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Abstract

We focus on integrating different types of extra knowledge (other than the observed
samples) for estimating the sparse structure change between two p-dimensional
Gaussian Graphical Models (i.e. differential GGMs). Previous differential GGM
estimators either fail to include additional knowledge or cannot scale up to a high-
dimensional (large p) situation. This paper proposes a novel method KDiffNet
that incorporates Additional Knowledge in identifying Differential Networks via
an Elementary Estimator. We design a novel hybrid norm as a superposition of
two structured norms guided by the extra edge information and the additional
node group knowledge. KDiffNet is solved through a fast parallel proximal al-
gorithm, enabling it to work in large-scale settings. KDiffNet can incorporate
various combinations of existing knowledge without re-designing the optimiza-
tion. Through rigorous statistical analysis we show that, while considering more
evidence, KDiffNet achieves the same convergence rate as the state-of-the-art.
Empirically on multiple synthetic datasets and one real-world fMRI brain data,
KDiffNet significantly outperforms the cutting edge baselines with regard to the
prediction performance, while achieving the same level of time cost or less.

1 Introduction
Learning the change of dependencies between random variables is an essential task in many real-
world applications. For example, when analyzing functional MRI samples from different groups of
human subjects, detecting the difference in brain connectivity networks can shed light on studying and
designing treatments for psychiatric diseases [6]. In this paper, we consider Gaussian graphical models
(GGMs) and focus on directly estimating changes in the dependency structures of two p-dimensional
GGMs, based on nc and nd samples drawn from the two models (we call the task differential GGMs).
In particular, we focus on estimating the structure change under a high-dimensional situation, where
the number of variables p may exceed the number of observations: p > max(nc, nd). To conduct
consistent estimation under high dimensional settings, we leverage the sparsity constraint. In the
context of estimating structural changes between two GGMs, this translates into a differential network
with few edges. We review the state-of-the-art estimators for differential GGMs in Section 2.1.
One significant caveat of previous differential GGM estimators is that little attention has been paid
to incorporating extra knowledge of the nodes or of the edges. In addition to the observed samples,
extra information is widely available in real-world applications. For instance, when estimating
the functional connectivity networks among brain regions via fMRI measurements (i.e. observed
samples), there exist considerable knowledge about the spatial and anatomical evidence of these
regions. Adding such evidence will help the learned differential structure better reflect domain
experts’ knowledge like certain anatomical regions or spatially related regions are more likely to be
connected [20].
Although being a strong evidence of structural patterns that we aim to discover, extra information has
rarely been considered when estimating differential GGM from two sets of observed samples. To the
authors’ best knowledge, only two loosely-related studies exist in the literature: (1) One study with
the name NAK [2] (following ideas from [14]) proposed to integrate Additional Knowledge into the
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estimation of single-task graphical model using a weighted Neighbourhood selection formulation.
(2) Another study with the name JEEK [18] (following [15]) considered edge-level evidence via
a weighted objective formulation to estimate multiple dependency graphs from heterogeneous
samples. Both studies only added edge-level extra knowledge in structural learning and neither of the
approaches was designed for the direct structure estimation of differential GGM.
This paper fills the gap by proposing a novel method, namely KDiffNet , to add additional Knowledge
in identifying DIFFerential networks via an Elementary Estimator. Our main objective is to make
KDiffNet flexible enough to model various combinations of existing knowledge without re-designing
the optimization. This is achieved by: (1) representing the edge-level domain knowledge as weights
and using weights through a weighted `1 regularization constraint; and (2) describing the node-level
knowledge as the variable groups and enforcing through a group norm constraint. Then KDiffNet
designs a novel hybrid norm as the minimization objective and enforces the superposition of two
aforementioned structured constraints. Our second main aim for KDiffNet is to achieve direct,
scalable, and fast differential GGM estimations, and at the same time to guarantee the estimation
error is well bounded. We achieve this goal through modeling KDiffNet in an elementary estimator
based framework and solving it via parallel proximal based optimization. Briefly speaking, this paper
makes the following contributions: 1

• Novel and Flexible: KDiffNet is the first method to integrate different kinds of additional knowl-
edge for structure learning of differential GGMs. KDiffNet proposes a flexible formulation to
consider both the edge-level evidence and the node-group level knowledge ( Section 2.3).

• Fast and Scalable: We optimize KDiffNet through a proximal algorithm making it scalable to
large values of p. KDiffNet ’s unified formulation avoids the need to design knowledge-specific
optimization ( Section 2.5).

• Theoretically Sound: We theoretically prove the convergence rate of KDiffNet as

O(
√

log p
min(nc,nd) ) , achieving the same error bound as the state-of-the-art (Section 2.6).

• Empirical Evaluation: We evaluate KDiffNet using multiple synthetic datasets and one real-
world task. Our experiments showcase how KDiffNet can integrate knowledge of spatial distances,
known edges or anatomical grouping evidence in the proposed formulation, empirically showing
its real-world adaptivity. KDiffNet improves the state-of-the-art baselines with consistently better
prediction accuracy while maintaining the same or less time cost (Section 3).

2 Proposed Method: KDiffNet
2.1 Previous Estimators for Structure Change between two GGMs (Differential GGMs)
The task of estimating differential GGMs assumes we are given two sets of observed samples (in
the form of two matrices) Xc ∈ Rnc×p and Xd ∈ Rnd×p, identically and independently drawn from
two normal distributions Np(µc,Σc) and Np(µd,Σd) respectively. Here µc, µd ∈ Rp describe the
mean vectors and Σc,Σd ∈ Rp×p represent covariance matrices. The goal of differential GGMs is to
estimate the structural change ∆ defined by [27] 2.

∆ = Ωd − Ωc (2.1)

Here the precision matrices Ωc := (Σc)
−1 and Ωd := (Σd)

−1. The conditional dependency structure
of a GGM is encoded by the sparsity pattern of its precision matrix. Therefore, one entry of ∆
describes if the magnitude of conditional dependency of a pair of random variables changes between
two conditions. A sparse ∆ means few of its entries are non-zero, indicating a differential network
with few edges.

A naive approach to estimate ∆ is a two-step procedure in which we estimate Ω̂d and Ω̂c from two
sets of samples separately and calculate ∆̂ using Eq. (2.1). However, in a high-dimensional setting,
the strategy needs to assume both Ωd and Ωc are sparse (to achieve consistent estimation of each),
although the assumption is not necessarily true even if the change ∆ is sparse (details in Section S:1).
Multiple recent studies have been motivated to directly estimate ∆ from two sets of samples. We
call these studies differential GGM estimators and group them to four kinds. (1) Likelihood based.

1We put details of theoretical proofs, details of how we generate simulation datasets and concrete performance
figures in the appendix. Notations with “S:” as the prefix indicate the corresponding contents are in the appendix.

2For instance, on samples from a controlled drug study ‘c’ may represent the ‘control’ group and ‘d’ may
represent the ‘drug-treating’ group. Using which of the two sample sets as ‘c’ set (or ‘d’ set) does not affect the
computational cost and does not influence the statistical convergence rates.
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Zhang et al. [25] used the fused norm for regularizing the maximum likelihood estimation (MLE)
to simultaneously learn both two GGMs and the difference (λ2(||Ωc||1 + ||Ωd||1) + λn||∆||1). The
resulting penalized MLE framework is a log-determinant program, which can be solved by block co-
ordinate descent [25] or the alternating direction method of multipliers (ADMM) by the JGLFUSED
package [5]. (2) Density ratio based:. Recently Liu et al. used density ratio estimation (SDRE)
to directly learn ∆ without having to identify the structures of Ωc and Ωd. The authors focused on
exponential family-based pairwise Markov networks [10] and solved the resulting optimization using
proximal gradient descent [9]. (3) Constrained `1 minimization based. Diff-CLIME, another regu-
larized convex program, was proposed to directly learn structural changes ∆ without going through
the learning of each individual GGMs [26]. It uses an `1 minimization formulation constrained
by the covariance-precision matching, reducing the estimation problem to solving linear programs.
All three aforementioned groups have used `1 regularized convex formulation for estimating ∆.
(4) Elementary estimator based. The last category extends the so-called Elementary Estimator
proposed by [21, 23, 22] to achieve a closed-form estimation of differential GGM via the DIFFEE
estimator [19] (more in the next section and Section 2.4).

2.2 Background: Elementary Estimators for Graphical Models
`1 Regularized MLE for GGM Estimation: Graphical Lasso (GLasso). The “GLasso” Estimator
[24, 1] is the classic formulation for estimating sparse GGM from observations drawn from a single
multivariate Gaussian distribution. It optimizes the following `1 penalized MLE objective:

argmin
Ω>0

− log det(Ω)+ < Ω, Σ̂ > +λn||Ω||1 (2.2)

Where λn > 0 is the sparsity regularization parameter. While state-of-the-art optimization methods
have been developed to solve the optimization in Eq. (2.2), they are expensive for large-scale tasks.
`1 based Elementary Estimator for Graphical Model (EE-GM) Estimation: Yang et al. [23]
proposed to learn sparse Gaussian graphical model via the following formulation instead:

argmin
Ω
||Ω||1,,off, Subject to:||Ω− [Tv(Σ̂)]−1||∞,off ≤ λn (2.3)

Actually [23] proposed the following generic formulation to estimate graphical models (GM) of
exponential families (GGM is a special case of GM with exponential distribution):

argmin
θ
||θ||1, Subject to: ||θ − B∗(φ̂)||∞ ≤ λn (2.4)

Here θ is the canonical parameter to be estimated and B∗(φ̂) is a so-called proxy of backward
mapping for the target GM. φ̂ is the empirical mean of the sufficient statistics of the underlying
exponential distribution. For example, in the case of Gaussian, θ is the precision matrix, φ̂ is the
sample covariance matrix and the proxy backward mapping is B∗(φ̂) = [Tv(Σ̂)]−1 (We explain
backward mapping, proxy backward mapping and the property and convergence rate of [Tv(Σ̂)]−1 in
Section S:4.1).
The main advantage of Eq. (2.4) and Eq. (2.3) was that they are simple estimators with computationally
easy solutions. Importantly their solutions achieve the same sharp convergence rate as the regularized
convex formulation of Eq. (2.2) when under high-dimensional settings.
R(·) norm based Elementary Estimators: Recently multiple studies [21, 22, 19, 18] followed
[23] and expanded EE-GM into a more general framework “Elementary estimators” (EE):

argmin
θ
R(θ), Subject to: R∗(θ − θ̂n) ≤ λn (2.5)

WhereR(·) represents a decomposable regularization function. R∗(·) is the dual norm ofR(·),

R∗(v) := sup
u 6=0

< u, v >

R(u)
= sup
R(u)≤1

< u, v > . (2.6)

