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Introduction Background: sGGM to derive Conditional Theoretical Analysis

oNC Independence Graph from data. Elementary Estimator: FASJEM:
Sparse Gaussian Graphical Model is solved by the following three steps: Convergence rate O(logp/n;) O(log(Kp)/ntot)
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Learning Multiple Related Sparse Gaussian M e D0
Background: Number of feature (p) and Granhical Model
Number of tasks (K) are increasin o oo 2 novel soir ioi Experiment Evaluation
g. We propose a nhovel approach, FASJIEM for fast and scalable joint structure- We simulate multiple related Gaussian datasets with known Graphs.
The past decade has seen a revolution in collecting largescale estimation of multiple sGGMs at a large scale. As the first study of joint (1) Draw a FPR vs. TPR curve. Compare the AUC score;
heterogeneous data from many scientific fields. For instance, genomic sGGM using the M-estimator framework, our work has three major (2) Compare computation time with different p and K.
technologies have delivered fast and accurate molecular profiling data Advantages: (1) Highly parallelizable; (2) Fast and memory efficient; (3) FASJEM and FASJEM-GPU (GPU version of FASJEM) achieve the best AUC score
across many cellular contexts (e.g., cell lines or stages) from national Achieves consistent convergence rate. and spend least computation time.
projects like ENCODE[1].
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