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Motivation: Structure Learning from Heterogeneous

Samples

@ Learning relational graph structure among features/variables from an
observed sample dataset is an important task in Machine Learning.
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Motivation: Structure Learning from Heterogeneous

Samples

@ Learning relational graph structure among features/variables from an
observed sample dataset is an important task in Machine Learning.

@ This paper focuses on inferring graph structures from multiple related
datasets (heterogeneous samples) about the same set of variables.

@ We mainly focus on estimating conditional dependency graphs using
the sparse Gaussian Graphical Model (sGGM).
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When Working on Multiple Different but Related Datasets:

@ Samples of many real applications take the form of multiple different
but related data matrices.
e Blood cancer samples vs. Breast cancer samples;
o Normal patient samples vs. Cancel patient samples;
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When Working on Multiple Different but Related Datasets:

@ Samples of many real applications take the form of multiple different
but related data matrices.
e Blood cancer samples vs. Breast cancer samples;
o Normal patient samples vs. Cancel patient samples;

@ A multi-task learning setting: to investigate the commonalities and
differences among different datasets.
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Our Aim: Shared and Task-specific Graph Structures

@ We aim to obtain shared and task-specific graph structures from

heterogeneous samples.
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Our Aim: Shared and Task-specific Graph Structures

@ We aim to obtain shared and task-specific graph structures from

heterogeneous samples.

e For example, in computational biology [Ideker and Krogan(2012)]
urges to estimate housekeeping interactions and differential network

among genes or proteins.
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Our Aim: To Learn Shared and Task-specific Graph

Structures from Multiple Related Datasets

@ Main Task: How to estimate / learn shared (Qs) and task-specific

(QE')) graph structures among feature variables from multiple
different but related datasets about the same set of features.
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X Data matrix.

> Covariance matrix.

Q Inverse of covariance matrix (precision matrix).
XU) The i-th data matrix.
() The i-th covariance matrix.
Q) The i-th precision matrix.

p The total number of feature variables.

n; The number of samples in the i-th data matrix.

K The total number of tasks.
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@ Introduction

@ Previous Studies

8 /29



Background: Sparse Gaussian Graphical Model (sGGM)

o X ~ N(u,X).

Inverse Covariance Matrix
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@ Precision matrix  is the inverse of covariance matrix -
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Background: Sparse Gaussian Graphical Model (sGGM)

o X ~ N(u,X).
@ Covariance matrix X can be calculated from X

@ Precision matrix  is the inverse of covariance matrix -

The sparsity pattern of  captures the conditional dependency
pattern among variables.

For example,

Inverse Covariance Matrix
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Background: Graphical Lasso for sGGM Structure Learning

e Traditionally, we estimate sGGM from samples (of a single task) using
an /1 penalized MLE formulation.

Graphical Lasso

[Friedman et al.(2008)Friedman, Hastie, and Tibshirani]

mgnnn-wndeq9)+¢r(ﬂi)-+AHHQH1 (1.1)
Q
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Previous Methods: Joint Graphical Lasso (JGL) for Jointly

Estimating Multiple sGGMs

@ Most previous studies add a second penalty function P() into the
penalized likelihood formulation.

Joint Graphical Lasso (JGL)

[Danaher et al.(2013)Danaher, Wang, and Witten]
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Estimating Multiple sGGMs

@ Most previous studies add a second penalty function P() into the
penalized likelihood formulation.
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Previous Methods: Joint Graphical Lasso (JGL) for Jointly

Estimating Multiple sGGMs

@ Most previous studies add a second penalty function P() into the
penalized likelihood formulation.

° P(Q(l),Q(z), ... ,Q(K)) captures a certain assumption about
relationships between multiple graphs.

@ For example, fused norm to push graphs similar:

P(Q(l)’Q@)’ o 7Q(K)) = ||Q(i) _ Q(j)||1_

i>j

Joint Graphical Lasso (JGL)

[Danaher et al.(2013)Danaher, Wang, and Witten]
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Previous Studies: Drawbacks

@ Two possible ways to infer multiple sGGMs from heterogeneous
samples:
o (1) Estimating one by one using graphical lasso by assuming the graphs
are not related.
e (2) Using JGL: joint graphical lasso by designing the appropriate
second penalty function P().
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Previous Studies: Drawbacks

@ Two possible ways to infer multiple sGGMs from heterogeneous

samples:
o (1) Estimating one by one using graphical lasso by assuming the graphs

are not related.
e (2) Using JGL: joint graphical lasso by designing the appropriate

second penalty function P().
o Drawbacks:
o l: Both of them can not directly output the shared structure among

multiple graphs.
o Il: Need extra steps to decode and can not control estimating the

shared and task-specific pattern among graphs.
o I1l: No theoretical analysis in the previous JGL studies to prove why

jointly learning graphs is helpful?
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© Method
@ Proposed Model: SIMULE
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Goals

Our model aims to have the following properties:

@ It estimates the shared and task-specific graph patterns explicitly and
simultaneously.
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Goals

Our model aims to have the following properties:

@ It estimates the shared and task-specific graph patterns explicitly and
simultaneously.

@ It can control the estimation of shared versus the task-specific
patterns.

@ It provides a strong theoretical guarantee.