Eq. (2.4) and Eq. (2.3) are special cases of Eq. (2.5). θ̂n needs to be carefully constructed, well-
defined and closed-form for the purpose of simplified computations. For example, [21] conduct the
high-dimensional estimation of linear regression models by using the classical ridge estimator as θ̂n
in Eq. (2.5). When θ̂n itself is closed-form and comes with strong statistical convergence guarantees
in high-dimensional situations, we can use the unified framework proposed by the recent seminal
study from [11] to prove that the solution of Eq. (2.5) achieves the near optimal convergence rate as
comparable to regularized convex formulations when satisfying certain conditions.
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2.3 Integrating additional knowledge and ∆ with a Novel Function: kEV norm
Section 2.1 points out that none of the previous ∆ estimators have designed to integrate extra evidence
beyond two sets of observed samples. Differently our ∆ estimator aims to achieve two goals: (1) the
new estimator should be flexible enough to describe various kinds of real-world knowledge, including
like spatial distance, hub knowledge, known interactions or how multiple variables function as groups
(see below). (2) the new estimator should work well in high-dimensional situations (large p) and is
computationally practical. Eq. (2.5) provides an intriguing formulation to build simpler and possibly
fast estimators accompanied by statistical guarantees, as long as θ̂n can be carefully constructed,
well-defined and closed-form. We adapt it to design KDiffNet in the next Section 2.4.
In order to use Eq. (2.5) for estimating our target parameter θ = ∆, we need to designR(∆).
(1) Knowledge as Weight Matrix: We can describe the edge-level knowledge as positive weight
matrices like WE ∈ Rp×p. For example, when estimating the functional brain connectivity networks
among brain regions WE can describe spatial distance among brain regions that are publicly available
through projects like openfMRI [12]. Another important example is when identifying gene-gene
interactions from patients’ gene expression profiles. Besides the patient samples, state-of-the-art
bio-databases like HPRD [13] have collected a significant amount of information about direct physical
interactions among corresponding proteins, regulatory gene pairs or signaling relationships collected
from high-quality bio-experiments. Here WE can describe existing known edges as the knowledge,
like those from interaction databases for discovering gene networks (a semi-supervised setting for
such sample based network estimations).
The positive matrix-based representation provides a powerful and flexible strategy that allows
integration of many possible forms of existing knowledge to improve differential structure estimation,
as long as they can be represented into edge-level weights. We can combine WE knowledge and the
sparse regularization of ∆ into a weighted `1 norm ||WE ◦∆||1, enforcing prior known importance
of edges in the differential graph through weights. The larger a weight entry in WE , the less likely
the corresponding edge belongs to the true differential graph. As mentioned in Section 1, NAK
and JEEK estimators have tried similar weight matrix based strategy to add extra knowledge in
identifying single-task GGM and in discovering multiple GGMs. None of the previous differential
GGM estimators have explored this though.
(2) Knowledge as Node Groups: In many real-world applications, there exist known group knowl-
edge about random variables. For example, when working with genomics samples, biologists have
collected a rich set of group evidence about how genes belong to various biological pathways or
exist in the same or different cellular locations [4]. Such knowledge of node grouping provides solid
biological bias like genes belonging to the same biology pathway tend to have interactions among
them (shared dependency pattern) in one cellular context or tend to not interact with each other
(shared sparsity) at some other cellular conditions. However, this type of group evidence cannot be
described via the weight matrix WE based formulation.
This is because even though it is safe to assume nodes in the same group share similar interaction
patterns, but we do not know beforehand if the nodes in the group are collectively part of the
differential network (group dependency) or not (group sparsity). To mitigate this issue, we use a
flexible known node-group norm to include such extra knowledge. We represent the group knowledge
as a set of groups on feature variables (vertices) Gp. Formally, ∀gk ∈ Gp, gk = {i} where i indicates
that the i-th node belongs to the group k. Integrating Gp knowledge into ∆ means to enforce a group
sparsity regularization on ∆. We generate edge-group index GV from the node group index Gp. This
is done via defining GV := {g′k|(i, j) ∈ g′k,∀i,∀j ∈ gk}. For vertex nodes in each node group gk,
all possible pairs between these nodes belong to an edge-group g′k. We propose to use the group,2
norm ||∆||GV ,2 to enforce group-wise sparse structure on ∆. None of the previous differential GGM
estimators have explored this knowledge-integration strategy before.
kEV norm: Now we propose a novel normR(∆) to combine the two strategies above. We assume
that the true parameter ∆∗ = ∆∗e+∆∗g is a superposition of two “clean” structures, a sparse structured
∆∗e and a group-structured ∆∗g. We propose a new norm, knowledge for Edges and Vertex norm
(kEV-norm), as the superposition of the edge-weighted `1 norm and the group structured norm:

R(∆) = ||WE ◦∆e||1 + ε||∆g||GV ,2 (2.7)

Our target parameter ∆ = ∆e + ∆g . The Hadamard product ◦ is the element-wise product between
two matrices i.e. [A ◦ B]ij = AijBij and || · ||GV ,2 =

∑
k

||∆g′k
||2 where k is the k-th group.
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WE ∈ Rp×p is the aforementioned edge-level additional knowledge. WEij > 0 ,∀ i, j ∈ {1 . . . p}.
ε > 0 is a hyperparameter. kEV-norm has the following three properties (proofs in Section S:3).
• (i) kEV-norm is a norm function if ε and entries of WE are positive.
• (ii) If the condition in (i) holds, kEV-norm is a decomposable norm.
• (iii) The dual norm of kEV-norm is

R∗(u) = max(||(1 �WE) ◦ u||∞,
1

ε
||u||∗GV ,2) (2.8)

2.4 KDiffNet : kEV Norm based Elementary Estimator for identifying Differential Net
Our goal is to achieve simple, scalable and theoretically sound estimation. EE in Eq. (2.5) provides
such a formulation as long as we can construct θ̂n well. Now we haveR(∆) as Eq. (2.7) and its dual
norm R∗(·) in Eq. (2.8). We just need to find θ̂n for ∆ that is carefully constructed, theoretically
well-behaved when high-dimensional, and closed-form for the purpose of simplified computations.
One key insight of differential GGM is that the density ratio of two Gaussian distributions is naturally
an exponential-family distribution (see proofs in Section S:4.2). The differential network ∆ is one
entry of the canonical parameter for this distribution. The MLE solution of estimating vanilla (i.e.
no sparsity and not high-dimensional) graphical model in an exponential family distribution can be
expressed as a backward mapping that computes the target model parameters from certain given
moments. When using vanilla MLE to learn the exponential distribution about differential GGM
(i.e., estimating canonical parameter), the backward mapping of ∆ can be easily inferred from the
two sample covariance matrices using (Σ̂−1

d − Σ̂−1
c ) (Section S:4.2). Even though this backward

mapping has a simple closed form, it is not well-defined when high-dimensional because Σ̂c and Σ̂d
are rank-deficient (thus not invertible) when p > n. Using Eq. (2.3) to estimate ∆, Wang et. al. [19]
proposed the DIFFEE estimator for EE-based differential GGM estimation and used only the sparsity
assumption on ∆. This study proposed a proxy backward mapping as θ̂n = [Tv(Σ̂d)]

−1−[Tv(Σ̂c)]
−1.

Here [Tv(A)]ij := ρv(Aij) and ρv(·) is chosen as a soft-threshold function.

We borrow the idea to use θ̂n = [Tv(Σ̂d)]
−1 − [Tv(Σ̂c)]

−1. In Section S:4.3 and Section S:4.4 we
prove that θ̂n is both available in closed-form, and well-defined in high-dimensional settings. Now by
pluggingR(∆), its dualR∗(·) and θ̂n into Eq. (2.5), we get the formulation of KDiffNet :

argmin
∆

||WE ◦∆e||1 + ε||∆g||GV ,2

s.t.: ||(1 �WE) ◦
(

∆−
(

[Tv(Σ̂d)]
−1 − [Tv(Σ̂c)]

−1
))
||∞ ≤ λn

||∆−
(

[Tv(Σ̂d)]
−1 − [Tv(Σ̂c)]

−1
)
||∗GV ,2 ≤ ελn

∆ = ∆e + ∆g

(2.9)

2.5 Solving KDiffNet
We then propose to use a proximal parallel based optimization to solve Eq. (2.9), inspired by
its distributed and parallel nature [3]. To simplify notations, we add a new notation ∆tot :=
[∆d; ∆g], where ; denotes the row wise concatenation. We also add three operator notations including
Le(∆tot) = ∆e, Lg(∆tot) = ∆g and Ltot(∆tot) = ∆e + ∆g. Now we obtain the following
re-formulation of KDiffNet :

argmin
∆tot

||WE ◦ (Le(∆tot))||1 + ε||Lg(∆tot)||GV ,2

s.t.: ||(1 �WE) ◦
(
Ltot(∆tot)−

(
[Tv(Σ̂d)]

−1 − [Tv(Σ̂c)]
−1
))
||∞ ≤ λn

||Ltot(∆tot)−
(

[Tv(Σ̂d)]
−1 − [Tv(Σ̂c)]

−1
)
||∗GV ,2 ≤ ελn

(2.10)

Actually the three added operators are affine mappings: Le = Ae∆tot, Lg = Ag∆tot, and Ltot =
Atot∆tot, where Ae = [Ip×p 0p×p], Ag = [0p×p Ip×p] and Atot = [Ip×p Ip×p].
Algorithm 1 summarizes the Parallel Proximal algorithm [3, 22] we propose for optimizing Eq. (2.10).
In Section S:1.3 we further prove that its computational cost isO(p3). More concretely in Algorithm 1,
we simplify the notations by denoting B∗(Σ̂d, Σ̂c) := [Tv(Σ̂d)]

−1 − [Tv(Σ̂c)]
−1, and reformulate
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Eq. (2.10) to the following equivalent and distributed formulation:

argmin
∆tot

F1(∆tot1) + F2(∆tot2) +G1(∆tot3) +G2(∆tot4)

subject to: ∆tot1 = ∆tot2 = ∆tot3 = ∆tot4 = ∆tot

(2.11)

Where F1(·) = ||WE ◦ (Le(·))||1, G1(·) = I||(1�WE)◦(Ltot(·)−B∗(Σ̂d,Σ̂c))||∞≤λn
, F2(·) =

ε||Lg(·)||GV ,2 and G2(·) = I||Ltot(·)−B∗(Σ̂d,Σ̂c)||∗GV ,2≤ελn
. Here IC(·) represents the indicator func-

tion of a convex set C denoting that IC(x) = 0 when x ∈ C and otherwise IC(x) = ∞. The
detailed solution of each proximal operator is summarized in Table S:1 and Section S:2.

Algorithm 1 A Parallel Proximal Algorithm to optimize KDiffNet
input Two data matrices Xc and Xd, The weight matrix WE and GV .

Hyperparameters: α, ε, v, λn and γ. Learning rate: 0 < ρ < 2. Max iteration number iter.
output ∆

1: Compute B∗(Σ̂d, Σ̂c) from Xd and Xc

2: Initialize Ae = [Ip×p 0p×p], Ag = [0p×p Ip×p], Atot = [Ip×p Ip×p],

3: Initialize ∆tot1 , ∆tot2 , ∆tot3 , ∆tot4 and ∆tot =
∆tot1 + ∆tot2 + ∆tot3 + ∆tot4

4
4: for i = 0 to iter do
5: pi1 = prox4γF1

∆i
tot1 ; pi2 = prox4γF2

∆i
tot2 ; pi3 = prox4γG1

∆i
tot3 ; pi4 = prox4γG2

∆i
tot4

6: pi = 1
4
(

4∑
j=1

pij)

7: for j = 1, 2, 3, 4 do
8: ∆i+1

totj
= ∆i

tot + ρ(2pi −∆i
tot − pij)

9: end for
10: ∆i+1

tot = ∆i
tot + ρ(pi −∆i

tot)
11: end for
12: ∆̂ = Atot∆

iter
tot

output ∆̂

2.6 Analysis of Error Bounds
Based on Theorem S:5.3 and conditions in Section S:5, we have the following corollary about the
convergence rate of KDiffNet . See its proof in Section S:5.2.2.

Corollary 2.1. In the high-dimensional setting, i.e., p > max(nc, nd), let v := a
√

log p
min(nc,nd) .

Then for λn := 4κ1a
κ2

√
log p

min(nc,nd) and min(nc, nd) > c log p, with a probability of at least 1 −

2C1 exp(−C2p log(p)), the estimated optimal solution ∆̂ has the following error bound:

||∆̂−∆∗||F ≤
16κ1amax(maxi,j(WEi,j

)
√
s), ε
√
sG)

mini,j(WEi,j )κ2

√
log p

min(nc, nd)
(2.12)

where C1,C2,a, c, κ1 and κ2 are constants. See s and sG in Definition S:3.4.

