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Abstract

Estimating multiple sparse Gaussian Graphi-
cal Models (sGGMs) jointly for many related
tasks (large K) under a high-dimensional
(large p) situation is an important task.
Most previous studies for the joint estima-
tion of multiple sGGMs rely on penalized
log-likelihood estimators that involve expen-
sive and difficult non-smooth optimizations.
We propose a novel approach, FASJEM for
fast and scalable joint structure-estimation of
multiple sGGMs at a large scale. As the first
study of joint sGGM using the M-estimator
framework, our work has three major contri-
butions: (1) We solve FASJEM through an
entry-wise manner which is parallelizable. (2)
We choose a proximal algorithm to optimize
FASJEM. This improves the computational
efficiency from O(Kp3) to O(Kp2) and re-
duces the memory requirement from O(Kp2)
to O(K). (3) We theoretically prove that FAS-
JEM achieves a consistent estimation with
a convergence rate of O(log(Kp)/ntot). On
several synthetic and four real-world datasets,
FASJEM shows significant improvements over
baselines on accuracy, computational complex-
ity and memory costs.

1 Introduction
The past decade has seen a revolution in collecting large-
scale heterogeneous data from many scientific fields.
For instance, genomic technologies have delivered fast
and accurate molecular profiling data across many cel-
lular contexts (e.g., cell lines or stages) from national
projects like ENCODE[1]. Given such data, under-
standing and quantifying variable graphs across multi-
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ple contexts is a fundamental analysis task. Such vari-
able graphs can significantly simplify network-driven
studies about diseases or drugs[2]. The number of
contexts those applications need to consider grows ex-
tremely fast. For example, the ENCODE [1] project,
being generated over ten years with contributions from
bio-labs across the world, contains expression data from
147 different human cell types (i.e., the number of tasks
K = 147) in 2016. Besides, the number of variables (de-
noted as p) is also quite large, ranging from thousands
(e.g., gene) to hundreds of thousands (e.g., SNP[3]).
We formulate this data analysis problem as
jointly estimating K conditional dependency graphs
G(1), G(2), . . . , G(K) from data samples accumulated
from K distinct conditions. For homogeneous data
samples from a given i-th condition, one typical ap-
proach in the literature is the sparse Gaussian Graphi-
cal Model(sGGM)[4, 5, 6]. sGGM assumes data sam-
ples are independently and identically drawn from
Np(µ(i),Σ(i)), a multivariate normal distribution with
mean µ(i) and covariance matrix Σ(i). The graph struc-
ture G(i) is encoded by the sparsity pattern of the
inverse covariance matrix, also named precision matrix,
Ω(i). Ω(i) := (Σ(i))−1. In G(i) an edge does not connect
j-th node and k-th node (i.e., conditional independent)
if and only if Ω(i)

jk = 0. sGGM imposes an `1 penalty on
the parameter Ω(i). For heterogeneous data samples,
rather than estimating sGGM of each condition sepa-
rately, a multi-task formulation that jointly estimates
K different but related sGGMs can lead to a better
generalization[7].
Most previous studies[8, 9, 10, 11, 12, 13, 14, 15] for
joint estimation of multiple sGGMs relied on optimiz-
ing `1 regularized likelihood function plus an extra
penalty function R′. This extra regularizer R′, which
varies in different estimators, enforces similarity among
multiple estimated networks. Since the penalized like-
lihood framework includes two regularization functions
(`1 +R′), these approaches cannot avoid the steps like
SVD [8] and matrix multiplication [8, 9]. Both steps
need O(Kp3) time complexity for computation. Be-
sides, most studies in this category require all tasks’ co-
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variance matrices to locate in the main memory[8, 9, 10]
(for their optimization). Storing all elements needs
O(Kp2) memory space. As a result, this category of
models are difficult to scale up when the dimension p
or the number of tasks K are large.
In this paper, we propose a novel model, namely fast
and scalable joint estimator for multiple sGGM (FAS-
JEM), for estimating multiple sGGMs jointly. Briefly
speaking, this paper makes the following contributions:
• Novel approach: FASJEM presents a new way of

learning multi-task sGGMs by extending the elemen-
tary estimator [16]. (Section 3)

• Fast optimization: We optimize FASJEM through
an entry-wise and group-entry-wise manner that can
dramatically improve the time complexity to O(Kp2).
(Section 3 and Section 3.3)
• Scalable optimization: The optimization of our
estimators is scalable. We reduce the memory cost
to O(K) (i.e., requiring to store at most K entries
in the main memory). (Section 5)

• Method variations: We propose two variations
of FASJEM: (1) FASJEM-G uses a group-2 norm
to connect multiple sGGMs. (2) FASJEM-I uses
a group-infinite norm to connect multiple related
sGGMs. Both methods show better performance
over their corresponded “Joint graphical lasso” (JGL)
baselines. (Section 3 and Section 6)

• Convergence rate: We theoretically prove the con-
vergence rate of FASJEM as O(log(Kp)/ntot). This
rate shows the benefit of joint estimation, which sig-
nificantly improves the convergence rate O( log p

n ) of
single task sGGM (with n samples). (Section 5)

• Evaluation: FASJEM is evaluated using several
synthetic datasets and four real-world biomedical
datasets. It performs better than the baselines not
only on accuracy but also with respect to the time
and storage requirements. (Section 6)

Att: Due to space limit, we have put details of certain
contents (e.g., proofs) in the appendix. Notations with
“S:” as prefix in the numbering mean the corresponding
contents are in the appendix. For example, full proofs
are in Section S:8.
Notations: We focus on the problem of estimating
K sGGMs from a p-dimensional aggregated dataset in
the form of K different data matrices. X(i)

ni×p describes
the data matrix for the i-th task, which includes ni
data samples described by p different feature variables.

The total number of data samples is ntot =
K∑
i=1

ni. We

use notation Ω for the precision matrices and Σ̂ for the
estimated covariance matrices. Given a p-dimensional
vector x = (x1, x2, . . . , xp)T ∈ Rp, ||x||1 =

∑
i

|xi| repre-

sent the l1-norm of x. ||x||∞ = max
i
|xi| is the l∞-norm

of x. ||x||2 =
√∑

i

x2
i , `2-norm of x.

2 Background
Single-task sGGM:The classic formulation of sparse
Gaussian Graphical model [6] for a single given task (or
context) (single sGGM) is the “graphical lasso” estima-
tor (GLasso) [6, 17] that solves the following penalized
maximum likelihood estimation (MLE) problem:

argmin
Ω>0

− log det(Ω)+ < Ω,Σ > +λn||Ω||1 (2.1)

Elementary estimator for single sGGM
(EE-sGGM):Recently the seminal study[18] gener-
alized this formulation into a so-called M-estimator
framework:

argmin
θ
L(θ) + λnR(θ) (2.2)

where R(·) represents a decomposable regularization
function in [18] and L(·) represents a loss function (e.g.,
the negative log-likelihood function −L(·) in sGGM).
Using this framework, recent studies[19, 16] propose
a new category of estimators named “Elementary es-
timator” 1, whose solution achieves the same optimal
convergence rate as Eq. (2.2) when satisfying certain
conditions. These estimators have the following general
formulation:

argmin
θ
R(θ)

subject to:R∗(θ − θ̂n) ≤ λn
(2.3)

Where R∗(·) is the dual norm of R(·),
R∗(v) := sup

u 6=0

< u, v >

R(u) = sup
R(u)≤1

< u, v > . (2.4)

θ̂n represents the backward mapping of θ. We pro-
vide detailed explanations of backward mapping and
backward mapping for Gaussian case in the Appendix
Section S:1. For sGGM, it is easy to derive Ω through
the backward mapping on its covariance matrix Σ,
which is Σ−1. However, under the high-dimensional
setting, when p > n, the sample covariance matrix Σ̂
is not full rank, therefore is not invertible. Thus the
authors of [16] proposed a proxy backward mapping on
the covariance matrix Σ̂ under high-dimensional set-
tings as (Tv(Σ̂))−1. Here [Tv(M)]ij := ρv(Mij) where
ρv(·) is chosen to be a soft-thresholding function. [16]
proves that this approximation will not change the
convergence rate of sGGM estimation. Using Eq. (2.3),
[16] proposed a new estimator for sGGM (the so-called
elementary estimator for sGGM):

argmin
Ω
||Ω||1

subject to:||Ω− [Tv(Σ̂)]−1||∞ ≤ λn
(2.5)

This estimator has a closed-form solution[16] and has
been shown to be more practical and scalable than
GLasso in large-scale settings. v is a hyperparameter

1We denote this category of estimators as “elementary
estimator” or “EE” in the rest of paper.
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which ensures that Tv(Σ̂) is invertible.
Multi-task sGGM (Multi-sGGM):For joint esti-
mation of multiple sGGMs, most studies focus on
adding a second norm which enforces the group prop-
erty among multiple tasks. Previous studies on the
joint estimation of multiple sGGMs can be summarized
using Eq. (2.6),

argmin
Ω(i)�0

K∑
i=1

(−L(Ω(i)) + λn

K∑
i=1
||Ω(i)||1

+ λ′nR′(Ω(1),Ω(2), . . . ,Ω(K))

(2.6)

where Ω(i) denotes the precision matrix for i-th task.
Ω(i) � 0 means that Ω(i) needs to be a positive definite
matrix. R′(·) represents the second penalty function
for multi-tasking.
Superposition structured estimator (SS estima-
tor) :The above Eq. (2.6) is a special case (explained
in Section 3) of the following superposition structured
estimators [18]:

argmin
(θα)α∈I

L(
∑
α∈I

θα) +
∑
α∈I

λαRα(θα). (2.7)

{Rα(·)|α ∈ I} are a set of regularization functions and
(λα)α∈I are the regularization penalties. The target
parameter is θ =

∑
α∈I

θα, a superposition of θα.

