled as fine-tune in tables 2 and 3 We
use the validation set during the finetuning to find the best
dropout value, but then we include the validation set in the
retraining set. Dropout generally ensures that early stop-
ping is not needed, so including the validation set should
improve the accuracy of our model. We fine-tune at a
learning rate of 1

10 of the joint model learning rate.

Time Training of the small model takes 6 hours, while train-
ing of the large model takes one day. Since testing the
fine-tuned models involve passing the data through four
separate models, while testing the multitask model in-
volves doing all at the same time, it takes longer to test
on the fine-tuned model. Nevertheless, we were able to
handle testing speeds of over a million amino acids in un-
der 2 seconds.

Hardware In order to speed up computation, we utilize the
parallel architecture of the GPU, which is especially use-
ful for convoultional models which do many parallel com-
putations. All training and testing uses a Tesla C2050
GPU unit.

Results
During model selection, we discovered that our model is
very robust to model parameters. Most combinations of pa-
rameter tweaks inside the optimal learning rate give a less
than 1% improvement in average accuracy. By using max-
pooling with shift-and-stitch in our model our average ac-
curacy improved by almost 0.5% with barely any computa-
tional slowdown.

Our results on the 4prot dataset are detailed in Table 3.
The small model we found via Bayesian Optimization has
approximately as many parameters as previous state-of-the-
art models, but we see that it outperformed the network cre-
ated by (Qi et al. 2012) on all tasks. Fine-tuning on individ-
ual models is necessary for good performance. This implies
that it may perhaps be easier to build an MLP subclassifier
for each task, instead of assuming linearity. Training jointly
on the large model already beats (Qi et al. 2012), but fine-
tuning increases the accuracy dramatically. Additionally, the
testing time is reported in milliseconds per million amino
acids. We see that the small models can test fairly quickly,
while the fine-tuned large models have a 2.5× slowdown.
We are the first to report precise training and testing times
for a model on protein property prediction.

A detailed listing of precision-recall scores for 4prot is
given in Table 4. We see the expected pattern of lower fre-
quencies having a lower F1 score, since unbalanced datasets
are harder to classify. Precision is very stable, while recall
dramatically lowers according to the frequency of labels.
This suggests that our model picked up on several key prop-
erties of labels with few training examples, but missed many.
More training data is one way to solve this issue.

Our results on the CullPDB dataset and comparisions
with existing state-of-the-art algorithms is detailed in ta-

Task Qi et al. Conv fine- Conv fine-
small tuned large tuned

dssp (8) 68.2 67.0 70.6 69.5 76.7
ssp (3) 81.7 80.6 84.0 82.5 89.6
sar (2) 81.1 79.0 81.2 80.2 84.9
saa (2) 82.6 80.9 82.9 82.0 86.1
Test time 596k* 379 587 553 1597

Table 3: Qc accuracy on different architectures of model on
4prot dataset. The number in parenthesis behind the task de-
termines c, the number of classes in each task. Testing time
is given for all tasks simultaneously in milliseconds per mil-
lion amino acids. (*) Test time was not detailed in referenced
paper, so their algorithm was implemented and tested on the
CPU.

Per-task Label Recall Precision F1 Frequency
dssp

H .967 .878 .920 .328
E .924 .821 .869 .206
L .748 .645 .693 .211
T .564 .623 .592 .113
S .254 .621 .360 .095
G .363 .655 .467 .035
B .049 .797 .093 .012
I 0 0 0 .0002

ssp
C .875 .881 .878 .418
H .936 .919 .928 .364
E .868 .884 .876 .218

sar
Inaccessible .874 .838 .856 .512

Accessible .823 .861 .842 .488
saa

Inaccessible .901 .888 .894 .650
Accessible .789 .810 .799 .350

Table 4: Recall, precision, and F1 scores for 4prot dataset.
Class I for dssp does not occur often enough for our model
to learn labelings.

ble 5. We do 1% better than the previous published best,
despite using a dramatically simpler algorithm. Testing on
the CB513 dataset allows a direct comparison to how pre-
vious methods perform. We do not achieve a dramatically
higher accuracy rate as we do on 4prot. We suspect that fil-
tering non-homologuous protein sequences decreases possi-
ble accuracy, since we are essentially demanding a margin
of difference between the data distributions for the training
and testing samples. It may not be possible to predict pro-
tein properties accurately using a statistical method if non-
homologuous protein sequences were filtered from the train-
ing set.

Discussion
We have described a multilayer shift-and-stitch convolu-
tional architecture for sequence prediction. We use ideas
from the image classification domain to train a deep con-
volutional network on per-position sequence labeling. We
are the first to use multilayer shift-and-stitch on protein se-

Model Q8

CNF (Wang et al. 2011) .649
GSN (Zhou and Troyanskaya 2014) .664
LSTM (Kaae Sønderby and Winther 2014) .674
MUST-CNN (Ours) .684

Table 5: Q8 accuracy training on the CullPDB dataset and
testing on CB513. Testing takes around the same time as for
the 4prot dataset. We use the same architecture as MUST-
CNN large, detailed in table 2.

quences to generate per-position results. Shift-and-stitch is
a trick to quickly compute convolutional network scores on
every single window of a sequence at the same time, but
the fixed window sizes of the convolutional network still
remains. Surprisingly, we achieve better results than whole
sequence-based approaches like the GSN, LSTM, and CNF
models used in previous papers (see Table 5). We believe this
is because the speed of our model allows us to train models
with far higher capacity. We show that the architecturally
simpler MUST-CNN does as well or better than more com-
plex approaches.