3 Experiments
We aim to empirically show that KDiffNet is adaptive and flexible in incorporating different kinds
of available evidence for improved differential network estimation. Data: This is accomplished by
evaluating KDiffNet and baselines on two sets of datasets: (1) A total of 126 different synthetic
datasets representing various combinations of additional knowledge (details see Section 3.1); and
(2) one real-world fMRI dataset ABIDE for functional brain connectivity estimation (Section 3.2).
We obtain the edge-level knowledge from three different human brain atlas [7, 8, 16] about brain
connectivity, resulting in three different WE with p = {116, 160, 246}. For each atlas we compute
WE using the spatial distance between its brain Region of Interests (ROIs). At the same time,
we explore two different types of group knowledge about brain regions from Dosenbach Atlas[7]
(Section 3.2). Baselines: We compare KDiffNet to JEEK[18] and NAK[2], that use the extra edge
knowledge, two direct differential estimators (SDRE[9], DIFFEE[19]) and MLE based JGLFUSED[5]
(Section 2.1 and detailed equations of each in Section S:1). We also extend KDiffNet to data situations
with only edge knowledge (KDiffNet-E ) or only group knowledge (KDiffNet-G ). Both variations
(KDiffNet-E and KDiffNet-G ) can be solved by fast closed form solutions ( Section S:2.2).
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Method Data-EG(Time) Data-EG(F1-Score) Data-G(Time) Data-G(F1-Score)

W2(p = 246) W1(p = 116) W2(p = 246) W3(p = 160) W2(p = 246) W2(p = 246)

KDiffNet-EG 4.591±0.08 0.717±0.05 0.927±0.01 0.934±0.07 * *
KDiffNet-G 0.013±0.01 0.578±0.09 0.565±0.10 0.575±0.09 0.006±0.00 0.891±0.06
KDiffNet-E 0.017±0.01 0.692±0.06 0.872±0.02 0.916±0.02 * *

JEEK [18] 10.998±0.11 0.572±0.10 0.581±0.09 0.580±0.09 * *
NAK[2] 3.800±0.15 0.226±0.08 0.204±0.07 0.207±0.08 * *

SDRE[10] 27.487±2.59 0.573±0.11 0.568±0.11 0.574±0.11 11.764±1.23 0.318±0.10
DIFFEE[19] 0.004±0.00 0.570±0.11 0.560±0.11 0.570±0.11 0.004±0.00 0.135±0.02

JGLFUSED[5] 68.128±1.66 0.502±0.08 0.481±0.08 0.495±0.08 144.470±59.68 0.055±0.01

Table 1: Mean Performance(F1-Score) and Computation Time(seconds) with standard deviation
given in parentheses for the same setting of nc and nd of KDiffNet-EG , KDiffNet-E , KDiffNet-G
and baselines for simulated data. ∗ indicates that the method is not applicable for a data setting.

Additional details of setup, metrics and hyper-parameters are in Section S:6.1. Hyperparameters:
The key hyper-parameters are tuned as follows:
• v : To compute the proxy backward mapping, we vary v in {0.001i|i = 1, 2, . . . , 1000} (to make
Tv(Σc) and Tv(Σd) invertible).

• λn : According to our convergence rate analysis in Section 2.6, λn ≥ C
√

log p
min(nc,nd) , we choose

λn from a range of {0.01×
√

log p
min(nc,nd) × i|i ∈ {1, 2, 3, . . . , 100}} using cross-validation. For

KDiffNet-G , we tune over λn from a range of {0.1×
√

log p
min(nc,nd) × i|i ∈ {1, 2, 3, . . . , 100}}3.

• ε: For KDiffNet-EG experiments, we tune ε ∈ {0.0001, 0.01, 1, 100}.

3.1 Experiment: Simulated Data about Brain Connectivity using Three Real-World Brain
Spatial Matrices and Anatomic Group Evidence from Neuroscience as Knowledge

In this section, we show the effectiveness of KDiffNet in integrating additional evidence through a
comprehensive set of many simulation datasets. Our simulated data settings mimic three possible
types of additional knowledge in the real-world: with both edge and known node group knowledge
(Data-EG), with only edge-level evidence (Data-E) or with only known node groups (Data-G). For
the edge knowledge, we consider three cases of WE with p = {116, 160, 246} computed from three
human brain atlas about brain regions [7, 8, 16]. For the group knowledge, we simulate groups to
represent related anatomic regions inspired by the atlas [7]. For each simulation dataset, two blocks of
data samples are generated following Gaussian distribution using N(0,Ω−1

c ) and N(0,Ω−1
d ) via the

simulated Ωc and Ωd. Each simulated dataset includes a pair of data blocks to estimate its differential
GGM. We conduct a comprehensive evaluation over a total of 126 different simulated datasets by
varying (p), varying the number of samples (nc and nd), changing the proportion of edges controlled
by WE (s) and by varying the number of known groups sG. The details of the simulation framework
are in Section S:6.2.
We present a summary of our results (partial) in Table 1 using columns showing two cases of data
generation settings (Data-EG and Data-G). Table 1 uses the mean F1-score and the computational
time cost to compare methods (rows). Results about simulated datasets under Data-E case are in
Section S:6. We can make several conclusions:
(1) KDiffNet outperform those baselines not considering knowledge. Clearly KDiffNet and its
variations achieve the highest F1-score across all the 126 datasets. SDRE and DIFFEE are direct
differential network estimators but perform poorly indicating that adding additional knowledge
improves differential GGM estimation. MLE based JGLFUSED performs the worst in all cases.
(2) KDiffNet outperforms those baselines considering knowledge, especially when group
knowledge exist. When under the Data-EG setting, while JEEK and NAK include the extra edge
information, they cannot integrate group information and are not for differential estimation. This
results in lower F1-Score(0.581 and 0.204 for W2) compared to KDiffNet-EG (0.927 for W2). The
advantage of modeling both edge and node groups evidence is also indicated by the higher F1-Score
of KDiffNet-EG with respect to KDiffNet-E and KDiffNet-G on the Data-EG setting (Top 3 rows

3We use the same range to tune λ1 for SDRE and λ2 for JGLFUSED. We use λ1 = 0.0001(a small value)
for JGLFUSED to ensure only the differential network is sparse. Tuning NAK is done by the package itself.
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in Table 1). On Data-G cases, none of the baselines can model node group evidence. On average
KDiffNet-G performs 6.4× better than the baselines for p = 246 with respect to F1.
(3) KDiffNet achieves reasonable time cost versus the baselines and is scalable to large p. Fig-
ure 1(a) shows each method’s time cost per λn for large p = 2000. Consistently KDiffNet-EG is
faster than JEEK, JGLFUSED and SDRE (Column 1 in Table 1). KDiffNet-E and KDiffNet-G are
faster than KDiffNet-EG owing to closed form solutions. On Data-G dataset and Data-E datasets
(Section S:6.2), our faster closed form solutions achieve much more significant computational all
the baselines. For example on datasets using W2 p = 246, KDiffNet-E and KDiffNet-G are on an
average 21000× and 7400× faster (Column 5 in Table 1) than the baselines, respectively. We have
all detailed results and figures about F1-Score and time cost for all 126 data settings in Section S:6.2.
Besides F1-Score, we also present the ROC curves from all methods when varying λn. KDiffNet
achieves the highest Area under Curve (AUC) in comparison to all other baselines.

3.2 Experiment: Functional Connectivity Estimation from Real-World Brain fMRI Data
In this experiment, we evaluate KDiffNet in a real-world downstream classification task on a publicly
available resting-state fMRI dataset: ABIDE[6]. This aims to understand how functional dependencies
among brain regions vary between normal and abnormal and help to discover contributing markers
that influence or cause the neural disorders [17]. ABIDE includes two groups of human subjects:
autism and control. We utilize three types of additional knowledge: WE based on the spatial distance
between 160 regions of the brain[7] and two types of available node groups from Dosenbach Atlas[7]:
one with 40 unique groups about macroscopic brain structures (G1) and another with 6 higher level
node groups having the same functional connectivity(G2). We use Quadratic Discriminant Analysis
(QDA) in downstream classification to assess the ability of the estimators to learn the differential
patterns about the connectome structures. (Details of the ABIDE dataset, baselines, design of
the additional knowledge WE matrix, cross-validation and the QDA classification method are in
Section S:6.4.) Figure 1(b) compares KDiffNet-EG , KDiffNet-E , KDiffNet-G and baselines on
ABIDE, using the y axis for classification test accuracy (the higher the better) and the x axis for the
computation speed (negative log seconds, the more right the better). KDiffNet -EG1, incorporating
both edge(WE) and (G1) group knowledge, achieves the highest accuracy of 57.2% for distinguishing
the autism subjects versus the control subjects without sacrificing computation speed 4.
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Figure 1: (a)(LEFT) Computation Time (log milliseconds) per λn for large p = 2000: KDiffNet-EG
has reasonable time cost with respect to baseline methods. KDiffNet-E and KDiffNet-G are fast
closed form solutions. (b) (RIGHT) ABIDE Dataset: KDiffNet-EG achieves highest Accuracy
without sacrificing computation speed (points towards top right are better).

4 Conclusions
We propose a novel method, KDiffNet , to incorporate additional knowledge in estimating differential
GGMs. KDiffNet elegantly formulates existing knowledge based on the problem at hand and avoids
the need to design knowledge-specific optimization. We sincerely believe the scalability and flexibility
provided by KDiffNet can make differential structure learning of GGMs feasible in many real-world
tasks. We plan to generalize KDiffNet from Gaussian to semi-parametric distributions or to Ising
Model structures. As node group knowledge is particularly important and abundant in genomics, we
plan to evaluate KDiffNet on more real-world genomics data with multiple types of group information.
Acknowledgement: This work was supported partly by the National Science Foundation under
NSF CAREER award No. 1453580. Any Opinions, findings and conclusions or recommendations

4We cannot compare to NAK and SDRE because they do not provide precision matrix required for QDA
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Appendix
Adding Extra Knowledge in Scalable Learning of
Sparse Differential Gaussian Graphical Models

S:1 Connecting to Relevant Studies

S:1.1 Differential GGM Estimation
JGLFUSED[6]: This study extends the previously mentioned MLE based GLasso(Section 2.2)
estimator for sparse differential GGM estimation. An additional sparsity penalty on the differential
network, called the fused norm, is included as part of the optimization objective:

argmin
Ωc,Ωd�0,∆

nc(− log det(Ωc)+ < Ωc, Σ̂c >)

+nd(− log det(Ωd)+ < Ωd, Σ̂d >)

+λ2(||Ωc||1 + ||Ωd||1) + λn||∆||1

(S:1.1)

The alternating direction method of multipliers (ADMM) method was used to solve Eq. (S:1.1) that
needs to run expensive SVD in one sub-procedure [6].
DIFFEE[23]: Computationally, EEs are much faster than their regularized convex program
peers for GM estimation. [23] proposed the so-called DIFFEE for estimating sparse changes in
high-dimensional GGM structure using EE:

argmin
∆

||∆||1

Subject to: ||∆− B∗(Σ̂d, Σ̂c)||∞ ≤ λn
(S:1.2)

[23] use a closed form and well-defined proxy function θ̂n = B∗(Σ̂d, Σ̂c) =(
[Tv(Σ̂d)]

−1 − [Tv(Σ̂c)]
−1
)

to approximate the backward mapping (the vanilla MLE solution)
for differential sGGMs. We explain the proxy backward mapping and its statistical properties in Sec-
tion S:4.1. The DIFFEE solution is a closed-form entry-wise thresholding operation on B∗(Σ̂d, Σ̂c)
to ensure the desired sparsity structure of its final estimate. Here λn > 0 is the tuning parameter.
Eq. (S:1.2) is a special case of Eq. (2.5), in whichR(·) is the `1-norm for sparsity and the differential
network ∆ is the θ we aim to estimate.
As claimed by [10] direct estimation of differential GGMs can be more efficient both in terms of the
number of required samples as well as the computation time cost. Besides, it does not require to
assume each precision matrix as sparse. For instance recent literature in neuroscience has suggested
that each subject’s functional brain connection network may not be sparse, even though differences
across subjects may be sparse [1]. When identifying how genetic networks vary between two
conditions, each individual network may contain hub nodes, therefore not entirely sparse [11].
SDRE[12]: [12] proposed to estimate Sparse differential networks in exponential families by Density
Ratio Estimation using the following formulation:

argmax
∆

LKLIEP(∆)− λn ‖ ∆ ‖1 −λ2 ‖ ∆ ‖2 (S:1.3)

LKLIEP minimizes the KL divergence between the true probability density pd(x) and the estimated
p̂d(x) = r(x; ∆)pc(x) without explicitly modeling the true pc(x) and pd(x). This estimator uses the
elastic-net penalty for enforcing sparsity. We use the sparseKLIEP1, that uses sub-gradient descent
optimization as a baseline to our method.