Elementary superposition-structured moment
estimator (ESS moment estimator):Similar
to Eq. (2.3), a recent study[20] extends the elementary
estimator for sparse covariance matrices to the case
of superposition-structured moments and named this
extension as “Elem-Super-Moment” (ESM) estimator.
2

argmin
θ1,θ2,...,θ|I|

∑
α∈I

λαRα(θα)

Subject to: R∗α(θ̂ −
∑
α∈I

θα) ≤ λα ∀α ∈ I.
(2.8)

3 Method: A fast and scalable joint
estimator for multi-sGGM

The penalized likelihood framework for multi-task sG-
GMs in Eq. (2.6) involves a hybrid of two regularization
functions (`1 +R′). Studies in this direction cannot
avoid the expensive steps like SVD and matrix multipli-
cation and also require to store K covariance matrices
in the main memory. Since this paper aims to de-
sign a scalable joint estimator for multi-sGGM under
large-scale settings, extending the elementary estima-
tor of single-task sGGM [16] to multi-task formulation
becomes a natural choice.
For multi-task sGGMs, we can denote that Ωtot =

2[20] has proved that this class of ESM estimators
achieves the same convergence rate as the corresponding
estimators (with the same superposition of structures) using
the penalized MLE formulation under certain conditions.

(Ω(1),Ω(2), . . . ,Ω(K)) and Σtot = (Σ(1),Σ(2), . . . ,Σ(K)).
Ωtot and Σtot are both p×Kpmatrices (i.e.,Kp2 param-
eters to estimate). Now define an inverse function as
inv(Atot) := (A(1)−1

, A(2)−1
, . . . , A(K)−1), where Atot

is a given p×Kp matrix with the same structure as Σtot.
Furthermore, we add a new hyperparameter variable
ε = λ′n

λn
.

Let I = {1, 2} and θ1 = θ2 = 1
2Ωtot. We can clearly

tell that Eq. (2.6) is a special case of the superposi-
tion structured estimation in Eq. (2.7). The ESS (ele-
mentary superposition structured) moment estimator
(Eq. (2.8)) extends the elementary estimator of struc-
tured covariance matrix to elementary superposition-
structured estimator for estimating covariance matrices
with a hybrid structure (e.g., sparse + low rank). This
motivates us to propose the following elementary su-
perposition estimator for learning multi-task sGGM:

argmin
Ωtot

||Ωtot||1 + εR′(Ωtot)

s.t.||Ωtot − inv(Tv(Σ̂tot))||∞ ≤ λn
R′∗(Ωtot − inv(Tv(Σ̂tot))) ≤ ελn

(3.1)

Here || · ||∗1 = || · ||∞ (the dual norm of l1-norm is l∞-
norm). R′(·) represents a regularizer on Ωtot to enforce
that {Ω(i)} share certain similarity. R′∗(·) is the dual
norm of R′(·). We name this novel formulation as
FASJEM. By varying R′(·), we can get a variety of
FASJEM estimators.
Section 5 theoretically proves the convergence rate
of FASJEM as O(log(Kp)/ntot). Our theory proof is
inspired by the ESS moment estimator [20], the SS
estimator [21] and the EE-sGGM [16].

3.1 Method I: FASJEM-G
For multi-task regularization, the first R′(·) we try is
the G, 2-norm (i.e., R′(·) = || · ||G,2). This norm is in-
spired by JGL-group lasso[8]. G, 2-norm constrains the
parameters in the same group to have the same level of
sparsity. In multi-task sGGMs, group set G := {gj,k},
where gj,k = {Ω(i)

j,k|i = 1, . . . ,K}. Suppose g is an arbi-
trary group in group set G and totally we have p2 groups.
||Ωtot||G,2 =

p∑
j=1

p∑
k=1
||(Ω(1)

j,k,Ω
(2)
j,k, . . . ,Ω

(i)
j,k, . . . ,Ω

(K)
j,k )||2.

WhenR′(·) = ||·||G,2, we name Eq. (3.1) as FASJEM-G
(short form of FASJEM-Group2). We solve FASJEM-G
using a parallel proximal based optimization formula-
tion from[22]. Algorithm 1 summarizes the detailed
optimization steps and the four proximity operators
implemented on GPU are listed in Table 13. The opti-
mization sequence of Algorithm 1 converges Q-linearly
(See Eq. (S:2–10)).

3The non-GPU version of the four proximity operators
are in Eq. (S:2–2) to Eq. (S:2–5).
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3.2 Method II: FASJEM-I
As shown in Section 4, most previous models for multi-
task sGGMs varied the second norm R′ to obtain dif-
ferent models. Similarly we can easily change R′(·)
in Eq. 3.1 into any other desired norm to extend our
FASJEM. For instance, we can change R′(·) to group-
infinity norm || · ||G,∞.

||Ωtot||G,∞ =
p∑
j=1

p∑
k=1
||(Ω(1)

j,k,Ω
(2)
j,k, . . . ,Ω

(i)
j,k, . . . ,Ω

(K)
j,k )||∞.

This norm is inspired by a multi-task sGGM proposed
by [11]. When using group-infinity norm, we get
FASJEM-I(short for FASJEM-Groupinf). We can
derive the optimization for FASJAM-I by changing
two proximities in Algorithm 1. Considering that the
original formulation in [11] is similar with JGL[8], in
the rest of this paper, we call the model from [11] as
JGL-groupinf or JGL-I (the corresponded baseline for
FASJEM-I).
3.3 Proximal Algorithm for Optimization
Eq. (3.1) includes a convex programming task since the
norms we choose are convex. By simplifying notations
and adding another parameter, we reformulate it to:

argmin
θ1,θ2

f1(θ1) + f2(θ2)

subject to :||θ1 − inv(Tv(Σ̂tot))||∞ ≤ λn
R′∗(θ2 − inv(Tv(Σ̂tot))) ≤ ελn
θ1 = θ2

(3.2)

Where f1(·) = || · ||1 and f2(·) = ε|| · ||G,2. Then
we convert Eq. (3.2) to the following equivalent and
distributed formulation:

argmin
θ1,θ2,θ3,θ4

f1(θ1) + f2(θ2) + f3(θ3) + f4(θ4)

subject to: θ1 = θ2 = θ3 = θ4

(3.3)

Here f3(θ) = I{||θ−inv(Tv(Σtot))||∞≤λn}(θ) and f4(θ) =
I{||θ−inv(Tv(Σtot))||∗G,2≤ελn}(θ). IC(·) represents the in-
dicator function of a convex set C as IC(x) = 0 when
x ∈ C. Otherwise IC(x) =∞. To solve Eq. (3.3), we
choose a parallel proximal based algorithm[22] summa-
rized in Algorithm 1. Besides the distributed nature,
the proximal algorithm also bring in the benefit that
many proximity operators are entry-wise operators for
the targeted parameters. The four proximal operators
for four functions {f1, f2, f3, f4} (for CPU platform im-
plementation) are included in the Equations Eq. (S:2–
2) to Eq. (S:2–5) in Section S:2. With the benefits as
proximal operators, Eq. (S:2–2) and Eq. (S:2–4) are
entry-wise and Eq. (S:2–3) and Eq. (S:2–5) are group
entry-wise.
3.4 GPU Implementation of FASJEM-G
We further revise Algorithm 1 to take advantage of the
advanced computational architecture–GPU. This algo-
rithm cannot be directly parallelized on GPU, because
GPU is slow for multiple branches based predictions.

