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Motivation: Structure Learning from Heterogeneous
Samples

Learning relational graph structure among features/variables from an
observed sample dataset is an important task in Machine Learning.

This paper focuses on inferring graph structures from multiple related
datasets (heterogeneous samples) about the same set of variables.
We mainly focus on estimating conditional dependency graphs using
the sparse Gaussian Graphical Model (sGGM).
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When Working on Multiple Different but Related Datasets:

Samples of many real applications take the form of multiple different
but related data matrices.

Blood cancer samples vs. Breast cancer samples;
Normal patient samples vs. Cancel patient samples;

A multi-task learning setting: to investigate the commonalities and
differences among different datasets.

4 / 29



When Working on Multiple Different but Related Datasets:

Samples of many real applications take the form of multiple different
but related data matrices.

Blood cancer samples vs. Breast cancer samples;
Normal patient samples vs. Cancel patient samples;

A multi-task learning setting: to investigate the commonalities and
differences among different datasets.

4 / 29



Our Aim: Shared and Task-specific Graph Structures

We aim to obtain shared and task-specific graph structures from
heterogeneous samples.

For example, in computational biology [Ideker and Krogan(2012)]
urges to estimate housekeeping interactions and differential network
among genes or proteins.
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Our Aim: To Learn Shared and Task-specific Graph
Structures from Multiple Related Datasets

Main Task: How to estimate / learn shared (ΩS) and task-specific

(Ω
(i)
I ) graph structures among feature variables from multiple

different but related datasets about the same set of features.
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Notations

X Data matrix.

Σ Covariance matrix.

Ω Inverse of covariance matrix (precision matrix).

X (i) The i-th data matrix.

Σ(i) The i-th covariance matrix.

Ω(i) The i-th precision matrix.

p The total number of feature variables.

ni The number of samples in the i-th data matrix.

K The total number of tasks.
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Background: Sparse Gaussian Graphical Model (sGGM)

X ∼ N(µ,Σ).

Covariance matrix Σ can be calculated from X

Precision matrix Ω is the inverse of covariance matrix Σ

The sparsity pattern of Ω captures the conditional dependency
pattern among variables.

For example,
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Background: Graphical Lasso for sGGM Structure Learning

Traditionally, we estimate sGGM from samples (of a single task) using
an `1 penalized MLE formulation.

Graphical Lasso
[Friedman et al.(2008)Friedman, Hastie, and Tibshirani]

argmin
Ω
− ln det(Ω) + tr

(
ΩΣ̂
)

+ λn||Ω||1 (1.1)
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Previous Methods: Joint Graphical Lasso (JGL) for Jointly
Estimating Multiple sGGMs

Most previous studies add a second penalty function P() into the
penalized likelihood formulation.

P(Ω(1),Ω(2), . . . ,Ω(K)) captures a certain assumption about
relationships between multiple graphs.
For example, fused norm to push graphs similar:
P(Ω(1),Ω(2), . . . ,Ω(K)) =

∑
i>j
||Ω(i) − Ω(j)||1.

Joint Graphical Lasso (JGL)
[Danaher et al.(2013)Danaher, Wang, and Witten]

argmin
Ω(i)

−
∑
i

ni (ln det(Ω(i)) + tr
(

Ω(i)Σ̂(i)
)

)

+ λ1

∑
i

||Ω(i)||1 + λ2P(Ω(1),Ω(2), . . . ,Ω(K))
(1.2)
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Previous Studies: Drawbacks

Two possible ways to infer multiple sGGMs from heterogeneous
samples:

(1) Estimating one by one using graphical lasso by assuming the graphs
are not related.
(2) Using JGL: joint graphical lasso by designing the appropriate
second penalty function P().

Drawbacks:
I: Both of them can not directly output the shared structure among
multiple graphs.
II: Need extra steps to decode and can not control estimating the
shared and task-specific pattern among graphs.
III: No theoretical analysis in the previous JGL studies to prove why
jointly learning graphs is helpful?
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Goals

Our model aims to have the following properties:

It estimates the shared and task-specific graph patterns explicitly and
simultaneously.