1http://allmodelsarewrong.net/kliep_sparse/demo_sparse.html

Preprint. Under review.

http://allmodelsarewrong.net/kliep_sparse/demo_sparse.html
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Diff-CLIME[25]: This study directly learns ∆ through a constrained optimization formulation.
argmin

∆
||∆||1

Subject to: ||Σ̂c∆Σ̂d − (Σ̂c − Σ̂d)||∞ ≤ λn
(S:1.4)

The optimization reduces to multiple linear programming problems, which in turn makes this method
less scalable to large p with a computational complexity of O(p8).

S:1.2 Incorporating Additional Knowledge in GGM Estimation
While previous studies do not use available additional knowledge for differential structure estimation,
a few studies have tried to incorporate edge level weights for other types of GGM estimation.
NAK [3]: For the single task sGGM, one recent study [3] (following ideas from [17]) proposed to
use a weighted Neighborhood selection formulation to integrate edge-level Additional Knowledge
(NAK) as: β̂j = argmin

β,βj=0

1
2 ||X

j −Xβ||22 + ||rj ◦ β||1. Here β̂j is the j-th column of a single sGGM

Ω̂. Specifically, β̂jk = 0 if and only if Ω̂k,j = 0. rj represents a weight vector designed using
available extra knowledge for estimating a brain connectivity network from samples X drawn from a
single condition. The NAK formulation can be solved by a classic Lasso solver like glmnet.
JEEK[22]: Two related studies, JEEK[22] and W-SIMULE[18] incorporate edge-level extra knowl-
edge in the joint discovery of K heterogeneous graphs. In both these studies, each sGGM corre-
sponding to a condition i is assumed to be composed of a task specific sGGM component Ω

(i)
I and a

shared component ΩS across all conditions, i.e., Ω(i) = Ω
(i)
I + ΩS . The minimization objective of

W-SIMULE is as follows: objective:
argmin
Ω

(i)
I ,ΩS

∑
i

||W ◦ Ω
(i)
I ||1 + εK||W ◦ ΩS ||1 (S:1.5)

subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K

W-SIMULE is very slow when p > 200 due to the expensive computation cost O(K4p5). In
comparison, JEEK is an EE-based optimization formulation:

argmin
ΩtotI ,ΩtotS

||W tot
I ◦ ΩtotI ||1 + ||W tot

S ◦ ΩtotS ||

subject to: || 1

W tot
I

◦ (Ωtot −B∗(φ̂)))||∞ ≤ λn

|| 1

W tot
S

◦ (Ωtot −B∗(φ̂))||∞ ≤ λn

Ωtot = ΩtotS + ΩtotI

(S:1.6)

Here, ΩtotI = (Ω
(1)
I ,Ω

(2)
I , . . . ,Ω

(K)
I ) and ΩtotS = (ΩS ,ΩS , . . . ,ΩS). The edge knowledge of the

task-specific graph is represented as weight matrix {W (i)} and WS for the shared network. JEEK
differs from W-SIMULE in its constraint formulation, that in turn makes its optimization much faster
and scalable than WSIMULE. In our experiments, we use JEEK as our baseline.
Drawbacks: However, none of these studies are flexible to incorporate other types of additional
knowledge like node groups or cases where overlapping group and edge knowledge are available
for the same target parameter. Further, these studies are limited by the assumption of sparse single
condition graphs. Estimating a sparse difference graph directly is more flexible as it does not rely on
this assumption.

S:1.3 Computational Complexity
We optimize KDiffNet through a proximal algorithm, while KDiffNet-E and KDiffNet-G through
closed-form solutions. The resulting computational cost for KDiffNet is O(p3), broken down into the
following steps:

• Estimating two covariance matrices: The computational complexity is O(max(nc, nd)p
2).

• Backward Mapping: The element-wise soft-thresholding operation [Tv(·)] on the estimated covari-
ance matrices, that costs O(p2). This is followed by matrix inversions [Tv(·)]−1 to get the proxy
backward mapping, that cost O(p3).

• Optimization: For KDiffNet , each operation in the proximal algorithm is group entry wise or entry
wise, the resulting computational cost is O(p2). In addition, the matrix multiplications cost O(p3).
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Figure S:1: Schematic Diagram of KDiffNet : integrating extra edge and node groups knowledge
for directly estimating the sparse change in the dependency structures of two p-dimensional GGMs
(differential GGMs)

For KDiffNet-E and KDiffNet-G versions, the solution is the element-wise soft-thresholding
operation Sλn , that costs O(p2).

S:2 Optimization of KDiffNet and Its Variants

S:2.1 Optimization via Proximal Solution
We assume ∆tot = [∆e; ∆g], where ; denotes row wise concatenation. Consider operatorLd(∆tot) =
∆e and Lg(∆tot) = ∆g , Ltot(∆tot) = ∆e + ∆g .

argmin
∆

||WE ◦ (Le(∆tot))||1 + ε||Lg(∆tot)||GV ,2

s.t.: ||(1 �WE) ◦
(
Ltot(∆tot)−

(
[Tv(Σ̂d)]

−1 − [Tv(Σ̂c)]
−1
))
||∞ ≤ λn

||Ltot(∆tot)−
(

[Tv(Σ̂d)]
−1 − [Tv(Σ̂c)]

−1
)
||∗GV ,2 ≤ ελn

(S:2.1)

This can be rewritten as:
argmin

∆
F1(∆tot1) + F2(∆tot2) +G1(∆tot3) +G2(∆tot4)

∆tot = ∆tot1 = ∆tot2 = ∆tot3 = ∆tot4

(S:2.2)

Where:
F1(·) = ||WE ◦ (Le(·))||1
G1(·) = I||(1�WE)◦(Ltot(·)−([Tv(Σ̂d)]−1−[Tv(Σ̂c)]−1))||∞≤λn

F2(·) = ε||Lg(·)||GV ,2
G2(·) = i||Ltot(·)−([Tv(Σ̂d)]−1−[Tv(Σ̂c)]−1)||∗GV ,2≤ελn

(S:2.3)

Here, Le,Lg and Ltot can be written as Affine Mappings. By Lemma in [],
Le = Ae∆tot

Ae = [Ip×p 0p×p]

Lg = Ag∆tot

Ag = [0p×p Ip×p]

Ltot = Atot∆tot

Atot = [Ip×p Ip×p]

(S:2.4)

if AAT = βI , and h(x) = g(Ax),
proxh(x) = x− βAT (Ax− proxβ−1g(Ax)) (S:2.5)

βg = 1, βe = 1 and βtot = 2.
Solving for each proximal operator:
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A. F1(∆tot) = ||WE ◦ (Le(∆tot))||1
Le(∆tot) = Ae∆tot = ∆e.

proxγF1(y) = y −ATe (x− proxγf (x))

x = Aey
(S:2.6)

Here, xj,k = ∆ej,k .
proxγf1(x) = proxγ||W ·||1(x)

=


xj,k − γwj,k, x(i)

j,k > γwj,k

0, |x(i)
j,k| ≤ γwj,k

x
(i)
j,k + γwj,k, x(i)

j,k < −γwj,k

(S:2.7)

Here j, k = 1, . . . , p. This is an entry-wise operator (i.e., the calculation of each entry is only related
to itself). This can be written in closed form:

proxγf1(x) = max((xj,k − γwj,k), 0) + min(0, (xj,k + γwj,k)) (S:2.8)
We replace this in Eq. (S:2.6).

B. F2(∆tot) = ε||Lg(∆tot)||GV ,2 Here, Lg(∆tot) = Ag∆tot = ∆g .
x = Agy

proxγF2(y) = y −ATg (x− proxγf2(x))
(S:2.9)

Here, xj,k = ∆gj,k .
proxγf2(xg) = proxγ||·||G,2(xg)

=

{
xg − εγ xg

||xg||2 , ||xg||2 > εγ

0, ||xg||2 ≤ εγ
(S:2.10)

Here g ∈ GV . This is a group entry-wise operator (computing a group of entries is not related to other
groups). In closed form:

proxγf2(xg) = proxεγ||·||G,2(xg)

= xg max((1− εγ

||xg||2
), 0)

(S:2.11)

We replace this is Eq. (S:2.9).

C.G1(∆tot) = I||(1�WE)◦(Ltot(∆tot)−([Tv(Σ̂d)]−1−[Tv(Σ̂c)]−1))||∞≤λn Here, Ltot = Atot∆tot and

Atot = [Ip×p Ip×p].

x = Atoty

proxγG1(y) = y − 2ATtot(x− prox2−1γg1(x))
(S:2.12)

proxγg1(x) = proj||1�(WE)◦(x−a)||∞≤λn

=

{
xj,k, |xj,k − aj,k| ≤ wj,kλn

aj,k + wj,kλn, xj,k > aj,k + wj,kλn
aj,k − wj,kλn, xj,k < aj,k − wj,kλn

(S:2.13)

In closed form:
proxγg1(x) = proj||x−a||∞≤λn

= min(max(xj,k − aj,k,−wj,kλn), wj,kλn) + aj,k
(S:2.14)

We replace this in Eq. (S:2.12).

D. G2(∆tot) = I{||Ltot(∆tot)−B∗||∗G,2≤ελn} Here, Ltot = Atot∆tot and Atot = [Ip×p Ip×p].

x = Atoty

proxγG2(y) = y − 2ATtot(x− prox2−1γg2(x))
(S:2.15)

proxγg2(xg) = proj||x−a||∗G,2≤ελn

=

{
xg , ||xg − ag||2 ≤ ελn

ελn
xg−ag
||xg−ag||2 + ag , ||xg − ag||2 > ελn

(S:2.16)
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Table S:1: The four proximal operators

[proxγf1(x)]
(i)
j,k max((xj,k − γwj,k), 0) + min(0, (xj,k + γwj,k))

proxγ(xg) xg max((1− εγ
||xg||2 ), 0)

[proxγf3(x)]
(i)
j,k min(max(xj,k − aj,k,−wj,kλn), wj,kλn) + aj,k

proxγf4(xg) min( ελn
||xg−ag||2 , 1)(xg − ag) + ag

This operator is group entry-wise. In closed form:
proxγg2(x) = proj||x−a||∗G,2≤λn

= min(
ελn

||xg − ag||2
, 1)(xg − ag) + ag

(S:2.17)

We replace this in Eq. (S:2.15).