Table 1: Four proximity operators implemented on GPU platform.

[proxγf1 (x)](i)
j,k

max((x(i)
j,k
−γ), 0)+min(0, (x(i)

j,k
+

γ))
proxγf2 (xg) xg max((1− γ

||xg||2
), 0)

[proxγf3 (x)](i)
j,k

min(max(x(i)
j,k
−a(i)

j,k
,−λn), λn)+

a
(i)
j,k

proxγf4 (xg) max( λn
||xg−ag||2

, 1)(xg−ag)+ag

Therefore, we convert those four operators prox(·) in
Algorithm 1 into single soft-threshold based operators
which only include simple algorithmic operations like
+ or max. These operators can be easily parallelized
on GPU[23]. The four proximity operators we use to
implement FASJEM-G on GPU are summarized in
Table 1. More details are included in Section S:2.

Algorithm 1 Parallel proximal algorithm4

input K given data blocks X(1), X(2), . . . , X(K). Hyper-
parameter:α, ε, v, λn and γ. Learning rate: 0 < ρ < 2.
Max iteration number iter.

output Ωtot
1: Compute Σtot from X(1), X(2), . . . , X(K)

2: Initialize θ0 = inv(Tv(Σtot)), θ0
j = inv(Tv(Σtot)) for

j ∈ {1, 2, 3, 4} and a = inv(Tv(Σtot)).
3: for i = 0 to iter do
4: pi1 = prox4γf1θ

i
1

5: pi2 = prox4γf2θ
i
2

6: pi3 = prox4γf3θ
i
3

7: pi4 = prox4γf4θ
i
4

8: pi = 1
4 (

4∑
j=1

θij)

9: for j = 1, 2, 3, 4 do
10: θi+1

j = θij + ρ(2pi − θi − pij)
11: end for
12: θi+1 = θi + ρ(pi − θi)
13: end for
14: Ωtot = θiter

output Ωtot

4 Connecting to Relevant Studies
Estimators for Single task sGGM:Sparse GGM is
a highly active topic in the recent literature. Roughly
speaking, there exist three major categories of estima-
tors for sGGM. A key class of estimators is based on the
regularized maximum likelihood optimization. The pop-
ular estimator “graphical lasso”(GLasso) considers max-
imizing a `1 penalized normal likelihood [6, 17, 24, 25].
As the second type, CLIME estimator[26] learns sGGM
by solving a constrained `1 optimization. The CLIME
formulation can be converted into multiple subproblems
of linear programming and has shown more favorable
theoretical properties than GLasso. The linear pro-
gramming while convex, is computationally expensive
for large-scale tasks. Recently as a third group of stud-

4Four proximity operators used on GPU are defined in
Table 1. Hyperparameters are explained in Section 6. Here
j, k = 1, . . . , p, i = 1, . . . ,K and g ∈ G.
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ies, soft-thresholding based elementary estimators[16]
have been introduced for inferring undirected sparse
Graphical models. This paper mostly follows the third
category. Besides, there exists quite a number of recent
studies trying to scale up single sGGM to a large scale.
For example, the BigQUIC algorithm [27] proposes
an asymptoticly quadratic optimization to estimate
sGGM. The elementary estimator [16] of sGGM is an
advanced version of BigQUIC.
Multi-sGGM: Previous Likelihood based Esti-
mators.Most previous methods to jointly estimate
multiple sGGMs can be formulated using the penalized
MLE Eq. (2.6), including for instance, (1) Joint graph-
ical lasso (JGL-group uses G, 2-norm in Section 3.1 [8]),
(2) Node-perturbed JGL [9], (3) Simone [10], and (4)
multi-task sGGM proposed by [11]. These methods
differ with respect to the second regularization function
R′(·)they used to enforce their assumption of similarity
among tasks.
Optimization and Computational Comparison:
We use JGL-group and the model proposed by [11]
(we name it as JGL-groupInf) as baselines in our exper-
iments. As we mentioned in Section 1, the bottleneck
of optimizing multi-sGGM in JGL-group is the step
of SVD that needs O(Kp3) time complexity and re-
quires storing K covariance matrix (O(Kp2) memory
cost). Differently, JGL-Groupinf chose a coordinate
descent method and proved that their optimization is
equivalent to p sequences of quadratic subproblems,
each of which costs O(K3p3) computation. Therefore
the total computational complexity of JGL-Groupinf
is O(K3p4). Besides, this coordinate descent method
needs to store all K covariance matrices in the main
memory( O(Kp2) memory cost). Table 2 compares our
model with two baselines in terms of time and space
cost. Solving our model relies totally on entry-wise
and group-entry-wise procedures. Its time complexity
is O(Kp2). This is much faster than the baselines,
especially in high-dimensional settings (Table 2). 5

Moreover, in our optimization, learning the parameters
for each group {Ω(i)

j,k|i = 1, . . . ,K} does not rely on
other groups. This means we only need to store K
entries of the same group in the memory for computing
Eq. (S:2–4) and Eq. (S:2–5). The space complexity
O(K) is much smaller than previous methods’ O(Kp2)
requirement. 6 The comparisons are in Table 2.

5Note that the discussion of time complexity is for each
iteration in optimization. We show the Q-linear convergence
for all first-order multi-task sGGM estimators in Eq. (S:2–
10). Since the baselines and our methods all use first-order
optimization, we assume the number of iterations is the
same among all methods.

6We have provided a GPU implementation of FASJEM
in Section 3.3. Although SVD or matrix inversion can
also be speed up by GPU parallelization, these method

Table 2: Comparison to Previous multi-sGGM methods

References Computational Com-
plexity

Memory
Cost

JGL-Group [8] O(Kp3) O(Kp2)
JGL-GroupInf
[11]

O(K3p4) O(Kp2)

FASJEM Mod-
els

O(Kp2) (if paralleling
completely, O(K) )

O(K)

Previous Studies using Elementary based Esti-
mators:Most previous studies of multi-sGGMs follow
the penalized MLE framework. Few works of Multi-
task sGGM follow the CLIME formulation, since it is
not easy to transfer two regularizers into the CLIME
formulation (summarized in Table S:1). Based on the
authors’ knowledge, no previous multi-sGGM studies
have followed the elementary estimators(EE) formula-
tion. As a simple soft-thresholding based estimator,
elementary estimators (EE) have been used for other
tasks as well. Table S:1 summarizes three different
types of previous tasks for which EE can be applied:
high-dimensional regression, single sGGM and multi-
sGGM. For comparison, we show how these tasks have
been solved through the penalized likelihood framework
in the second column and use the the third column to
show studies following the CLIME formulation.
Convergence Rate Analysis:Although previous
joint sGGMs work well on datasets whose K and
p are relatively small, two important questions re-
main unanswered: (1) what’s the statistical conver-
gence rate of these joint estimators? and (2) what’s
the benefits of joint learning? The convergence
rate of estimating single-task sGGM has been well
investigated[6, 17, 24, 25]. These studies proved that
the estimator of single-task sGGM holds a consistent
convergence rate O(

√
log p
n ) if given n data samples.

However, none of the previous joint-sGGM studies
provide such theoretical analysis. Experimental eval-
uations in previous joint-sGGM papers have shown
better performance of running joint estimators over
running single-task sGGM estimators on each dataset
separately. However, it hasn’t been proven that theo-
retically this joint estimation is better. We successfully
answer these two remaining questions in Section 5.

5 Theoretical Analysis
In this section, we prove that our estimator can be
optimized asynchronously in a group entry-wise man-
ner. We also provide the proof of the theoretical error
bounds of FASJEM.

cannot avoid the O(Kp2) memory cost, which is a huge
bottleneck for large-scale problems. In Section 5 we prove
that our estimator is completely group entry-wise and asyn-
chronously optimizable, this makes FASJEM only require
O(K) memory storage.
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5.1 Group entry-wise and parallelizing
optimizable

Theorem 5.1. (FASJEM is Group entry-wise
optimizable) Suppose we use FASJEM to infer mul-
tiple inverse of covariance matrices summarized as
Ω̂tot. {Ω̂(i)

j,k|i = 1, . . . ,K} describes a group of K en-
tries at (j, k) position. Varying j ∈ {1, 2, . . . , p} and
k ∈ {1, 2, . . . , p}, we have totally p× p groups. If these
groups are independently estimated by FASJEM, then
we have,

p⋃
j=1

p⋃
k=1
{Ω̂(i)

j,k|i = 1, . . . ,K} = Ω̂tot. (5.1)

Proof. Eq. (S:2–6) and Eq. (S:2–8) are soft-
thresholding based operators on each entry. Eq. (S:2–7)
and Eq. (S:2–9) are soft-thresholding operators on each
group of entries.