@ It achieves good empirical performance.
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Proposed Method: Our "SIMULE" Formulation

We model each task’s precision matrix Q() as a sum of task-specific Qsi)
and task-shared Qg:

o = ol 4 o (2.1)
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Proposed method: Overview Figure
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Why JGL Estimators Can't Get "SIMULE"

@ JGL estimators are mostly solved by ADMM based optimization.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin||Q||1
@ (2.2)
Subject to: ||XQ — /||cc < An
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Why JGL Estimators Can't Get "SIMULE"

@ JGL estimators are mostly solved by ADMM based optimization.
@ With "SIMULE" formulation, difficult to separate the optimization
into independent ADMM sub-procedures. Because,
o The derivative of "SIMULE" in the JGL, i.e., gradient of

In det(QSi) + Qs) gets inverse of matrix summation.
o Inverse of the summation of two matrices makes the optimization not
separable.
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Why JGL Estimators Can't Get "SIMULE"

@ JGL estimators are mostly solved by ADMM based optimization.
@ With "SIMULE" formulation, difficult to separate the optimization
into independent ADMM sub-procedures. Because,
o The derivative of "SIMULE" in the JGL, i.e., gradient of
In det(QSi) + Qs) gets inverse of matrix summation.

o Inverse of the summation of two matrices makes the optimization not
separable.

@ Therefore, we use an alternative formulation for sGGM: A constrained
f1 minimization formulation.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin||Q||1
Q

A (22)
Subject to: ||XQ — /||cc < An
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SIMULE: to Infer Shared and Individual Parts of MULtiple

sGGM Explicitly

@ By using a constrained £1 minimization formulation, our estimator
SIMULE can jointly learn multiple graphs from multiple different but
related sample datasets (on the same set of feature variables).

SIMULE

om 6@ | i g - argmin y_ 195111 + e 19s] |1
QII Qs i

(2.3)
Subject to: |[ED(QY + Qg) = I|lo < Ay i=1,...,K
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© Method

@ Solution and Variation
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Method: Optimization Solution

o Column-wise parallelizable.
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Method: Optimization Solution

o Column-wise parallelizable.

o In detail, suppose (), 35 are a column of Qgi) Qs.
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Method: Optimization Solution

o Column-wise parallelizable.

o In detail, suppose (), 3 are a column of Qgi),Qs.
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Method: Optimization Solution

o Column-wise parallelizable.

o In detail, suppose (), 35 are a column of Qgi) Qs.
argmin Y _ ||89]|1 + €K]|8°||1 (2.4)
[—3(!’)765 I
Subject to: [[Z(5) + %) — gjlloc < An i =1,.... K

@ Can be solved by any linear programming solver.

@ We have proved the "SIMULE" formulation guarantees a unique
optimal solution.
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Method: Optimization Solution

o Column-wise parallelizable.

o In detail, suppose (), 35 are a column of Qgi) Qs.

argmin } _ |15l + €K[15%]l (2.4)
ﬂl 7ﬁs I

Subject to: ||V (8D + %) — €jloo < Ami=1,...,K

@ Can be solved by any linear programming solver.

@ We have proved the "SIMULE" formulation guarantees a unique
optimal solution.

@ We use € to control the sparsity of shared versus task-specific graph
patterns.
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Model Variation: NSIMULE for jointly estimating multiple

nonparanormal Graphical Models

@ The Gaussian assumption of our model can extend easily to a more
general distribution family: nonparanormal.
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Model Variation: NSIMULE for jointly estimating multiple

nonparanormal Graphical Models

@ The Gaussian assumption of our model can extend easily to a more
general distribution family: nonparanormal.

@ The only necessary change: by simply replacing the sample covariance
matrices £ () in Equation 2.3 into the kendal’s tau correlation
matrices S(),

@ We denote this estimator as nonparanormal SIMULE (NSIMULE).
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© Theoretical and Experimental Results
@ Theoretical Results
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Theoretical Results

@ Comparing SIMULE v. CLIME w.r.t the statistical convergence rate
for estimating K graphs:

Multi-task: | K Single-task:
05 | L 0(%2))

@ By assuming n; = “et:
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Theoretical Results

@ Comparing SIMULE v. CLIME w.r.t the statistical convergence rate
for estimating K graphs:

Multi-task: | K Single-task:
05 | L 0(%2))

@ By assuming n; = “et:

@ We can conclude that % < Klogp

Ntot

@ This indicates that the multi-task estimator is better!!!
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© Theoretical and Experimental Results

@ Experimental Results
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Results on Synthetic Datasets: Accuracy and

Parallelization

@ Accuracy (AUC with a varying p and a varying K):

(d) p vs AUC-K=2

() K vs AUC-p=100
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@ Computation time cost with a varying p:

12 (b) Time-parallel vs single-core baselines
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Results on Synthetic Datasets: Sensitivity of

Hyperparameter ¢

@ The hyperpara € controls the differences of sparsity among the shared
graph and task-specific graphs.

08 (a) epsilon vs Sparsity-K=3 08 (c) epsilon vs Sparsity-K=6
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@ The sensitivity of € vs. accuracy.

(e) epsilon vs AUC
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Results on Two Real-World Datasets: Number of Matched

Edges versus the Existing Domain Databases

@ Two real world datasets:
o (1) Gene expressions of samples in 2 different cell types
o (2) Transcription Factors’' ENCODE ChlIP-seq measurements across 3
different cell lines
@ Validation by counting the overlapped interactions according to the
existing bio-databases (Mlnact).
@ Our methods obtain the most matches compared to the
state-of-the-art baselines.
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R Package is Available !!!

@ The project website: http://jointggm.org/

@ R package "simule”:
e install.packages("simule")
e demo(simuleDemo) !
o https:
//cran.r-project.org/web/packages/simule/index.html
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