S:2.2 Close form solutions if incorporating Only Edge Or Only Node Group Knowledge
In cases, where we do not have superposition structures in the differential graph estimation, we can
estimate the target ∆ through a closed form solution, making the method scalable to larger p. In
detail:
KDiffNet-E Only Edge-level Knowledge WE: If additional knowledge is only available in the
form of edge weights, the Eq. (S:2.1) reduces to :

argmin
∆

||WE ◦∆||1

s.t.: ||(1 �WE) ◦
(

∆−
(

[Tv(Σ̂d)]
−1 − [Tv(Σ̂c)]

−1
))
||∞ ≤ λn

(S:2.18)

This has a closed form solution:
∆̂ = Sλn∗WE

(
B∗(Σ̂d, Σ̂c)

)
(S:2.19)

Here
[SλijWEij

(A)]ij = sign(Aij) max(|Aij | − λnWEi,j , 0) (S:2.20)

KDiffNet-G Only Node Groups Knowledge GV : If additional knowledge is only available in the
form of groups of vertices GV , the Eq. (S:2.1) reduces to :

argmin
∆

||∆||GV ,2

Subject to: ||∆− B∗(Σ̂d, Σ̂c)||∗GV ,2 ≤ λn
(S:2.21)

Here, we assume nodes not in any group as individual groups with cardinality= 1. The closed form
solution is given by:

∆̂ = (SGV ,λn(B∗(Σ̂d, Σ̂c))) (S:2.22)
Where [SG,λn(u)]g = max(||ug||2 − λn, 0)

ug
||ug||2 and max is the element-wise max function.

Algorithm 1 shows the detailed steps of the KDiffNet estimator. Being non-iterative, the closed form
solution helps KDiffNet achieve significant computational advantages.

Algorithm 1 KDiffNet-E and KDiffNet-G
input Two data matrices Xc and Xd. The weight matrix WE OR GV .
input Hyper-parameter: λn and v
output ∆

1: Compute [Tv(Σ̂c)]
−1 and [Tv(Σ̂d)]−1 from Σ̂c and Σ̂d.

2: Compute B∗(Σ̂d, Σ̂c).
3: Compute ∆̂ from Eq. (S:2.19) if WE only; else from Eq. (S:2.22) if only GV

output ∆̂

S:3 More Proof about kEV Norm and Its Dual Norm

S:3.1 Proof for kEV Norm is a norm
We reformulate kEV norm as

R(∆) = ||WE ◦∆e||1 + ε||∆g||GV ,2 (S:3.1)
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to
R(∆) = R1(∆) +R2(∆);R1(·) = ||WE ◦ ·||1;R2(·) = ε|| · ||GV,2 (S:3.2)

Theorem S:3.1. kEV Norm is a norm if and only ifR1(·) andR2(·) are norms.

Proof. By the following Theorem S:3.3, R1(·) is a norm. If ε > 0, R2(·) is a norm. Sum of two
norms is a norm, hence kEV Norm is a norm.

Lemma S:3.2. For kEV-norm, WEj,k 6= 0 equals to WEj,k > 0.

Proof. If WEj,k < 0, then |WEj,k∆j,k| = | −WEj,k∆j,k|. Notice that −WEj,k > 0.

Theorem S:3.3. R1(·) = ||WE ◦ ·||1 is a norm if and only if ∀1 ≥ j, k ≤ p,WEjk 6= 0.

Proof. Proof. To prove theR1(·) = ||WE ◦ ·||1 is a norm, by Lemma (S:4.2) we need to prove that
f(x) = ||W ◦x||1 is a norm function ifWi,j > 0. 1. f(ax) = ||aW ◦x||1 = |a|||W ◦x||1 = |a|f(x).
2. f(x+ y) = ||W ◦ (x+ y)||1 = ||W ◦ x+W ◦ y||1 ≤ ||W ◦ x||1 + ||W ◦ y||1 = f(x) + f(y).
3. f(x) ≥ 0. 4. If f(x) = 0, then

∑
|Wi,jxi,j | = 0. Since Wi,j 6= 0, xi,j = 0. Therefore, x = 0.

Based on the above, f(x) is a norm function. Since summation of norm is still a norm function,R1(·)
is a norm function.

S:3.2 kEV Norm is a decomposable norm
We show that kEV Norm is a decomposable norm within a certain subspace, with the following
structural assumptions of the true parameter ∆∗:

(EV-Sparsity): The ’true’ parameter of ∆∗ can be decomposed into two clear structures–{∆e
∗

and ∆g
∗}. ∆e

∗ is exactly sparse with s non-zero entries indexed by a support set SE and ∆g
∗ is

exactly sparse with
√
sG non-zero groups with atleast one entry non-zero indexed by a support set

SV . SE
⋂
SV = ∅. All other elements equal to 0 (in (SE

⋃
SV )c).

Definition S:3.4. (EV-subspace)
M(SE

⋃
SV ) = {θj = 0|∀j /∈ SE

⋃
SV } (S:3.3)

Theorem S:3.5. kEV Norm is a decomposable norm with respect toM and M̄⊥

Proof. Assume u ∈ M and v ∈ M̄⊥, R(u + v) = ||WE ◦ (ue + ve)||1 + ε||(ug + vg)||GV ,2 =
||WE ◦ ue||1 + ||WE ◦ ve||1 + ε||ug||GV ,2 + ε||vg||GV ,2 = R(u) +R(v). Therefore, kEV-norm is a
decomposable norm with respect to the subspace pair (M,M̄⊥).

S:3.3 Proofs of Dual Norms for kEV Norm

Theorem S:3.6. Dual Norm of kEV Norm isR∗(u) = max(||(1 �WE) ◦ u||∞,
1

ε
||u||∗GV ,2).
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Proof. Suppose R(θ) =
∑
α∈I

cαRα(θα), where
∑
α∈I

θα = θ. Then the dual norm R∗(·) can be

derived by the following equation.

R∗(u) = sup
θ

< θ, u >

R(θ)

= sup
θα

∑
α
< u, θα >∑

α
cαRα(θα)

= sup
θα

∑
α
< u/cα, θα >∑
α
Rα(θα)

≤ sup
θα

∑
α
R∗α(u/cα)R(θα)∑
α
Rα(θα)

≤ max
α∈I
R∗α(u)/cα.

(S:3.4)

Connecting R1(·) = ||WE · ||1 and R2(·) = ε|| · ||GV . By the following Theorem S:3.7, R∗1(u) =
||(1 �WE) ◦ u||∞. From [13], forR2(θ2) = ||∆||GV ,2, the dual norm is given by

‖v‖G,~α∗ = max
t=1,...,sG

‖v‖α∗t (S:3.5)

where
1

αt
+

1

α∗t
= 1 are dual exponents. where sG denotes the number of groups. As special cases

of this general duality relation, this leads to a block (∞, 2) norm as the dual.
Hence, R∗2(u) = ||u||∗GV ,2. Hence, the dual norm of kEV norm is R∗(u) = max(||(1 � WE) ◦

u||∞,
||u||∗GV ,2

ε
).

Theorem S:3.7. The dual norm of ||WE ◦ ·||1 is:
R∗1(·) = ||(1 �WE) ◦ u||∞ (S:3.6)

ForR1(·) = ||WE ◦ ||1, the dual norm is given by:
sup

||W◦u||1≤1

uTx

≤ sup
||W◦u||1≤1

p∑
k=1

|uk||xk|

= sup
||W◦u||1≤1

p∑
k=1

|uk||xk||wk|
|wk|

= sup
||W◦u||1≤1

p∑
k=1

|wkuk|
∣∣∣ xk
wk

∣∣∣
≤ sup
||W◦u||1≤1

(
p∑
k=1

|wkuk|

)
max

k=1,...,p

∣∣∣ xk
wk

∣∣∣
=
∣∣∣∣∣∣ x
w

∣∣∣∣∣∣
∞

(S:3.7)

S:4 Appendix: More Background of Proxy Backward mapping and
Theorems of Tv Being Invertible

Essentially the MLE solution of estimating vanilla graphical model in an exponential family distri-
bution can be expressed as a backward mapping that computes the target model parameters from
certain given moments. For instance, when learning Gaussian GM with vanilla MLE, the backward
mapping is Σ̂−1 that estimates Ω from the sample covariance matrix (moment) Σ̂. However, this
backward mapping is normally not well-defined in high-dimensional settings. In the case of GGM,
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when given the sample covariance Σ̂, we cannot just compute the vanilla MLE solution as [Σ̂]−1

when high-dimensional since Σ̂ is rank-deficient when p > n. Therefore Yang et al. [24] proposed to
use carefully constructed proxy backward maps for Eq. (2.4) that are both available in closed-form,
and well-defined in high-dimensional settings for exponential GM models. For instance, [Tv(Σ̂)]−1

in Eq. (2.3) is the proxy backward mapping [24] used for GGM.

S:4.1 Backward mapping for an exponential-family distribution:
The solution of vanilla graphical model MLE can be expressed as a backward mapping[21] for an
exponential family distribution. It estimates the model parameters (canonical parameter θ) from
certain (sample) moments. We provide detailed explanations about backward mapping of exponential
families, backward mapping for Gaussian special case and backward mapping for differential network
of GGM in this section.

Backward mapping: Essentially the vanilla graphical model MLE can be expressed as a backward
mapping that computes the model parameters corresponding to some given moments in an exponential
family distribution. For instance, in the case of learning GGM with vanilla MLE, the backward
mapping is Σ̂−1 that estimates Ω from the sample covariance (moment) Σ̂.
Suppose a random variable X ∈ Rp follows the exponential family distribution:

P(X; θ) = h(X)exp{< θ, φ(θ) > −A(θ)} (S:4.1)
Where θ ∈ Θ ⊂ Rd is the canonical parameter to be estimated and Θ denotes the parameter space.
φ(X) denotes the sufficient statistics as a feature mapping function φ : Rp → Rd, andA(θ) is the log-
partition function. We then define mean parameters v as the expectation of φ(X): v(θ) := E[φ(X)],
which can be the first and second moments of the sufficient statistics φ(X) under the exponential
family distribution. The set of all possible moments by the moment polytope:

M = {v|∃p is a distribution s.t. Ep[φ(X)] = v} (S:4.2)
Mostly, the graphical model inference involves the task of computing moments v(θ) ∈M given the
canonical parameters θ ∈ H . We denote this computing as forward mapping :

A : H →M (S:4.3)
The learning/estimation of graphical models involves the task of the reverse computing of the forward
mapping, the so-called backward mapping [21]. We denote the interior ofM asM0. backward
mapping is defined as:

A∗ :M0 → H (S:4.4)
which does not need to be unique. For the exponential family distribution,

A∗ : v(θ)→ θ = ∇A∗(v(θ)). (S:4.5)
Where A∗(v(θ)) = sup

θ∈ H
< θ, v(θ) > −A(θ).

Backward Mapping: Gaussian Case If a random variable X ∈ Rp follows the Gaussian
Distribution N(µ,Σ). then θ = (Σ−1µ,− 1

2Σ−1). The sufficient statistics φ(X) = (X,XXT ),
h(x) = (2π)−

k
2 , and the log-partition function

A(θ) =
1

2
µTΣ−1µ+

1

2
log(|Σ|) (S:4.6)

When performing the inference of Gaussian Graphical Models, it is easy to estimate the mean vector
v(θ), since it equals to E[X,XXT ].
When learning the GGM, we estimate its canonical parameter θ through vanilla MLE. Because Σ−1

is one entry of θ we can use the backward mapping to estimate Σ−1.

θ = (Σ−1µ,−1

2
Σ−1) = A∗(v) = ∇A∗(v)

= ((Eθ[XXT ]− Eθ[X]Eθ[X]T )−1Eθ[X],

−1

2
(Eθ[XXT ]− Eθ[X]Eθ[X]T )−1).

(S:4.7)

By plugging in Eq. (S:4.6) into Eq. (S:4.5), we get the backward mapping of Ω as (Eθ[XXT ] −
Eθ[X]Eθ[X]T )−1) = Σ̂−1, easily computable from the sample covariance matrix.
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S:4.2 Backward Mapping for Differential GGM
When the random variables Xc, Xd ∈ Rp follows the Gaussian Distribution N(µc,Σc) and
N(µd,Σd), their density ratio (defined by [12]) essentially is a distribution in exponential fam-
ilies:

r(x,∆) =
pd(x)

pc(x)

=

√
det(Σc) exp

(
− 1

2 (x− µd)TΣ−1
d (x− µd)

)√
det(Σd) exp

(
− 1

2 (x− µc)TΣ−1
c (x− µc)

)
= exp(−1

2
(x− µd)TΣ−1

d (x− µd)

+
1

2
(x− µc)TΣ−1

c (x− µc)

− 1

2
(log(det(Σd))− log(det(Σc))))

= exp

(
−1

2
∆x2 + µ∆x−A(µ∆,∆)

)

(S:4.8)

Here ∆ = Σ−1
d − Σ−1

c and µ∆ = Σ−1
d µd − Σ−1

c µc.