Corollary 5.2. We can decompose FASJEM into p×p
subproblems that are independent from each other, and
solve each subproblem at a time. Therefore our estima-
tor only requires O(K) memory storage for computa-
tion.

This corollary proves the claims we showed in section
4. Through Theorem (5.1), it is important to notice
that the optimization on multiple groups of entries can
be totally parallelized.

5.2 Theoretical error bounds
In this subsection, we first provide the error bounds for
elementary super-position estimator (ESS estimator)
under I = {1, 2}. We then use this general bound to
prove the error bound for FASJEM-G. All the proofs
are included in Section S:8. We also include the error
bounds for elementary estimator (EE) in Section S:7.
Extension to ESS:For the multiple-task case, we
need to consider two or more regularization functions.
For instance, in FASJEM-G we assume the sparsity of
parameter and the group sparsity among tasks. Since
we only consider the models with two regularization
function, we consider the error bounds of the following
elementary super-position estimator formulation in the
rest of the section.

argmin
θ1,θ2

λ1R1(θ1) + λ2R2(θ2)

subject to:R∗i (θ̂n − (θ1 + θ2)) ≤ λi ,i = 1, 2
(5.2)

This equation restricts the number of penalty functions
to 2. Similar to the single-task error bounds (in Sec-
tion S:7) , we naturally extend condition (C2) to the
following condition:
(C3) projM⊥

i
(θ∗i ) = 0, i = 1, 2.

We borrow the following condition from [21], which is
a structural incoherence condition ensuring that the

non-interference of different structures.
(C4) Let Φ := max{2 + 3λ1Ψ1(M̄1)

λ2Ψ2(M̄2) , 2 + 3λ2Ψ2(M̄2)
λ1Ψ1(M̄1) }.

max{σmax(PM̄1
PM̄2

),
σmax(PM̄1

PM̄⊥2 )σmax(PM̄⊥1 PM̄⊥2 )} ≤ 1
16Φ2

where PM̄ is the matrix corresponding to the projection
operator for the subspace M̄. The definition of Ψ(·)
are included in Definition (S:7.1).
With these two conditions, we have the following theo-
rem:
Theorem 5.3. Suppose that the true parameter θ∗
satisfies the conditions (C3)(C4) and λi ≥ R∗i (θ̂−θ∗),
then the optimal point θ̂ of Eq. (5.2) has the following
error bounds:

R∗i (θ̂ − θ∗) ≤ 2λi, i = 1, 2 (5.3)

Ri(θ̂ − θ∗) ≤
32
λi

(max
i
λiΨ(M̄i))2, i = 1, 2 (5.4)

||θ̂ − θ∗||F ≤ 8 max
i
λiΨ(M̄i) (5.5)

Notice that for FASJEM-G model, R1 = || · ||1 and
R2 = ||·||G,2. Based on the results in[18], Ψ(M̄1) =

√
s

and Ψ(M̄2) = √sG , where s is the number of nonzero
entries in Ωtot and sg is the number of groups in which
there exists at least one nonzero entry. Clearly s > sg.
Also in practice, to utilize group information, we have to
choose hyperparameter λn > λ′n (λ1 > λ2 in Eq. (5.5)).
Therefore by Theorem (5.3), we have the following
theorem,
Theorem 5.4. Suppose that R1 = || · ||1 and R2 = || ·
||G,2 and the true parameter Ω∗tot satisfies the conditions
(C3)(C4) and λi ≥ R∗i (Ω̂tot −Ω∗tot), then the optimal
point Ω̂tot of Eq. (3.1) has the following error bounds:
||Ω̂tot − Ω∗tot||F ≤ 8

√
sλn.

We then derive a corollary of Theorem (5.4)
for FASJEM-G. A prerequisite is to show that
inv(Tv(Σ̂tot)) is well-defined. The following conditions
define a broad class of sGGM that satisfy the require-
ment. Similar results are also introduced by[16].
Conditions for elementary estimator of sGGM:
C-MinInfΣ The true parameter Ω∗tot of Eq. (5.2) has
bounded induced operator norm, i.e., |||Ω(i)∗|||∞ :=

sup
w 6=0∈Rp

||Σ(i)∗w||∞
|w|∞ ≤ κ1∀i.

C-SparseΣ The true multiple covariance matrices
Σ∗tot := inv(Ω∗tot) are “approximately sparse” along the
lines [28] : for some positive constant D, Σ(i)

j,j

∗
≤ D for

all diagonal entries. Moreover, for some 0 ≤ q < 1 and
c0(p), max

i

p∑
j=1
|Σ(i)
j,k

∗
|q ≤ c0(p)∀i. If q = 0, then this

condition reduce to Σ∗ being sparse. We additionally
require inf

w 6=0∈Rp
|Ω(i)∗w|∞
|w|∞ ≥ κ2.
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Error bounds of FASJEM-group:In FASJEM,
θ∗1 = θ∗2 = 1

2θ
∗. θi is the parameter w.r.t a subspace

pair(Mi,M̄⊥i ), where i = 1, 2.
Here R1 = || · ||1 and R2 = || · ||G,2. We assume
the true parameter θ∗ satisfies C-MinInfΣ and C-
SparseΣ conditions. Using the above theorems, we
have the following corollary:
Corollary 5.5. If we choose hyperparameters λ′n < λn.
Let v := a

√
log p′
ntot

for p′ = max(Kp, ntot). Then for

λn := 4κ1a
κ2

√
log p′
ntot

and ntot > c log p′, with a probability
of at least 1− 2C1 exp(−C2Kp log(Kp)), the estimated
optimal solution Ω̂tot has the following error bound:
||Ω̂tot − Ω∗tot||F ≤ 32 4κ1a

κ2

√
s log p′
ntot

}

where a, c, κ1 and κ2 are constants.

The convergence rate of single-task sGGM is
O(log p/ni). In high-dimensional setting, p′ = Kp
since Kp > ntot. Assuming ni = ntot

K , the convergence
rate of single sGGM is O(K log p/ntot). Clearly, since
K log p > log(Kp), the convergence rate of FASJEM is
better than single-task sGGM.

6 Experiment
Multiple simulated datasets and four real-world biomed-
ical datasets are used to evaluate FASJEM.

6.1 Experimental Settings
Baseline:We compare (1)FASJEM-G versus JGL-
group [8]; (2)FASJEM-I versus JGL-groupinf [11]. This
is because the specific FASJEM estimator and its base-
line share the same second-penalty function. 7 Three
evaluation metrics are used for such comparisons.
• Precision: We use the edge-level false positive rate
(FPR) and true positive rate (TPR) to measure the pre-
dicted graphs versus true graph. Repeating the process
10 times, we obtain average metrics for each method we
tests. Here, FPR = FP

FP + TN and TPR = TP
TP + FN . TP

(true positive) and TN (true negative) mean the number
of true nonzero entries and the number of true zero en-
tries estimated by the predicted precision matrices. The
FPR vs. TPR curve shows multi-point performance of
a method over a range of the tuning parameter. The
bigger the area under a FPR-TPR curve, the better a
method has achieved overall.

• Speed: The time (log(second)) between the whole
program’s start and end indicates the speed of a cer-
tain method under a specific configuration of hyper-
parameters. To be fair, we set up two types of com-
parisons. The first one fixes the number of tasks (K) but
varies the dimension (p). This shows the performance
of each method under a high-dimensional setting. The
other type fixes the dimension (p) but varies the number
of tasks (K). This measures the performance of each
7Since single-sGGM EE has a closed-form solution (i.e.,

no iterative steps are needed in optimization), we do not
include it as baseline.

method when having a large number of tasks.
• Memory: For each method, we vary the number of tasks

(K) and the dimension (p) until a specific method termi-
nates due to the “out of memory” error. This measures
the memory capacity of the corresponding method.

Our implementation:We implement FASJEM on
two different architectures: (1)CPU only and (2)GPU
8. Similar to the JGL-group from [8], we implement the
CPU version FASJEM-G and FASJEM-I with R. We
choose torch7 [29] (LUA based) to program FASJEM
on GPU machine. 9

Selection of hyper-parameters:In this experiment,
we need to choose the value of three hyper-parameters.
The first one v is unique for elementary-estimator based
sGGM models. The second λn(in some models also
noted as λ1) is the main hyper-parameter we need to
tune. The third ε equals to λ′n

λn
(The notation λ2 is

normally used in related works instead of λ′n).
• v: We pre-choose v in the set {0.001i|i = 1, 2, . . . , 1000}

to guarantee Tv(Σtot) is invertible.
• λn10: Recent research studies from [18] and [16] conclude

that the regularization parameter λni of a single task
with ni samples should be chosen with λni ∝

√
log p
ni

.
Combining this result and our convergence rate analysis
in Section 5, we choose λn = α

√
logKp
ntot

where α is a
hyper-parameter. The hyperparameter γ in Algorithm 1
equals to λn.

