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Where we are ? =
Five major sections of this course

L Regression (supervised) —‘

i>EI Classification (supervised)
U Unsupervised models

U Learning theory

O Graphical models
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Where we are ? =
Three major sections for classification

* We can divide the Iar%e variety of classification —‘
approaches into roughly three major types

> 1. Discriminative

- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors
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Today

O Support Vector Machine (SVM) —‘

- v/ History of SVM
Lot v’ Large Margin Linear Classifier
tecture ¥' Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
. v Non linearly separable case
v’ Optimization with dual form
v Nonlinear decision boundary
v Multiclass SVM
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Today
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v’ Optimization to learn model parameters (w, b)
v Non linearly separable case

v’ Optimization with dual form

v Nonlinear decision boundary

v Multiclass SVM
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History of SVM

* SVMiis inspired from statistical learning theory [3]

e SVM was first introduced in 1992 [1]

* SVM becomes popular because of its success in handwritten
recognition

— 1.1% test error rate for SVM. This is the same as the error rates of a carefully
constructed neural network, LeNet 4.

¢ See Section 5.11 in [2] or the discussion in [3] for details

* SVMis now regarded as an important example of “kernel methods” ,
arguably the hottest area in machine learning 10 years ago

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 5 144-152, Pittsburgh, 1992.

[2] L. Bottou et al. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2" edition, Springer, 1999.
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Applications of SVMs

W B

« Computer Vision

« Text Categorization

« Ranking (e.g., Google searches)

« Handwritten Character Recognition
« Time series analysis

« Bioinformatics

- Lots of very successful applications!!!
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Handwritten digit recognition

| B
ol/[2[3M[s]6[7]7
9

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error

Leﬁet: 768-192-30-10 unit MLP = 0.9% error

1999, SVM best (kernel machines, vision algorithms) a2 0.6% error

J
3

4
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Today

1 Support Vector Machine (SVM) —‘

v’ History of SVM

m v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case

v’ Optimization with dual form

v Nonlinear decision boundary
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X X X ,Y A Dataset
for binary
classiﬁcation—‘
fiXi—iY !
Output as Binary
Class Label:
1or-1

» Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special
o/2s/14column to be predicted [ last column ] 10
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

* Learn a boundary that leads to the largest margin from points on both
sides

*2 PY o ’
/
° S Wy
Y/
° ® 4 « Intuitive, ‘makes
’ sense’
/
/ q
® o ’ P PY » Some theoretical
4 support
/
{ ] { ] . .
4 ° * Works well in practice
/
’ [ )
/
, { ]
/
/
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Max-margin & Decision Boundary

* The decision boundary should be as far away from
the data of both classes as possible

~

. ( 1. Correctly classifies all points
. . 2. Maximizes the margin (or equivalently minimizes ww)
* . Q Y J
. e,
. W is a p-dim
e . o vector; b is a
| “g Class 1 scalar
| T
“w W x4+b=1
| u
Class -1

wlix4+b=_-1"
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Today

Q Support Vector Machine (SVM) —‘

v’ History of SVM

v’ Large Margin Linear Classifier

@\/ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)

v Non linearly separable case

v’ Optimization with dual form

v Nonlinear decision boundary

v Multiclass SVM
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Maximizing the margin:
observation-1

*| Observation 1: the vector w is orthogonal to the +1 plan}a

WTX + b=1
Class 1

wlix4+b=_-1"
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Maximizing the margi

_observation-2
S
et c\as x
V W Classify as +1 if wix+b =1
o=+ - Classify as -1 if w'x+b=<-1
W 0 Undefined  if -1 <wix+b <1
\NT‘/C\' - S A
c\as

. ict
\NT*'\"O’ A p‘-ed‘c

* Observation 1: the vector w is orthogonal to the +1 and -1 planes

» Observation 2: if x* is a point on the +1 plane and x is the closest point
to x* on the -1 plane then

xt=Aw+Xx

Since w is orthogonal to both planes
we need to ‘travel’ some distance
along w to get from x* to x-
9/26/14 15
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Putting it together

o ¥
P B
)(‘\“0:“')\ % wl x*+b=+1
Pr

W' o
Ty 0= R
W A gict €12s® ' =
T)c\"o’ (<
w wT (AW + x) + b =+1
=
eWT x*+ b =+1
wix +b +AwTw = +1
cwWIx +b=-1
=
Xt =AW+ X
-1+ AwTw = +1

s|xt-x|=M

We can now define M in
terms of wand b

9/26/14
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A =2/wTw
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Putting it together

A
ss ¥
- o=l T\ W »
WT)u—b:M < M= |x" - x|

v=0

WORr

A
_ . c\as.5
\NT)(-\-‘O’A P‘-ed\ct

=
M=lAwl=Alwl= AVw'w

oWl X+ =
wl xt+b=+1 wTw o)

WTW - \/WTW

Wl x +b=-1
X' =AW+ X
s xt-x|=M
A =2/ww
We can now define M in

terms of wand b
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Optimization Step
i.e. learning optimal parameter for SVM

A 2
. & c\as® M=
M \ N Vw'w
\N‘Y)Q\‘b:‘\')\ <
=0
Tyx0 A

W _A sct (7,\39.5
WP pred! )

1. Correctly classifies all points )

. 2. Maximizes the margin (or equivalently minimizes w'w
Min (wTw)/2 L oin (oreq y )
subject to the following constraints: argminzil Wi2
W,
For all xin class + 1 . .
subjectto Vx, € Dtrain: y, (xi W+ b) =1
wTx+b = 1
Atotal of n
For all xinclass -1 constraints if
T we have n

wix+b < -1 input samples

9/26/14 19
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SVM as a QP prOblem R as | matrix, d as zero

vector, c as 0 value

A 2
- cass = |
P\'ed‘c't o g \ WM Vw'w u' Ru
. T
min,, 5 +d u+c
\N‘Y)Q\‘b:‘\')\ -