The log-partition function

A(µ∆,∆) =
1

2
µTd Σ−1

d µd −
1

2
µTc Σ−1

c µc+

1

2
log(det(Σd))−

1

2
log(det(Σc))

(S:4.9)

The canonical parameter

θ =

(
Σ−1
d µd − Σ−1

c µc,−
1

2
(Σ−1

d − Σ−1
c )

)
=

(
Σ−1
d µd − Σ−1

c µc,−
1

2
(∆)

) (S:4.10)

The sufficient statistics φ([Xc, Xd]) and the log-partition function A(θ):
φ([Xc, Xd]) = ([Xc, Xd], [XcX

T
c , XdX

T
d ])

A(θ) =
1

2
µTd Σ−1

d µd −
1

2
µTc Σ−1

c µc+

1

2
log(det(Σd))−

1

2
log(det(Σc))

(S:4.11)

And h(x) = 1.
Now we can estimate this exponential distribution (θ) through vanilla MLE. By plugging Eq. (S:4.11)
into Eq. (S:4.5), we get the following backward mapping via the conjugate of the log-partition
function:

θ =

(
Σ−1
d µd − Σ−1

c µc,−
1

2
(Σ−1

d − Σ−1
c )

)
=A∗(v) = ∇A∗(v)

(S:4.12)

The mean parameter vector v(θ) includes the moments of the sufficient statistics φ() under the
exponential distribution. It can be easily estimated through E[([Xc, Xd], [XcX

T
c , XdX

T
d ])].

Therefore the backward mapping of θ becomes,
θ̂ =(((Eθ[XdX

T
d ]− Eθ[Xd]Eθ[Xd]

T )−1Eθ[Xd]

− (Eθ[XcX
T
c ]− Eθ[Xc]Eθ[Xc]

T )−1Eθ[Xc]),

− 1

2
((Eθ[XdX

T
d ]− Eθ[Xd]Eθ[Xd]

T )−1−

(Eθ[XcX
T
c ]− Eθ[Xc]Eθ[Xc]

T )−1)).

(S:4.13)
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Because the second entry of the canonical parameter θ is (Σ−1
d −Σ−1

c ), we get the backward mapping
of ∆ as

((Eθ[XdX
T
d ]− Eθ[Xd]Eθ[Xd]

T )−1

−(Eθ[XcX
T
c ]− Eθ[Xc]Eθ[Xc]

T )−1)

=Σ̂−1
d − Σ̂−1

c

(S:4.14)

This can be easily inferred from two sample covariance matrices Σ̂d and Σ̂c (Att: when under
low-dimensional settings).

S:4.3 Theorems of Proxy Backward Mapping Tv Being Invertible
Based on [24] for any matrix A, the element wise operator Tv is defined as:

[Tv(A)]ij =

{
Aii + v if i = j

sign(Aij)(|Aij | − v) otherwise, i 6= j

Suppose we apply this operator Tv to the sample covariance matrix
XTX

n
to obtain Tv(

XTX

n
).

Then, Tv(
XTX

n
) under high dimensional settings will be invertible with high probability, under the

following conditions:
Condition-1 (Σ-Gaussian ensemble) Each row of the design matrix X ∈ Rn×p is i.i.id sampled from
N(0,Σ).
Condition-2 The covariance Σ of the Σ-Gaussian ensemble is strictly diagonally dominant: for all

row i, δi := Σii − Σj 6=i ≥ δmin > 0 where δmin is a large enough constant so that ||Σ||∞ ≤ 1

δmin
.

This assumption guarantees that the matrix Tv(
XTX

n
) is invertible, and its induced `∞ norm is well

bounded. Then the following theorem holds:

Theorem S:4.1. Suppose Condition-1 and Condition-2 hold. Then for any v ≥

8(maxiΣii)
√

(
10τ log p′

n
), the matrix Tv(

XTX

n
) is invertible with probability at least 1− 4/p′

τ−2

for p′ := max{n, p} and any constant τ > 2.

S:4.4 Useful lemma(s) of Error Bounds of Proxy Backward Mapping Tv

Lemma S:4.2. (Theorem 1 of [16]). Let δ be maxij |[X
TX
n ]ij − Σij |. Suppose that ν > 2δ. Then,

under the conditions (C-SparseΣ), and as ρv(·) is a soft-threshold function, we can deterministically
guarantee that the spectral norm of error is bounded as follows:

|||Tv(Σ̂)− Σ|||∞ ≤ 5ν1−qc0(p) + 3ν−qc0(p)δ (S:4.15)
Lemma S:4.3. (Lemma 1 of [15]). Let A be the event that

||X
TX

n
− Σ||∞ ≤ 8(max

i
Σii)

√
10τ log p′

n
(S:4.16)

where p′ := max(n, p) and τ is any constant greater than 2. Suppose that the design matrix X is
i.i.d. sampled from Σ-Gaussian ensemble with n ≥ 40 maxi Σii. Then, the probability of event A
occurring is at least 1− 4/p′τ−2.

S:5 Theoretical Analysis of Error Bounds
S:5.1 Background: Error bounds of Elementary Estimators
KDiffNet formulations are special cases of the following generic formulation for the elementary
estimator.

argmin
θ
R(θ)

subject to:R∗(θ − θ̂n) ≤ λn
(S:5.1)

WhereR∗(·) is the dual norm ofR(·),

R∗(v) := sup
u6=0

< u, v >

R(u)
= sup
R(u)≤1

< u, v > . (S:5.2)
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Following the unified framework [13], we first decompose the parameter space into a subspace
pair(M,M̄⊥), where M̄ is the closure of M. Here M̄⊥ := {v ∈ Rp| < u, v >= 0,∀u ∈
M̄}. M is the model subspace that typically has a much lower dimension than the original high-
dimensional space. M̄⊥ is the perturbation subspace of parameters. For further proofs, we assume
the regularization function in Eq. (S:5.1) is decomposable w.r.t the subspace pair (M,M̄⊥).

(C1)R(u+ v) = R(u) +R(v), ∀u ∈M,∀v ∈ M̄⊥.
[13] showed that most regularization norms are decomposable corresponding to a certain subspace
pair.

Definition S:5.1. Subspace Compatibility Constant
Subspace compatibility constant is defined as Ψ(M, | · |) := sup

u∈M\{0}

R(u)
|u| which captures the

relative value between the error norm | · | and the regularization functionR(·).

For simplicity, we assume there exists a true parameter θ∗ which has the exact structure w.r.t a certain
subspace pair. Concretely:
(C2) ∃ a subspace pair (M,M̄⊥) such that the true parameter satisfies projM⊥(θ∗) = 0

Then we have the following theorem.

Theorem S:5.2. Suppose the regularization function in Eq. (S:5.1) satisfies condition (C1), the true
parameter of Eq. (S:5.1) satisfies condition (C2), and λn satisfies that λn ≥ R∗(θ̂n − θ∗). Then, the
optimal solution θ̂ of Eq. (S:5.1) satisfies:

R∗(θ̂ − θ∗) ≤ 2λn (S:5.3)

||θ̂ − θ∗||2 ≤ 4λnΨ(M̄) (S:5.4)

R(θ̂ − θ∗) ≤ 8λnΨ(M̄)2 (S:5.5)

Proof. Let δ := θ̂ − θ∗ be the error vector that we are interested in.

R∗(θ̂ − θ∗) = R∗(θ̂ − θ̂n + θ̂n − θ∗)

≤ R∗(θ̂n − θ̂) +R∗(θ̂n − θ∗) ≤ 2λn
(S:5.6)

By the fact that θ∗M⊥ = 0, and the decomposability ofR with respect to (M,M̄⊥)

R(θ∗)

= R(θ∗) +R[ΠM̄⊥(δ)]−R[ΠM̄⊥(δ)]

= R[θ∗ + ΠM̄⊥(δ)]−R[ΠM̄⊥(δ)]

≤ R[θ∗ + ΠM̄⊥(δ) + ΠM̄(δ)] +R[ΠM̄(δ)]

−R[ΠM̄⊥(δ)]

= R[θ∗ + δ] +R[ΠM̄(δ)]−R[ΠM̄⊥(δ)]

(S:5.7)

Here, the inequality holds by the triangle inequality of norm. Since Eq. (S:5.1) minimizesR(θ̂), we
haveR(θ∗ + ∆) = R(θ̂) ≤ R(θ∗). Combining this inequality with Eq. (S:5.7), we have:

R[ΠM̄⊥(δ)] ≤ R[ΠM̄(δ)] (S:5.8)
Moreover, by Hölder’s inequality and the decomposability ofR(·), we have:

||∆||22 = 〈δ, δ〉 ≤ R∗(δ)R(δ) ≤ 2λnR(δ)

= 2λn[R(ΠM̄(δ)) +R(ΠM̄⊥(δ))] ≤ 4λnR(ΠM̄(δ))

≤ 4λnΨ(M̄)||ΠM̄(δ)||2
(S:5.9)

where Ψ(M̄) is a simple notation for Ψ(M̄, || · ||2).
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Since the projection operator is defined in terms of || · ||2 norm, it is non-expansive: ||ΠM̄(∆)||2 ≤
||∆||2. Therefore, by Eq. (S:5.9), we have:

||ΠM̄(δ)||2 ≤ 4λnΨ(M̄), (S:5.10)
and plugging it back to Eq. (S:5.9) yields the error bound Eq. (S:5.4).
Finally, Eq. (S:5.5) is straightforward from Eq. (S:5.8) and Eq. (S:5.10).

R(δ) ≤ 2R(ΠM̄(δ))

≤ 2Ψ(M̄)||ΠM̄(δ)||2 ≤ 8λnΨ(M̄)2.
(S:5.11)

S:5.2 Error Bounds of KDiffNet
Theorem S:5.2, provides the error bounds via λn with respect to three different metrics. In the
following, we focus on one of the metrics, Frobenius Norm to evaluate the convergence rate of our
KDiffNet estimator.

S:5.2.1 Error Bounds of KDiffNet through λn and ε

Theorem S:5.3. Assuming the true parameter ∆∗ satisfies the conditions (C1)(C2) and λn ≥
R∗(∆̂−∆∗), then the optimal point ∆̂ has the following error bounds:

||∆̂−∆∗||F ≤ (4 max(max
i,j

(WEi,j )
√
s), ε
√
sG)λn (S:5.12)

Proof: KDiffNet uses R(·) = ||WE ◦ ·||1 + ε|| · ||G,2 because it is a superposition of two norms:
R1 = ||WE ◦ ||1 andR2 = ε|| · ||G,2. Based on the results in[13], Ψ(M̄1) = maxi,j(WEi,j )

√
s and

Ψ(M̄2) =
√
sG , where s is the number of nonzero entries in ∆ and sG is the number of groups in

which there exists at least one nonzero entry. Therefore, Ψ(M̄) = max(maxi,j(WEi,j )
√
s), ε
√
sG).

Hence,Using this in Equation Eq. (S:5.4), ||∆̂−∆∗||F ≤ 4(max(maxi,j(WEi,j )
√
s), ε
√
sG)λn.