• ε: We select the best ε from the set {0.1i|i = 1, 2, . . . , 10}
using cross-validation.

6.2 Experiments on simulated datasets
Using the following “Random Graph Model”(RGM), we
first generate a set of synthetic multivariate Gaussian
datasets, each of which includes samples of K tasks
described by p variables. From [25], this “Random
Graph Model" assumes Ω(i) = B(i) + δ(i)I, where each
off-diagonal entry in B(i) is generated independently,
equals to 0.5 with probability 0.05i and, equals to 0 with
probability 1 − 0.05i. δ(i) is selected large enough to
guarantee the positive definiteness of precision matrix.
For each case of p, we use this model to generate K
random sparse graphs. For each graph (task), n = p/2

8Information of Experiment Machines: The machine
that we use for experiments includes Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz with a 8GB memory. The GPU
that we use for experiments is Nvidia Tesla K40c with 2880
cores and 12GB memory.

9Though the ideal memory requirement of FASJEM is
only O(K), IO costs should also be taken into account in
real implementations. As being proved, Ωtot is group-entry-
wise optimizable. The parameter groups are independently
estimated in the parallelized style. When implementing
FASJEM in a single machine (our experimental setting),
we prefer to choose smaller m to make full use of the main
memory, where m is the number of parameter groups which
are estimated at the same time.

10λn = 0.1 used for time and memory experiments
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Figure 1: FASJEM-G versus JGL-group with respect to accuracy, speed and memory capacity. (a): FPR-TPR curves of two methods and two
single-sGGM baselines on the simulated dataset using Random Graph Model when p = 2000 and K = 2. (AUC number–FASJEM-G:0.9332,
JGL-group:0.5803, EE for sGGM:0.7852, GLasso:0.8504) (c) and (e): Time versus p(the number of variables) curves from FASJEM-G,
JGL-group and FASJEM-G’s GPU implementation. (c) uses ni = p/2 and (e)ni = p/4. (b), (d) and (f): the time versus K(the number of
tasks) curves for two methods plus FASJEM-G-GPU. (b) uses p = 2000 and ni = p/2, (d) uses p = 4000 and ni = p/2 and (f) uses p = 4000
and ni = p/4.

data samples are generated randomly by following
N(0, (Ω(i))−1). For each (K, p) parameter setting we
test in the experiment, we use this RGM process to gen-
erate 10 different datasets (with different random seeds).
Then we apply our methods and baseline methods on
these datasets to obtain estimated sGGM networks.
All results or curves we show in the rest of this section
are average scores/curves over 10 trials for each case
of parameter configuration.
Figure 1(a) and S:2(a) present FPR vs. TPR curves
of two proposed methods: FASJEM-G and FASJEM-I
versus their corresponding baselines: JGL-group and
JGL-groupinf, on the simulated datasets. We choose
p = 2000 and K = 2. FPR-TPR curve plots are
obtained by varying its tuning parameter λn over a
range of {0.05×

√
logKp
ntot

× i|i ∈ {1, 2, 3, . . . , 30}} and
interpolating the obtained performance points (We
pre-choose v and ε and the methods are introduced
in Section 6.1). The two subfigures of “ROC curve”
clearly show that FASJEM-G and FASJEM-I obtain
better under-plot areas than corresponding JGL-group
and JGL-groupinf.
Then in Figure 1(c)(e) and S:2(c)(e) we show the
curves of Time vs. Dimension p comparing FASJEM-G
and FASJEM-I versus their baselines. Sub-figure 1(c)
and S:2(c) choose ni = p/2. Sub-Figures 1(e) and
S:2(e) use ni = p/4. The CPU curves are obtained
by varying p in the set of {1000i|i = 0.5, 1, 2, 3, . . . , 8}.
GPU curves are obtained by varying p in the set of
{1000i|i = 4, 5, 6, . . . , 10}. The subfigure (c) “p versus
time-[K = 2, ni = p/2]” and subfigure (e) “p versus
time-[K = 2, ni = p/4]” in Figure 1 show that though
JGL-group obtains a slightly better performance than

our method under lower-dimension cases, when reach-
ing high dimensional stages, FASJEM-G performs sim-
ilarly and trains much faster than the baseline method.
Figure S:2(c) and Figure S:2(e) provide similar con-
clusions for FASJEM-I vs JGL-groupinf. In addition,
the baselines cannot handle p ≥ 8000 because these
approaches require too much memory. Clearly our
proposed FASJEM methods can still perform reason-
able well for the large-scale cases. This shows that
our methods makes better usage of memory. Moreover,
both FASJEM-G-GPU and FASJEM-I-GPU implemen-
tations spend only 1

10 of train time against its CPU
implementations. This proves that GPU parallelization
can speed up FASJEM significantly.
Figure 1(b)(d)(f) and S:2(b)(d)(f) show the curves
about “Time vs. Number of tasks-K” comparing our
methods FASJEM-G and FASJEM-I versus two base-
line methods JGL-group and JGL-groupinf respectively.
These sub-figures use the varying K as the x-axis over
a range of {2, 3, . . . , 8}. Sub-figures (b) use p = 2000,
ni = p/2, sub-figures (d) use p = 4000, ni = p/2 and
sub-figures (f) choose p = 4000, ni = p/4. These figures
show that the JGL-group and JGL-groupinf obtain a
slightly better speed than two FASJEM, under small
K cases. For larger K, our methods perform faster
than the baseline methods. The conclusion hold across
three cases with different pairs of (p, ni), indicating
that the advantage of our methods do not change by
working on graphs and datasets of different sizes. In
addition, when p = 4000, JGL-group and JGL-groupinf
cannot handle K ≥ 5 (i.e., the R program died) due to
the memory issue on our experiment machine, while
both FASJEM-G and FASJEM-I can. This proves that
FASJEM requires a lower memory cost than the base-



Beilun Wang, Ji Gao, Yanjun Qi

lines. In all subfigures (b), (d) and (f), FASJEM curves
are roughly linear. The experimental results match
with the computational complexity analysis we have
performed in Table 2 (the computation cost of FAS-
JEM is linear to K). Moreover, subfigures (b), (d) and
(f) show that both FASJEM-G-GPU and FASJEM-I-
GPU implementations spend only 1

10 time of their CPU
implementations respectively. This confirms that GPU-
parallelization can speed up FASJEM significantly.
Furthermore in Section S:6, we compare FASJEM-G
and JGL-group on four different real-world datasets.
FASJEM-G consistently outperforms JGL-group on all
four datasets in recovering more known edges.
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S:1 Appendix: Backward mapping for
M-Estimator

The graphical model MLE can be expressed as a back-
ward mapping[1] in an exponential family distribution
that computes the model parameters corresponding to
some given (sample) moments. There are however two
caveats with this backward mapping: it is not available
in closed form for many classes of models, and even
if it were available in closed form, it need not be well-
defined in high-dimensional settings (i.e., could lead to
unbounded model parameter estimates).
We provide detailed explanations about backward map-
ping from the M-estimator framework [2] and backward
mapping for Gaussian special case in this section.
Backward mapping:Suppose a random variable X ∈
Rp follows the exponential family distribution:

P(X; θ) = h(X)exp{< θ, φ(θ) > −A(θ)} (S:1–1)

Where θ ∈ Θ ⊂ Rd is the canonical parameter to be
estimated and Θ denotes the parameter space, φ(X)
denotes the sufficient statistics with a feature map-
ping function φ : Rp → Rd, and A(θ) is the log-
partition function. We define mean parameters as:
ν(θ) := E[φ(X)], which are the first moments of the
sufficient statistics φ(θ) under the exponential family
distribution. The set of all possible moments by the
moment polytope:

M = {ν|∃p is a distribution s.t. Ep[φ(X)] = ν}
(S:1–2)

Most machine learning problem about graphical model
inference involves the task of computing moments
ν(θ) ∈ M given the canonical parameters θ ∈ H .
We denote this computing as forward mapping :

A : H →M (S:1–3)

When we need to consider the reverse computing of the
forward mapping, we denote the interior ofM asM0.
The so-called backward mapping is defined as:

A∗ :M0 → H (S:1–4)

which does not need to be unique. For the exponential
family distribution,

A∗ : ν(θ)→ θ = ∇A∗(ν(θ)). (S:1–5)

Where A∗(ν(θ)) = sup
θ∈ H

< θ, ν(θ) > −A(θ).