It can control the estimation of shared versus the task-specific
patterns.

It provides a strong theoretical guarantee.

It achieves good empirical performance.
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Proposed Method: Our ”SIMULE” Formulation

We model each task’s precision matrix Ω(i) as a sum of task-specific Ω
(i)
I

and task-shared ΩS :
Ω(i) = Ω

(i)
I + ΩS (2.1)
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Proposed method: Overview Figure
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Why JGL Estimators Can’t Get ”SIMULE”

JGL estimators are mostly solved by ADMM based optimization.

With ”SIMULE” formulation, difficult to separate the optimization
into independent ADMM sub-procedures. Because,

The derivative of ”SIMULE” in the JGL, i.e., gradient of

ln det(Ω
(i)
I + ΩS) gets inverse of matrix summation.

Inverse of the summation of two matrices makes the optimization not
separable.

Therefore, we use an alternative formulation for sGGM: A constrained
`1 minimization formulation.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin
Ω
||Ω||1

Subject to: ||Σ̂Ω− I ||∞ ≤ λn
(2.2)
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SIMULE: to Infer Shared and Individual Parts of MULtiple
sGGM Explicitly

By using a constrained `1 minimization formulation, our estimator
SIMULE can jointly learn multiple graphs from multiple different but
related sample datasets (on the same set of feature variables).

SIMULE

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K)
I , Ω̂S = argmin

Ω
(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS ||1

(2.3)

Subject to: ||Σ̂(i)(Ω
(i)
I + ΩS)− I ||∞ ≤ λn, i = 1, . . . ,K
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Method: Optimization Solution

Column-wise parallelizable.

In detail, suppose β(i), βs are a column of Ω
(i)
I ,ΩS .

argmin
β(i),βs

∑
i

||β(i)||1 + εK ||βs ||1 (2.4)

Subject to: ||Σ̂(i)(β(i) + βs)− ej ||∞ ≤ λn, i = 1, . . . ,K

Can be solved by any linear programming solver.

We have proved the ”SIMULE” formulation guarantees a unique
optimal solution.

We use ε to control the sparsity of shared versus task-specific graph
patterns.
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Model Variation: NSIMULE for jointly estimating multiple
nonparanormal Graphical Models

The Gaussian assumption of our model can extend easily to a more
general distribution family: nonparanormal.

The only necessary change: by simply replacing the sample covariance
matrices Σ̂(i) in Equation 2.3 into the kendal’s tau correlation
matrices Ŝ(i).

We denote this estimator as nonparanormal SIMULE (NSIMULE).
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Theoretical Results

Comparing SIMULE v. CLIME w.r.t the statistical convergence rate
for estimating K graphs:

Multi-task: K Single-task:

O( log(Kp)
ntot

)
∑
i
O( log p

ni
))

By assuming ni = ntot
K :

We can conclude that log(Kp)
ntot

< K log p
ntot

This indicates that the multi-task estimator is better!!!
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Results on Synthetic Datasets: Accuracy and
Parallelization

Accuracy (AUC with a varying p and a varying K ):

Computation time cost with a varying p:
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Results on Synthetic Datasets: Sensitivity of
Hyperparameter ε

The hyperpara ε controls the differences of sparsity among the shared
graph and task-specific graphs.

The sensitivity of ε vs. accuracy.
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Results on Two Real-World Datasets: Number of Matched
Edges versus the Existing Domain Databases

Two real world datasets:
(1) Gene expressions of samples in 2 different cell types
(2) Transcription Factors’ ENCODE ChIP-seq measurements across 3
different cell lines

Validation by counting the overlapped interactions according to the
existing bio-databases (MInact).
Our methods obtain the most matches compared to the
state-of-the-art baselines.
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R Package is Available !!!

The project website: http://jointggm.org/

R package ”simule”:

install.packages("simule")

demo(simuleDemo) !
https:

//cran.r-project.org/web/packages/simule/index.html
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