S:5.2.2 Proof of Corollary (2.1)-Derivation of the KDiffNet error bounds

To derive the convergence rate for KDiffNet , we introduce the following two sufficient conditions on
the Σc and Σd, to show that the proxy backward mapping θ̂n = B∗(φ̂) = [Tv(Σ̂d)]

−1 − [Tv(Σ̂d)]
−1

is well-defined[23]:
(C-MinInf−Σ): The true Ω∗c and Ω∗d of Eq. (2.1) have bounded induced operator norm, i.e.,
|||Ωc∗|||∞ := sup

w 6=0∈Rp
||Σc∗w||∞
||w||∞ ≤ κ1 and |||Ωd∗|||∞ := sup

w 6=0∈Rp
||Σd∗w||∞
||w||∞ ≤ κ1.

(C-Sparse-Σ): The two true covariance matrices Σ∗c and Σ∗d are “approximately sparse” (following

[2]). For some constant 0 ≤ q < 1 and c0(p), max
i

p∑
j=1

|[Σ∗c ]ij |q ≤ c0(p) and max
i

p∑
j=1

|[Σ∗d]ij |q ≤

c0(p). 2

We additionally require inf
w 6=0∈Rp

||Ω∗cw||∞
||w||∞ ≥ κ2 and inf

w 6=0∈Rp
||Ω∗dw||∞
||w||∞ ≥ κ2.

We assume the true parameters Ω∗c and Ω∗d satisfies C-MinInfΣ and C-SparseΣ conditions.
Using the above theorem and conditions, we have the following corollary for convergence rate of
KDiffNet (Att: the following corollary is the same as the Corollary 2.1 in the main draft. We repeat
it here to help readers read the manuscript more easily):

Corollary S:5.4. In the high-dimensional setting, i.e., p > max(nc, nd), let v := a
√

log p
min(nc,nd) .

Then for λn := 4κ1a
κ2

√
log p

min(nc,nd) and min(nc, nd) > c log p, with a probability of at least

2This indicates for some positive constant d, [Σ∗c ]jj ≤ d and [Σ∗d]jj ≤ d for all diagonal entries. Moreover,
if q = 0, then this condition reduces to Σ∗d and Σ∗c being sparse.



13

1− 2C1 exp(−C2p log(p)), the estimated optimal solution ∆̂ has the following error bound:

||∆̂−∆∗||F ≤
16κ1a((max(maxi,j(WEi,j )

√
s), ε
√
sG)

mini,j(WEi,j )κ2

√
log p

min(nc, nd)
(S:5.13)

where a, c, κ1 and κ2 are constants.

Proof. In the following proof, we first prove ||Ω∗c− [Tv(Σ̂c)]
−1||∞ ≤ λnc . Here λnc = 4κ1a

κ2

√
log p′

nc

and p′ = max(p, nc)

The condition (C-SparseΣ) and condition (C-MinInfΣ) also hold for Ω∗c and Σ∗c . In order to uti-
lize Theorem (S:5.3) for this specific case, we only need to show that ||Ω∗c − [Tv(Σ̂c)]

−1||∞ ≤ λnc
for the setting of λnc = 4κ1a

κ2

√
log p′

nc
:

||Ω∗c − [Tv(Σ̂c)]
−1||∞ = ||[Tv(Σ̂c)]−1(Tv(Σ̂c)Ω

∗
c − I)||∞

≤ |||[Tv(Σ̂c)w]|||∞||Tv(Σ̂c)Ω∗c − I||∞
= |||[Tv(Σ̂c)]−1|||∞||Ω∗c(Tv(Σ̂c)− Σ∗c)||∞
≤ |||[Tv(Σ̂c)]−1|||∞|||Ω∗c |||∞||Tv(Σ̂c)− Σ∗c ||∞.

(S:5.14)

We first compute the upper bound of |||[Tv(Σ̂c)]−1|||∞. By the selection v in the statement,
Lemma (S:4.2) and Lemma (S:4.3) hold with probability at least 1−4/p′τ−2. Armed with Eq. (S:4.15),
we use the triangle inequality of norm and the condition (C-SparseΣ): for any w,

||Tv(Σ̂c)w||∞ = ||Tv(Σ̂c)w − Σw + Σw||∞
≥ ||Σw||∞ − ||(Tv(Σ̂c)− Σ)w||∞
≥ κ2||w||∞ − ||(Tv(Σ̂c)− Σ)w||∞
≥ (κ2 − ||(Tv(Σ̂c)− Σ)w||∞)||w||∞

(S:5.15)

Where the second inequality uses the condition (C-SparseΣ). Now, by Lemma (S:4.2) with the
selection of v, we have

|||Tv(Σ̂c)− Σ|||∞ ≤ c1(
log p′

nc
)(1−q)/2c0(p) (S:5.16)

where c1 is a constant related only on τ and maxi Σii. Specifically, it is defined as 6.5 ×
(16(maxi Σii)

√
10τ)1−q . Hence, as long as nc > ( 2c1c0(p)

κ2
)

2
1−q log p′ as stated, so that |||Tv(Σ̂c)−

Σ|||∞ ≤ κ2

2 , we can conclude that ||Tv(Σ̂c)w||∞ ≥ κ2

2 ||w||∞, which implies |||[Tv(Σ̂c)]−1|||∞ ≤
2
κ2

.

The remaining term in Eq. (S:5.14) is ||Tv(Σ̂c)− Σ∗c ||∞; ||Tv(Σ̂c)− Σ∗c ||∞ ≤ ||Tv(Σ̂c)− Σ̂c||∞ +

||Σ̂c − Σ∗c ||∞. By construction of Tv(·) in (C-Thresh) and by Lemma (S:4.3), we can confirm that
||Tv(Σ̂c)− Σ̂c||∞ as well as ||Σ̂c − Σ∗c ||∞ can be upper-bounded by v.

Similarly, the [Tv(Σ̂d)]
−1 has the same result.

Finally,
||(1 �WE) ◦

(
∆∗ −

(
[Tv(Σ̂d)]

−1 − [Tv(Σ̂c)]
−1
))
||∞ (S:5.17)

≤||(1 �WE) ◦
(

Ωd − [Tv(Σ̂d)]
−1
)
||∞ + ||(1 �WE) ◦

(
Ωc − [Tv(Σ̂c)]

−1
)
||∞ (S:5.18)

≤ 1

mini,jWi,j

(
4κ1a

κ2

√
log p′

nc
+

4κ1a

κ2

√
log p′

nd

)
(S:5.19)

Because by Theorem S:5.3, we know if λn ≥ R∗(∆̂−∆∗),
||∆̂−∆∗||F ≤ (4 max(max

i,j
(WEi,j )

√
s), ε
√
sG)λn
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Suppose p > max(nc, nd) we have that

||∆̂−∆∗||F ≤
16κ1amax(maxi,j(WEi,j )

√
s), ε
√
sG)

mini,j(WEi,j )κ2

√
log p

min(nc, nd)
(S:5.20)

By combining all together, we can confirm that the selection of λn satisfies the requirement of Theo-
rem (S:5.3), which completes the proof.

S:6 More about Experiments
S:6.1 Experimental Setup
The hyper-parameters in our experiments are v, λn, ε and λ2. In detail:
• To compute the proxy backward mapping in (S:2.1), DIFFEE, and JEEK we vary v for soft-

thresholding v from the set {0.001i|i = 1, 2, . . . , 1000} (to make Tv(Σc) and Tv(Σd) invertible).
• λn is the hyper-parameter in our KDiffNet formulation. According to our convergence rate analysis

in Section 2.6, λn ≥ C
√

log p
min(nc,nd) , we choose λn from a range of {0.01×

√
log p

min(nc,nd) × i|i ∈

{1, 2, 3, . . . , 100}}. For KDiffNet-G case, we tune over λn from a range of {0.1×
√

log p
min(nc,nd) ×

i|i ∈ {1, 2, 3, . . . , 100}}. We use the same range to tune λ1 for SDRE. Tuning for NAK is done
by the package itself.

• ε: For KDiffNet-EG experiments, we tune ε ∈ {0.0001, 0.01, 1, 100}}.
• λ2 controls individual graph’s sparsity in JGLFUSED. We choose λ1 = 0.0001 (a very small

value) for all experiments to ensure only the differential network is sparse.

Evaluation Metrics:

• F1-score: We use the edge-level F1-score as a measure of the performance of each method.
F1 = 2·Precision·Recall

Precision+Recall , where Precision = TP
TP+FP and Recall = TP

TP+FN . The better method achieves
a higher F1-score. We choose the best performing λn using validation and report the performance
on a test dataset.

• Time Cost: We use the execution time (measured in seconds or log(seconds)) for a method as a
measure of its scalability. The better method uses less time3

S:6.2 Simulation Dataset Generation
We first use simulation to evaluate KDiffNet for improving differential structure estimation by making
use of extra knowledge. We generate simulated datasets with a clear underlying differential structure
between two conditions, using the following method:

Data Generation for Edge Knowledge (KE): Given a known weight matrix WE (e.g., spatial
distance matrix between p brain regions), we set W d = inv.logit(−WE). We use the assumption
that higher the value of Wij , lower the probability of that edge to occur in the true precision matrix.
This is motivated by the role of spatial distance in brain connectivity networks: farther regions are
less likely to be connected and vice-versa. We select different levels in the matrix W d, denoted by
s, where if W d

ij > sl, ∆d
ij = 0.5, else ∆d

ij = 0, where ∆d ∈ Rp×p. We denote by s as the sparsity,
i.e. the number of non-zero entries in ∆d. BI is a random graph with each edge BIij = 0.5 with
probability p. δc and δd are selected large enough to guarantee positive definiteness.

Ωd = ∆d +BI + δdI (S:6.1)

Ωc = BI + δcI (S:6.2)

∆ = Ωd − Ωc (S:6.3)
There is a clear differential structure in ∆ = Ωd − Ωc, controlled by ∆d. To generate data from
two conditions that follows the above differential structure, we generate two blocks of data samples
following Gaussian distribution using N(0,Ω−1

c ) and N(0,Ω−1
d ). We only use these data samples to

approximate the differential GGM to compare to the ground truth ∆.

3The machine that we use for experiments is an Intel Core i7 CPU with a 16 GB memory.
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Data Generation for Vertex Knowledge (KG): In this case, we simulate the case of extra knowl-
edge of nodes in known groups. Let the node group size,i.e., the number of nodes with a similar
interaction pattern in the differential graph be m. We select the block diagonals of size m as groups
in ∆g. If two variables i, j are in a group g′, in ∆g

ij = 0.5, else ∆g
ij = 0, where ∆g ∈ Rp×p. We

denote by sG as the number of groups in ∆g . BI is a random graph with each edge BIij = 0.5 with
probability p.

Ωd = ∆g +BI + δdI (S:6.4)

Ωc = BI + δcI (S:6.5)

∆ = Ωd − Ωc (S:6.6)
δc and δd are selected large enough to guarantee positive definiteness. We generate two blocks of
data samples following Gaussian distribution using N(0,Ω−1

c ) and N(0,Ω−1
d ).

Data Generation for both Edge and Vertex Knowledge (KEG): In this case, we simulate the
case of overlapping group and edge knowledge. Let the node group size,i.e., the number of nodes
with a similar interaction pattern in the differential graph be m. We select the block diagonals of
size m as groups in ∆g. If two variables i, j are in a group g′, in ∆g

ij = 1/3, else ∆g
ij = 0, where

∆g ∈ Rp×p.
For the edge-level knowledge component, given a known weight matrix WE , we set W d =
inv.logit(−WE). Higher the value of WEij , lower the value of W d

ij , hence lower the probabil-
ity of that edge to occur in the true precision matrix. We select different levels in the matrix W d,
denoted by s, where if W d

ij > sl, we set ∆d
ij = 1/3, else ∆d

ij = 0. We denote by s as the number of
non-zero entries in ∆d. BI is a random graph with each edge BIij = 1/3 with probability p.