Backward Mapping: Gaussian CaseIf the random
variable X ∈ Rp follows the Gaussian Distribution
N(µ,Σ). Then θ = (Σ−1µ,− 1

2Σ−1). The sufficient
statistics φ(X) = (X,XXT ) and the log-partition func-
tion A(θ) = 1

2µ
TΣ−1µ+ 1

2 log(|Σ|). h(x) = (2π)− k
2 .

When inferring the Gaussian Graphical Models, it is
easy to estimate the mean vector ν(θ), since it equals
to E[X,XXT ].
Because the θ contains entry Σ−1, when estimating
sGGM, we need to use the backward mapping:
For the case of Gaussian distribution,

θ = (Σ−1µ,−1
2Σ−1) = A∗(ν) = ∇A∗(ν)

= ((Eθ[XXT ]− Eθ[X]Eθ[X]T )−1Eθ[X],

−1
2(Eθ[XXT ]− Eθ[X]Eθ[X]T )−1).

(S:1–6)

By plugging in A(θ) = 1
2µ

TΣ−1µ + 1
2 log(|Σ|) into

Eq. (S:1–5), Ω is canonical parameter using backward
mapping. We get Ω as (Eθ[XXT ]−Eθ[X]Eθ[X]T )−1) =
Σ−1, which can be inferred by the estimated covariance
matrix.

S:2 Appendix: Method and
Optimization

More about Proximal Optimization:The proximal
algorithm only needs to calculate the proximity opera-
tor of the parameters to be optimized. The proximity
operator in proximal algorithms is defined as:

proxγf (x) = argmin
y

(f(y) + ( 1
2γ ||x− y||

2
2)). (S:2–1)

The benefit of the proximal algorithm is that many
proximity operators are entry-wise operators for the
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targeted parameters. The parallel proximal (initially
called proximity splitting) algorithm [3] belongs to the
general family of distributed convex optimization that
optimizes in such a way that each term (in this case,
each proximity operator) can be handled by its own
processing element, such as a thread or processor.

Figure S:1: A simple figure to show how our optimization method
works. Our optimization approach is a method with linear conver-
gence rate in finding the optimal point. It considers four properties
: (1) information from the raw data; (2) information from the group
data; (3)sparsity property; (4) group sparsity property.

More about four proximity operators for CPU
implementation of FASJEM-G:In the following,
we denote x = Ωtot, a = Σtot and g ∈ G to simply
notations. Eq. (S:2–2) and Eq. (S:2–4) are entry-wise
operators and Eq. (S:2–3) and Eq. (S:2–5) are group
entry-wise. Group entry-wise means in calculation,
the operator can compute each group of entries inde-
pendently from other groups. Entry-wise means the
calculation of each entry is only related to itself). The
optimization process of Algorithm 1 iterating among
four proximal operators is visualized by Figure S:1.
For f1(·) = || · ||1.

proxγf1(x) = proxγ||·||1(x)

=


x

(i)
j,k − γ, x

(i)
j,k > γ

0, |x(i)
j,k| ≤ γ

x
(i)
j,k + γ, x(i)

j,k < −γ

(S:2–2)

Eq. (S:2–2) is the closed form solution of Eq. (S:2–1)
when f = | · |1. Here j, k = 1, . . . , p and i = 1, . . . ,K.
This is an entry-wise operator (i.e., the calculation of
each entry is only related to itself).
Similarly, f2(·) = || · ||G,2

proxγf2(xg) = proxγ||·||G,2
(xg)

=
{
xg − γ xg

||xg||2 , ||xg||2 > γ

0, ||xg||2 ≤ γ
(S:2–3)

Here g ∈ G. This is a group entry-wise operator (com-
puting a group of entries is not related to other groups).
f3(·) and f4(·) include function forms of If(·)<D and
proxI{f(·)<D}

= proj{f(·)<D}, where projC means the
projection function to the convex set C. We can obtain

proxγf3(x) = proj||x−a||∞≤λ

=


x

(i)
,k , |x

(i)
j,k − a

(i)
j,k| ≤ λ

a
(i)
,k + λ, x(i)

j,k > a
(i)
j,k + λ

a
(i)
,k − λ, x

(i)
j,k < a

(i)
j,k − λ

(S:2–4)

where j, k = 1, . . . , p and i = 1, . . . ,K. This operator
is entry-wise (i.e., only related to each entry of x and
a).

proxγf4(xg) = proj||x−a||∗G,2≤λ

=
{

xg, ||xg − ag||2 ≤ λ
λ

xg−ag

||xg−ag||2 + ag, ||xg − ag||2 > λ

(S:2–5)

This operator is group entry-wise.
More about four proximity operators for GPU
parallel implementation of FASJEM-G:The four
proximity operators on GPU are summarized in Table 1.
More details as following:
For Eq. (S:2–2),

proxγf1(x) = proxγ||·||1(x)

= max((x(i)
j,k − γ), 0) + min(0, (x(i)

j,k + γ))
(S:2–6)

For Eq. (S:2–3)

proxγf2(xg) = proxγ||·||G,2
(xg)

= xg max((1− γ

||xg||2
), 0) (S:2–7)

For Eq. (S:2–4)

proxγf3(x) = proj||x−a||∞≤λ
= min(max(x(i)

j,k − a
(i)
j,k,−λ), λ) + a

(i)
j,k

(S:2–8)

For Eq. (S:2–5)

proxγf4(x) = proj||x−a||∗G,2≤λ

= max( λ

||xg − ag||2
, 1)(xg − ag) + ag

(S:2–9)

Here j, k = 1, . . . , p, i = 1, . . . ,K and g ∈ G.
More about Q-linearly Convergence of Opti-
mization:The proposed optimization is a first-order
method. Based on the recent study[4], the optimiza-
tion sequence {Ωi}(for i = 1 to t iteration) converges
Q-linearly. Q-linearly means:

lim sup
k→∞

||Ωk+1 − Ω∗||
||Ωk − Ω∗|| ≤ ρ (S:2–10)
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S:3 Appendix: Related previous
studies using elementary based
estimators

Related previous studies based on elementary estima-
tors are summarized in Table S:1.

S:4 Appendix: More about
Experimental Setting and
Baselines

Hyperparameter tuning:We have tried BIC method
(used in [5]) for choosing the tuning parameter λn.
As pointed out by ([6], [7] and [8]), the BIC or AIC
method may not work well for the high-dimensional
case. Therefore we have skipped adding the results
from BIC or AIC.
In our experiments, we compare our model with the
baselines by varying the same set of the tuning param-
eters.
Baseline:Recent literature[9] shows that the single
sGGM has a close form solution through the EE es-
timator (i.e., no iteration). It is not fair to compare
our estimator to such a closed-form sGGM estimator
in terms of the speed or memory usage. Therefore we
don’t include the single sGGM as a baseline.
Real World Experiments:We also tried FASJEM-I
and JGL-groupinf on the three datasets. No matched
interactions were found in one dataset. Therefore, we
omit the results.

S:5 Appendix: More Experimental
Results from Simulated Data

Figure S:3 represents a comparison between the single-
task EE estimator for sGGM and GLasso estimator.
We choose the Ω(i) in the random graph model as the
true graph. We obtain the two subfigures by varying
p in a set of {100, 200, 300, 400, 500}. The left subfig-
ure is “AUC vs. p (number of features)” while the
right subfigure is “Time vs. p (number of features)”.
Figure S:3 shows that the elementary estimator has
achieved similar performance of GLasso among differ-
ent p while the computation time of EE is much less
than the GLasso.

S:6 Experiments on Real-world
Datasets

We apply FASJEM-G and JGL-group on four differ-
ent real-world datasets: (1) the breast/colon cancer
data [10] (with 2 cell types and 104 samples, each hav-
ing 22283 features); (2) Crohn’s disease data [11] (
with 3 cell types, 127 samples and 22283 features) ,
(3) the myeloma and bone lesions data set[12] (with
2 cell types, 173 samples and 12625 features) and (4)
Encode project dataset[13] (with 3 cell types, 25185

Figure S:2: Comparison between FASJEM-I and JGL-groupinf us-
ing accuracy, speed and memory capacity. (a) FPR-TPR curves of
two methods on the simulated dataset using Random Graph Model
when p = 2000 and K = 2. (c) and (e) Time versus p(the number
of variables) curves from FASJEM-G, JGL-group and FASJEM-I’s
GPU implementation. (c) uses ni = p/2 and (e)ni = p/4 (b), (d)
and (f) include the time versus K(the number of tasks) curves for
two methods plus FASJEM-I-GPU. (b) uses p = 2000 and ni = p/2,
(d) uses p = 4000 and ni = p/2 and (f) uses p = 4000 and ni = p/4.