In our experiments, the same network works very well
on two different large datasets of protein property predic-
tion, in which we only changed the amount of dropout reg-
ularization. This suggests that our model is very robust and
can produce good results without much manual tuning once
we find a good starting set of hyperparameters. More gen-
erally, our technique should work on arbitrary per-position
sequence tagging tasks, such as part of speech tagging and
semantic role labeling.

Additionally, our model can make predictions for a mil-
lion amino acids in under 2 seconds. Although the main
speed bottleneck of protein property prediction is obtain-
ing the PSI-BLAST features, the speed of our model can
be useful on other sequence prediction tasks where feature
extraction is not the bottleneck.

Future work can incorporate techiques such as the fully
convolutional network (Long, Shelhamer, and Darrell 2014)
to further speed up and reduce the parameter set of the
model. Another direction is to continue along the lines of
LSTMs and GSNs and try to better model the long range
interactions of the protein sequences.

References
Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang,
J.; Zhang, Z.; Miller, W.; and Lipman, D. J. 1997.
Gapped BLAST and PSI-BLAST: a new generation of pro-
tein database search programs. Nucleic Acids Research
25(17):3389–3402.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167. ACM.

Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. The Journal of Machine
Learning Research 12:2493–2537.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011.
Torch7: A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop.
Cuff, J. A., and Barton, G. J. 2000. Application of mul-
tiple sequence alignment profiles to improve protein sec-
ondary structure prediction. Proteins: Structure, Function,
and Bioinformatics 40(3):502–511.
Drozdetskiy, A.; Cole, C.; Procter, J.; and Barton, G. J. 2015.
JPred4: a protein secondary structure prediction server. Nu-
cleic Acids Research gkv332.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In International Conference on
Artificial Intelligence and Statistics, 315–323.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. arXiv preprint arXiv:1502.01852.
Jones, D. T. 1999. Protein secondary structure predic-
tion based on position-specific scoring matrices. Journal of
Molecular Biology 292(2):195–202.
Kaae Sønderby, S., and Winther, O. 2014. Protein Sec-
ondary Structure Prediction with Long Short Term Memory
Networks. ArXiv e-prints.
Kim, Y. 2014. Convolutional Neural Networks for Sentence
Classification. arXiv:1408.5882 [cs]. arXiv: 1408.5882.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Long, J.; Shelhamer, E.; and Darrell, T. 2014. Fully convo-
lutional networks for semantic segmentation. arXiv preprint
arXiv:1411.4038.
Magnan, C. N., and Baldi, P. 2014. SSpro/ACCpro 5: al-
most perfect prediction of protein secondary structure and
relative solvent accessibility using profiles, machine learn-
ing and structural similarity. Bioinformatics (Oxford, Eng-
land) 30(18):2592–2597.
Pinheiro, P. H. O., and Collobert, R. 2013. Recur-
rent Convolutional Neural Networks for Scene Parsing.
arXiv:1306.2795 [cs]. arXiv: 1306.2795.
Qi, Y.; Oja, M.; Weston, J.; and Noble, W. S. 2012. A unified
multitask architecture for predicting local protein properties.
PloS one 7(3):e32235.
Scherer, D.; Müller, A.; and Behnke, S. 2010. Evaluation of
pooling operations in convolutional architectures for object
recognition. In Artificial Neural Networks–ICANN 2010.
Springer. 92–101.
Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.;
and LeCun, Y. 2013. Overfeat: Integrated recognition, lo-
calization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
Bayesian optimization of machine learning algorithms. In

Advances in neural information processing systems, 2951–
2959.
Snoek, J. 2015. Spearmint Bayesian optimization codebase.
https://github.com/HIPS/Spearmint.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A.
2014. Going Deeper with Convolutions. arXiv:1409.4842
[cs]. arXiv: 1409.4842.
Touw, W. G.; Baakman, C.; Black, J.; te Beek, T. A. H.;
Krieger, E.; Joosten, R. P.; and Vriend, G. 2015. A series of
PDB-related databanks for everyday needs. Nucleic Acids
Research 43(D1):D364–D368.
Wang, Z.; Zhao, F.; Peng, J.; and Xu, J. 2011. Protein 8-
class secondary structure prediction using conditional neural
fields. Proteomics 11(19):3786–3792.
Zaremba, W.; Sutskever, I.; and Vinyals, O. 2014. Recur-
rent Neural Network Regularization. arXiv:1409.2329 [cs].
arXiv: 1409.2329.
Zhou, J., and Troyanskaya, O. G. 2014. Deep su-
pervised and convolutional generative stochastic network
for protein secondary structure prediction. arXiv preprint
arXiv:1403.1347.