Ωd = ∆d + ∆g +BI + δdI (S:6.7)

Ωc = BI + δcI (S:6.8)

∆ = Ωd − Ωc (S:6.9)
δc and δd are selected large enough to guarantee positive definiteness. Similar to the previous
case, we generate two blocks of data samples following Gaussian distribution using N(0,Ω−1

c ) and
N(0,Ω−1

d ). We only use these data samples to approximate the differential GGM to compare to the
ground truth ∆.

S:6.3 Simulation Experiment Results
We consider three different types of known edge knowledge WE generated from the spatial distance
between different brain regions and simulate groups to represent related anatomical regions. These
three are distinguished by different p = {116, 160, 246} representing spatially related brain regions.
We generate three types of datasets:Data-EG (having both edge and vertex knowledge), Data-G(with
edge-level extra knowledge) and Data-V(with known node groups knowledge). We generate two
blocks of data samples Xc and Xd following Gaussian distribution using N(0,Ω−1

c ) and N(0,Ω−1
d ).

We use these data samples to estimate the differential GGM to compare to the ground truth ∆.
The details of the simulation are in Section S:6.2. We vary the sparsity of the true differential
graph (s) and the number of control and case samples (nc and nd respectively) used to estimate the
differential graph. For each case of p, we vary nc and nd in {p/2, p/4, p, 2p} to account for both
high dimensional and low dimensional cases. The sparsity of the underlying differential graph is
controlled by s = {0.125, 0.25, 0.375, 0.5} and sG as explained in Section S:6.2. This results in 126
different datasets representing diverse settings: different number of dimensions p, number of samples
nc and nd, multiple levels of sparsity s and number of groups sG of the differential graph for both
KE and KEG data settings.

Edge and Vertex Knowledge (KEG): We use KDiffNet (Algorithm 1) to infer the differential
structure in this case.
Figure S:2(a) shows the performance in terms of F1 Score of KDiffNet in comparison to the baselines
for p = 116, corresponding to 116 regions of the brain. KDiffNet outperforms the best baseline in
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Figure S:2: KDiffNet Edge and Vertex Knowledge Simulation Results for p = 116 for different
settings of nc, nd and s: (a) The test F1-score and (b) The average computation time (measured in
seconds) per λn for KDiffNet and baseline methods.
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each case by an average improvement of 414%. KDiffNet-EG does better than JEEK and NAK that
can model the edge information but cannot include group information. SDRE and DIFFEE are direct
estimators but perofrm poorly indicating that adding additional knowledge aids differential network
estimation. JGLFUSED performs the worst on all cases. We list the detailed results in Section S:6.5.
Figure S:2(b) shows the average computation cost per λn of each method measured in seconds. In all
settings, KDiffNet has lower computation cost than JEEK, SDRE and JGLFUSED in different cases
of varying nc and nd, as well as with different sparsity of the differential network. KDiffNet is on
average 24× faster than the best performing baseline. It is slower than DIFFEE owing to DIFFEE’s
non-iterative closed form solution, however, DIFFEE does not have good prediction performance.
Note that B∗() in KDiffNet , JEEK and DIFFEE and the kernel term in SDRE are precomputed only
once prior to tuning across multiple λn. In Figure S:3(a), we plot the test F1-score for simulated
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Figure S:3: KDiffNet Edge and Vertex Knowledge Simulation Results for p = 160 for different
settings of nc, nd and s: (a) The test F1-score and (b) The average computation time (measured in
seconds) per λn for KDiffNet and baseline methods.

datasets generated using W with p = 160, representing spatial distances between different 160
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regions of the brain. This represents a larger and different set of spatial brain regions. In p = 160
case, KDiffNet outperforms the best baseline in each case by an average improvement of 928%.
Including available additional knowledge is clearly useful as JEEK does relatively better than the
other baselines. JGLFUSED performs the worst on all cases. Figure S:3(b) shows the computation
cost of each method measured in seconds for each case. KDiffNet is on average 37× faster than the
best performing baseline.
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Figure S:4: KDiffNet Edge and Vertex Knowledge Simulation Results for p = 246 for different
settings of nc, nd and s: (a) The test F1-score and (b) The average computation time (measured in
seconds) per λn for KDiffNet and baseline methods

In Figure S:4(a), we plot the test F1-score for simulated datasets generated using a larger WE with
p = 246, representing spatial distances between different 246 regions of the brain. This represents a
larger and different set of spatial brain regions. In this case, KDiffNet outperforms the best baseline
in each case by an average improvement of 1400% relative to the best performing baseline. In this
case as well, including available additional knowledge is clearly useful as JEEK does relatively better
than the other baselines, which do not incorporate available additional knowledge. JGLFUSED again
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performs the worst on all cases. Figure S:4(b) shows the computation cost of each method measured
in seconds for each case. In all cases, KDiffNet has the least computation cost in different settings
of the data generation. KDiffNet is on average 20× faster than the best performing baseline. For
detailed results, see Section S:6.5.
We cannot compare Diff-CLIME as it takes more than 2 days to finish p = 246 case.

Edge Knowledge (KE): Given known WE , we use KDiffNet-E to infer the differential structure
in this case.
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Figure S:5: KDiffNet-E Simulation Results for p = 116 for different settings of nc, nd and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per λn for KDiffNet-E
and baseline methods.

Figure S:5(a) shows the performance in terms of F1-Score of KDiffNet-E in comparison to the
baselines for p = 116, corresponding to 116 spatial regions of the brain. In p = 116 case, KDiffNet-
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E outperforms the best baseline in each case by an average improvement of 23%. While JEEK,
DIFFEE and SDRE perform similar to each other, JGLFUSED performs the worst on all cases.
Figure S:5(b) shows the computation cost of each method measured in seconds for each case. In
all cases, KDiffNet-E has the least computation cost in different cases of varying nc and nd, as
well as with different sparsity of the differential network. For p = 116, KDiffNet-E , owing to an
entry wise parallelizable closed form solution, is on average 2356× faster than the best performing
baseline. In Figure S:6(a), we plot the test F1-score for simulated datasets generated using W with
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Figure S:6: KDiffNet-E Simulation Results for p = 160 for different settings of nc, nd and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per λn for KDiffNet-E
and baseline methods.

p = 160, representing spatial distances between different 160 regions of the brain. This represents a
larger and different set of spatial brain regions. In p = 160 case, KDiffNet-E outperforms the best
baseline in each case by an average improvement of 67.5%. Including available additional knowledge
is clearly useful as JEEK does relatively better than the other baselines, which do not incorporate
available additional knowledge. JGLFUSED performs the worst on all cases. Figure S:6(b) shows the
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computation cost of each method measured in seconds for each case. In all cases, KDiffNet-E has the
least computation cost in different cases of varying nc and nd, as well as with different sparsity of
the differential network. KDiffNet-E is on average 3300× faster than the best performing baseline.
In Figure S:7(a), we plot the test F1-score for simulated datasets generated using a larger W with
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Figure S:7: KDiffNet-E Simulation Results for p = 246 for different settings of nc, nd and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per λn for KDiffNet-E
and baseline methods.

p = 246, representing spatial distances between different 246 regions of the brain. This represents
a larger and different set of spatial brain regions. In this case, KDiffNet-E outperforms the best
baseline in each case by an average improvement of 66.4% relative to the best performing baseline.
Including available additional knowledge is clearly useful as JEEK does relatively better than the
other baselines, which do not incorporate available additional knowledge. JGLFUSED performs the
worst on all cases. Figure S:7(b) shows the computation cost of each method measured in seconds
for each case. In all cases, KDiffNet-E has the least computation cost in different cases of varying
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nc and nd, as well as with different sparsity of the differential network. KDiffNet-E is on average
3966× faster than the best performing baseline.

Node Group Knowledge : We use KDiffNet-G to estimate the differential network with the known
groups as extra knowledge. We vary the number of groups sG and the number of samples nc and
nd for each case of p = {116, 160, 246}. Figure S:8 shows the F1-Score of KDiffNet-G and the
baselines for p = 116. KDiffNet-G clearly has a large advantage when extra node group knowledge
is available. The baselines cannot model such available knowledge.
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Figure S:8: KDiffNet-G Simulation Results for p = 246 for different settings of nc, nd and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per λn for KDiffNet-E
and baseline methods.

Varying proportion of known edges: We generate WE matrices with p = 150 using Erdos
Renyi Graph [9]. We use the generated graph as prior edge knowledge WE . Additionally, we
simulate 15 groups of size 10 as explained in Section S:6.2. We simulate Ωc and Ωd as explained in
Section S:6.2. Figre S:9 presents the performance of KDiffNet-EG , KDiffNet-E and DIFFEE with
varying proportion of known edges.
KDiffNet-EG has a higher F1-score than KDiffNet-E as it can additionally incorporate known group
information. As expected, with increase in the proportion of known edges, F1-Score improves for
both KDiffNet-EG and KDiffNet-E . In contrast DIFFEE cannot make use of additional information
and the F1-Score remains the same.

Scalability in p: To evaluate the scalability of KDiffNet and baselines to large p, we also generate
larger WE matrices with p = 2000 using Erdos Renyi Graph [9], similar to the aforementioned
design. Using the generated graph as prior edge knowledge WE , we design Ωc and Ωd as explained
in Section S:6.2. For the case of both edge and vertex knowledge, we fix the number of groups
to 100 of size 10. We evaluate the scalability of KDiffNet-EG and baselines measured in terms of
computation cost per λn.
Figure S:11 shows the computation time cost per λn for all methods. Clearly, KDiffNet takes the
least time, for large p as well.

Choice of λn: For KDiffNet , we show the performance of all the methods as a function of choice
of λn. Figure S:10 shows the True Positive Rate(TPR) and False Positive Rate(FPR) measured by
varying λn for p = 116, s = 0.5 and nc = nd = p/2 under the Data-EG setting. Clearly, KDiffNet-
EG achieves the highest Area under Curve (AUC) than all other baseline methods. KDiffNet-EG also
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outperforms JEEK and NAK that take into account edge knowledge but cannot model the known
group knowledge.

S:6.4 More Experiment: Brain Connectivity Estimation from Real-World fMRI
ABIDE Dataset: This data is from the Autism Brain Imaging Data Exchange (ABIDE) [7], a
publicly available resting-state fMRI dataset. The ABIDE data aims to understand human brain
connectivity and how it reflects neural disorders [19]. The data is retrieved from the Preprocessed
Connectomes Project [4], where preprocessing is performed using the Configurable Pipeline for the
Analysis of Connectomes (CPAC) [5] without global signal correction or band-pass filtering. After
preprocessing with this pipeline, 871 individuals remain (468 diagnosed with autism). Signals for
the 160 (number of features p = 160) regions of interest (ROIs) in the often-used Dosenbach Atlas
[8] are examined. We also include two types of available node groups : one with 40 unique groups
of regions belonging to the same functional network and another with 6 node groups about nodes
belonging to the same broader anatomical region of the brain.

Cross-validation: Classification is performed using the 3-fold cross-validation suggested by the
literature [14][20]. We tune over λn and pick the best λn using cross validation. The subjects are
randomly partitioned into three equal sets: a training set, a validation set, and a test set. Each estimator
produces Ω̂c − Ω̂d using the training set. Then, these differential networks are used as inputs to
Quadratic discriminant analysis (QDA), which is tuned via cross-validation on the validation set.
Finally, accuracy is calculated by running QDA on the test set. This classification process aims to
assess the ability of an estimator to learn the differential patterns of the connectome structures.

S:6.5 Detailed Simulation Results
Table S:2,Table S:3 and Table S:4 present a summary of results for KDiffNet-EG , KDiffNet-E
and KDiffNet-G in terms of F1-Score, respectively. We report the average F1-Score(along with
standard deviation across the same setting of nc and nd) across all simulation settings for each
p. Table S:5,Table S:6 and Table S:7 present a summary of computation time for KDiffNet-EG ,
KDiffNet-E and KDiffNet-G , respectively. We report the average computation time per λn across all
simulation settings for each p.
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