Figure S:3: Comparison between elementary estimator for sGGM
and GLasso for single-task sGGM. The left figure is the curve of
AUC number by varying p. The number of sample n = p/2. The
right figure is the curve of computation time by varying p. Other
settings are the same as the left one. Clearly, elementary estimator
has the similar accuracy performance as GLasso but is much faster
and scalable than it.

samples and 27 features). For the first three datasets,
we select its top 500 features based on the variance of
the variables. After obtaining estimated dependency
networks, we compare all methods using two major
existing databases [14, 15] archiving known gene in-
teractions. The number of known gene-gene interac-
tions predicted by each method has been shown as
bar graphs in Figure S:4. These graphs clearly show
that FASJEM-G outperforms JGL-group on all three
datasets and across all cell conditions within each of
the three datasets. This leads us to believe that the
proposed FASJEM-G is very promising for identifying
variable interactions in a wider range of applications
as well.
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Table S:1: Two categories of relevant studies differ over learning based on “penalized log-likelihood" or learning based on“elementary
estimator"

Problems Penalized Likelihood Elementary estimator
High dimensional
linear regression

Lasso: argmin
β
|Y − βX|F + λ|β|1 argmin

β
|β|1 subject to : |β −

(XTX + εI)−1XT y|∞ ≤ λn
sparse Gaussian
Graphical Model

gLasso: argmin
Ω≥0

−logdet(Ω)+ < Ω,Σ >

+λ|Ω|1

argmin
Ω≥0

|Ω|1 subject to: |Ω −

[Tv(Σ)]−1|∞ ≤ λn
Multi-task sGGM Different Choices for Penalty R′

argmin
Ω>0

∑
i

(−L(Ωtot) + λ1
∑
i ||Ω(i)||1 +

λ2R′(Ωtot)

Our method: FASJEM

Figure S:4: Compare predicted dependencies among genes or pro-
teins using existing databases [14, 15] with known interactions (bi-
ologically validated) in human. The number of matches among pre-
dicted interactions and known interactions is shown as bar lines.

S:7 Appendix: More about the
theoretical error bounds

Background–error bound for elementary esti-
mator:For proving the error bounds, we first briefly
review the error bound of a single-task EE-based model
using the unified framework[2]. The single task-EE fol-
lows the general formulation:

argmin
θ
R(θ)

subject to:R∗(θ̂n − θ) ≤ λn
(S:7–1)

where R(·) is the `1 regularization function and θ̂n is
the backforward mapping for θ.
Following the unified framework [2], we first decompose
the parameter space into a subspace pair(M,M̄⊥),
where M̄ is the closure ofM. HereM is the model
subspace that typically has a much lower dimen-
sion than the original high-dimensional space. M̄⊥
is the perturbation subspace of parameters. For
further proofs, we assume the regularization function
in Eq. (S:7–1) is decomposable w.r.t the subspace
pair (M,M̄⊥).
(C1) R(u+ v) = R(u) +R(v), ∀u ∈M,∀v ∈ M̄⊥.

[2] shows that most regularization norms are decom-
posable corresponding to a certain subspace pair.

Definition S:7.1. A term subspace compatibility
constant is defined as Ψ(M, | · |) := sup

u∈M\{0}

R(u)
|u|

which captures the relative value between the error norm
| · | and the regularization function R(·).

For simplicity, we assume there exists a true param-
eter θ∗ which has the exact structure w.r.t a certain
subspace pair. That is:
(C2) ∃ a subspace pair (M,M̄⊥) such that the true
parameter satisfies projM⊥(θ∗) = 0
Then we have the following theorem.

Theorem S:7.2. Suppose the regularization function
in Eq. (S:7–1) satisfies condition (C1), the true pa-
rameter of Eq. (S:7–1) satisfies condition (C2), and
λn satisfies that λn ≥ R∗(θ̂ − θ∗). Then, the optimal
solution θ̂ of Eq. (S:7–1) satisfies:

R∗(θ̂ − θ∗) ≤ 2λn (S:7–2)

||θ̂ − θ∗||2 ≤ 4λnΨ(M̄) (S:7–3)

R(θ̂ − θ∗) ≤ 8λnΨ(M̄)2 (S:7–4)

S:8 Proof
Proof of Theorem (S:7.2)

Proof. Let ∆ := θ̂− θ∗ be the error vector that we are
interested in.

R∗(θ̂ − θ∗) = R∗(θ̂ − θ̂n + θ̂n − θ∗)

≤ R∗(θ̂n − θ̂) +R∗(θ̂n − θ∗) ≤ 2λn
(S:8–1)
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By the fact that θ∗M⊥ = 0, and the decomposability of
R with respect to (M,M̄⊥)

R(θ∗)
= R(θ∗) +R[ΠM̄⊥(∆)]−R[ΠM̄⊥(∆)]
= R[θ∗ + ΠM̄⊥(∆)]−R[ΠM̄⊥(∆)]
≤ R[θ∗ + ΠM̄⊥(∆) + ΠM̄(∆)] +R[ΠM̄(∆)]
−R[ΠM̄⊥(∆)]
= R[θ∗ + ∆] +R[ΠM̄(∆)]−R[ΠM̄⊥(∆)]

(S:8–2)

Here, the inequality holds by the triangle inequality
of norm. Since Eq. (S:7–1) minimizes R(θ̂), we have
R(θ∗+ ∆) = R(θ̂) ≤ R(θ∗). Combining this inequality
with Eq. (S:8–2), we have:

R[ΠM̄⊥(∆)] ≤ R[ΠM̄(∆)] (S:8–3)

Moreover, by Hölder’s inequality and the decompos-
ability of R(·), we have:

||∆||22 = 〈∆,∆〉 ≤ R∗(∆)R(∆) ≤ 2λnR(∆)
= 2λn[R(ΠM̄(∆)) +R(ΠM̄⊥(∆))] ≤ 4λnR(ΠM̄(∆))
≤ 4λnΨ(M̄)||ΠM̄(∆)||2

(S:8–4)

where Ψ(M̄) is a simple notation for Ψ(M̄, || · ||2).
Since the projection operator is defined in terms of
|| · ||2 norm, it is non-expansive: ||ΠM̄(∆)||2 ≤ ||∆||2.
Therefore, by Eq. (S:8–4), we have:

||ΠM̄(∆)||2 ≤ 4λnΨ(M̄), (S:8–5)

and plugging it back to Eq. (S:8–4) yields the error
bound Eq. (S:7–3).
Finally, Eq. (S:7–4) is straightforward from Eq. (S:8–3)
and Eq. (S:8–5).

R(∆) ≤ 2R(ΠM̄(∆))
≤ 2Ψ(M̄)||ΠM̄(∆)||2 ≤ 8λnΨ(M̄)2.

(S:8–6)

Proof of Theorem (5.3)

Proof. In this proof, we consider the matrix parameter
such as the covariance. I = {1, 2} in the following
contents. Basically, the Frobenius norm can be simply

replaced by `2 norm for the vector parameters. Let
∆i := θ̂i − θ∗i , and ∆ = θ̂ − θ∗ = Σi∈I∆i. The error
bound Eq. (5.3) can be easily shown from the assump-
tion in the statement with the constraint of Eq. (5.2).
For every i ∈ I,

R∗i (∆) = R∗i (θ̂ − θ∗) = R∗i (θ̂ − θ̂n + θ̂n − θ∗)

≤ R∗i (θ̂n − θ̂) +R∗i (θ̂n − θ∗) ≤ 2λi.
(S:8–7)

By the similar reasoning as in Eq. (S:8–2) with the fact
that ΠM⊥

i
(θ∗i ) = 0 in C3, and the decomposability of

Ri with respect to (Mi,M̂⊥i ), we have:

Ri(θ∗i ) ≤Ri[θ∗i + ∆i] +Ri[ΠM̄i
(∆i)]

−Ri[ΠM̄⊥
i

(∆i)].
(S:8–8)

Since
{
θ̂i

}
i∈I

minimizes the objective function
of Eq. (5.2),

∑
i∈I

λiRi(θ̂i) ≤
∑
i∈I

λi{Ri(θ∗i + ∆i)

Ri[ΠM̄i
(∆i)]−Ri[ΠM̄⊥

i
(∆i)]},

(S:8–9)

Which implies

∑
i∈I

λiRi[ΠM̄⊥
i

(∆i)] ≤
∑
i∈I

λiRi[ΠM̄i
(∆i)] (S:8–10)

Now, for each structure i ∈ I, we have an application
for Hölder’s inequality: |〈∆,∆i〉| ≤ R∗i (∆)Ri(∆i) ≤
2λiRi(∆i) where the notation 〈〈A,B〉〉 denotes the
trace inner product, trace(ATB) = ΣiΣjAijBij , and
we use the pre-computed bound in Eq. (S:8–7). Then,
the Frobenius error ||∆||F can be upper-bounded as
follows:

||∆||2F = 〈〈∆,∆〉〉 =
∑
i∈I
〈〈∆,∆i〉〉 ≤

∑
i∈I
|〈〈∆,∆i〉〉|

≤ 2
∑
i∈I

λiRi(∆i) ≤ 2
∑
i∈I
{λiRi[ΠM̄i

(∆i)]+

λiRi[ΠM̄⊥
i

(∆i)]} ≤ 4
∑
i∈I

λiRi[ΠM̄i
(∆i)]

≤ 4
∑
i∈I

λiΨ(M̄i)||ΠM̄i
(∆i)||F

(S:8–11)
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where Ψ(M̄i) denotes the compatibility constant
of space M̄i with respect to the Frobenius norm:
Ψ(M̄i, || · ||F ).
Here, we define a key notation in the error bound:

Φ := max
i∈I

λiΨ(M̄i). (S:8–12)

Armed with this notation, Eq. (S:8–11) can be written
as

||∆||2F ≤ 4Φ
∑
i∈I
||ΠM̄i

(∆i)||F (S:8–13)

At this point, we directly appeal to the result in Propo-
sition 2 of [16] with a small modification:
Proposition 4. Suppose that the structural incoher-
ence condition (C4) as well as the condition (C3) hold.
Then, we have

2|
∑
i<j

〈〈∆i,∆j〉〉| ≤
1
2
∑
i∈I
||∆i||2F . (S:8–14)

By this proposition, we have

∑
i∈I
||∆i||2F ≤ ||∆||2F + 2|

∑
i<j

〈〈∆i,∆j〉〉|

≤ ||∆||2F + 1
2
∑
i∈I
||∆i||2F ,

(S:8–15)

which implies Σi∈I ||∆i||2F ≤ 2||∆||2F .
Moreover, since the projection operator is defined in
terms of the Frobenius norm, it is non-expansive for all
i : ||ΠM̄i

(∆i)||F ≤ ||∆i||F . Hence, we finally obtain:

(
∑
i∈I
||ΠM̄i

(∆i)||F )2 ≤ (
∑
i∈I
||∆i||F )2

≤ |I|
∑
i∈I
||∆i||2F ≤ 8|I|Φ

∑
i∈I
||ΠM̄i

(∆i)||F
(S:8–16)

and therefore,

∑
i∈I
||ΠM̄i

(∆i)||F ≤ 8|I|Φ (S:8–17)

The Frobenius norm error bound Eq. (5.5) can be
derived by plugging Eq. (S:8–17) back into Eq. (S:8–
13):

||∆||2F ≤ 32|I|Φ2. (S:8–18)

Therefore, we have

||∆||F ≤ 8Φ (S:8–19)

Which is exactly Eq. (5.5)
The proof of the final error bound Eq. (5.4) is straight-
forward from Eq. (S:8–10) and Eq. (S:8–17) as follows:
for each fixed i ∈ I,

Ri(∆i)

≤ 1
λi
{λiRi[ΠM̄i

(∆i)] + λiRi[ΠM̄⊥
i

(∆i)]}

≤ 1
λi
{λiRi[ΠM̄i

(∆i)] +
∑
j∈I

λjRj [ΠM̄j
(∆j)]}

≤ 2
λi

∑
j∈I

λjRj [ΠM̄j
(∆j)]

≤ 2
λi

∑
j∈I

λjΨ(M̄j)||ΠM̄j
(∆j)||F

≤ 2Φ
λi

∑
j∈I
||ΠM̄j

(∆j)||F ≤
16|I|Φ2

λi
= 32Φ2

λi

(S:8–20)

which completes the proof.

Proof of Theorem (5.4)

Proof. Since λn > λ′n and
√
s >
√
sG , We have that

λn
√
s > λ′n

√
sG .

By Theorem (5.3),

||Ω̂tot − Ω∗tot||F ≤ 8 max(λn
√
s, λ′n

√
sG) ≤ 8

√
sλn.

S:8.1 Useful lemma(s)
Lemma S:8.1. (Theorem 1 of [17]). Let δ be
maxij |[X

TX
n ]ij − Σij |. Suppose that ν > 2δ. Then,

under the conditions (C-SparseΣ), and as ρv(·) is a
soft-threshold function, we can deterministically guar-
antee that the spectral norm of error is bounded as
follows:

|||Tv(Σ̂)−Σ|||∞ ≤ 5ν1−qc0(p) + 3ν−qc0(p)δ (S:8–21)

Lemma S:8.2. (Lemma 1 of [18]). Let A be the event
that

||X
TX

n
− Σ||∞ ≤ 8(max

i
Σii)

√
10τ log p′

n
(S:8–22)

where p′ := max n, p and τ is any constant greater than
2. Suppose that the design matrix X is i.i.d. sampled
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from Σ-Gaussian ensemble with n ≥ 40 maxi Σii. Then,
the probability of event A occurring is at least 1 −
4/p′τ−2.

Proof of Corollary (5.5)

Proof. In the following proof, we re-denote the follow-

ing two notations: Σtot :=


Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
. . .

...
0 0 · · · Σ(K)


and

Ωtot :=


Ω(1) 0 · · · 0

0 Ω(2) · · · 0
...

...
. . .

...
0 0 · · · Ω(K)


The condition (C-SparseΣ) and condition (C-MinInfΣ)
also hold for Ω∗tot and Σ∗tot. In order to utilize Theo-
rem (5.4) for this specific case, we only need to show
that ||Ω∗tot− [Tν(Σ̂tot)]−1||∞ ≤ λn for the setting of λn
in the statement:

||Ω∗tot − [Tν(Σ̂tot)]−1||∞ = ||[Tν(Σ̂tot)]−1(Tν(Σ̂tot)Ω∗tot − I)||∞
≤ |||[Tν(Σ̂tot)w]|||∞||Tν(Σ̂tot)Ω∗tot − I||∞
= |||[Tν(Σ̂tot)]−1|||∞||Ω∗tot(Tν(Σ̂tot)− Σ∗tot)||∞
≤ |||[Tν(Σ̂tot)]−1|||∞|||Ω∗tot|||∞||Tν(Σ̂tot)− Σ∗tot||∞.

(S:8–23)

We first compute the upper bound of |||[Tν(Σ̂tot)]−1|||∞.
By the selection ν in the statement, Lemma (S:8.1)
and Lemma (S:8.2) hold with probability at least 1−
4/p′τ−2. Armed with Eq. (S:8–21), we use the triangle
inequality of norm and the condition (C-SparseΣ): for
any w,

||Tν(Σ̂tot)w||∞ = ||Tν(Σ̂tot)w − Σw + Σw||∞
≥ ||Σw||∞ − ||(Tν(Σ̂tot)− Σ)w||∞
≥ κ2||w||∞ − ||(Tν(Σ̂tot)− Σ)w||∞
≥ (κ2 − ||(Tν(Σ̂tot)− Σ)w||∞)||w||∞

(S:8–24)

Where the second inequality uses the condition (C-
SparseΣ). Now, by Lemma (S:8.1) with the selection
of ν, we have

|||Tν(Σ̂tot)− Σ|||∞ ≤ c1( log p′

ntot
)(1−q)/2c0(p) (S:8–25)

where c1 is a constant related only on τ and maxi Σii.
Specifically, it is defined as 6.5(16(maxi Σii)

√
10τ)1−q.

Hence, as long as ntot > ( 2c1c0(p)
κ2

)
2

1−q log p′ as stated,
so that |||Tν(Σ̂tot) − Σ|||∞ ≤ κ2

2 , we can con-
clude that ||Tν(Σ̂tot)w||∞ ≥ κ2

2 ||w||∞, which implies
|||[Tν(Σ̂tot)]−1|||∞ ≤ 2

κ2
.

The remaining term in Eq. (S:8–23) is ||Tν(Σ̂tot) −
Σ∗tot||∞; ||Tν(Σ̂tot) − Σ∗tot||∞ ≤ ||Tν(Σ̂tot) − Σ̂tot||∞ +
||Σ̂tot−Σ∗tot||∞. By construction of Tν(·) in (C-Thresh)
and by Lemma (S:8.2), we can confirm that ||Tν(Σ̂tot)−
Σ̂tot||∞ as well as ||Σ̂tot−Σ∗tot||∞ can be upper-bounded
by ν.
By combining all together, we can confirm that the se-
lection of λn satisfies the requirement of Theorem (5.4),
which completes the proof.
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