\NT‘A*\";O A subject to n inequality constraints:
.« c\asS”
W‘)ﬁ"b"\ ‘,‘.ed\ct c ayu, + apu, + ...< b,
au +a.,u,+..<b

Min (wTw)/2 R "
subject to the following inequality and k equivalency constraints:
constraints: Aty + 4, U+ .= bn+l
For all xin class + 1 : : :

Wix+b = 1 Atotal of n gyl + oty + o= b,

. constraints if

For all xinclass -1 we have n

WTx+b < -1 input samples
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Today

Q Support Vector Machine (SVM) —‘

v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
m v Non linearly separable case
v’ Optimization with dual form
v Nonlinear decision boundary
v Multiclass SVM
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Non linearly separable case
*Instead of minimizing the number of misclassified points we can ‘
minimize the distance between these points and their correct plane

The new optimization problem is:

T n
. ww
min + ) Ceg,
w 2 2 1
subject to the following inequality
constraints:

+1 plane
/

For all x;in class + 1
T - g

wix+b = 1-g Atotal of n

Forall x;in class -1 el

wix+b < -1+ g

For all i
Another n
g=0 constraints

9/26/14
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W W
min,, 7
For all xin class + 1
wTx+b = 1

For all xinclass -1

Where we are

T n

min,, + E Ce,

.=l
For all x;in class + 1
wix+b = 1- g

For all x;in class - 1

wTx+b < -1+ ¢
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Two optimization problems: For the separable and non separable cases

-

wix+b < -1
For all i
=0
L] / L]
° ’ ° °
o/
° ° 7/ I, /7 ° °
// , // °
’
’ ’ ’
° 4 ° °
° // 7 // ° //
’ ’ s ® ’
’ ,' // ° ’
’ ’
, // ;7 ® . ° , //
’ , 4 7 /
’ , / N 4 ’
Vi . / / .
+9/26/14 .
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Where we are

Two optimization problems: For the separable and non separable cases
T n

. W
Min (wTw)/2 min, = +§C£i
Forall xin class + 1 Forall x;in class + 1

Wix+b = 1 wix+b = 1- g

. For all x;in class - 1
For all xinclass -1

T
Wix+b < -1+ ¢
wTx+b < -1 '
Forall i

=0

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

* The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

9/26/14 25
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Optimization Review:
Constrained Optimization

i 2
min, u

st.u=b

Case 1:

4
N , Vs Allowed min

Global min
Case 2: |

9/26/14 26
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Optimization Review:
Constrained Optimization with Lagrange

* When equal constraints T
* =>» optimize f(x), subject to g,(x)=0

* Method of Lagrange multipliers: convert to a
higher-dimensional problem

* Minimize

16+ 3 2g,(x)

° w.r.t. (xl...xn;ﬂ.l...ﬂk)

Introducing a Lagrange multiplier for each constraint
Construct the Lagrangian for the original optimization problem 2/

Optimization Review: Dual Problem

* Using dual problem Dual Problem

— Constrained optimization > A =argmin/(A)
unconstrained optimization g
* Need to change maximization
to minimization
. . Primal Problem
* Only valid when the original
optimization problem is .
convex/concave (strong subject to g(x) = ¢
duality)

x =argmax f(x)

[(A) = sup(f (x) + A(g(x) - ¢))

9/30/14
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An alternative (dual) representation
of the SVM QP

Min (WTw)/2 —‘

. . . For all xin class +1
» We will start with the linearly separable case orall xin class

T
« Instead of encoding the correct classification rule WiX+b = 1
and constraint we will use LaGrange multiplies to

; R For all xin class -1
encode it as part of the our minimization problem

wTx+b < -1
Why? l}
Min (WTw)/2
‘ (WTx+b)y; = 1 ‘

9/26/14 29
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An alternative (dual) representation
of the SVM QP

Min (WTw)/2 ‘

(WTx+b)y; = 1

» We will start with the linearly separable case

« Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:
min, x?
st.x=b
To

. y

Min, ., X2 +o(b-x) min, max, x> -ou(x-b)
st.a=0 \

9/26/14
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Lagrange multiplier for SVMs

Dual formulation Original formulation
T
min,,, max, = = e [(wx, + D)y, - 1] Min (wTw)/2
i T .
a,=0 Vi (Wixi+b)y; = 1

Using this new formulation we can derive w and b by
taking the derivative w.r.t. w and o leading to:

w= Eaixiyi
i

b=y, - WTx[. Set partial
derivatives to 0

for i st. a,>0

i

Finally, taking the derivative w.r.t. b we get:

Eaiyi =0

9/26/14
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Dual SVM - interpretation

- :
W = Zaixiyi

For o’ s that are
° not 0, no influence

9/26/14 32
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A Geometrical Interpretation

9/26/14
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Dual SVM for linearly separable

Substituting w into our target
function and using the
additional constraint we get:

Dual formulation

1 T
max,, Eai —Ezaiajyiiji X;
. =

EaiY1 =0

o, =0 Vi

9/26/14

case

T
. W W T
min, , — —2ai[(w x,+b)y,~1]
o, =0 Vi
w= :E:(Zixiyi
b= yi-_‘tixi

for i st. a;>0

:E: a;y; =0

34
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Dual SVM for linearly separable
case

Our dual target function: max, Eai _%Eaiajyiij{.{j
- T

Eaiyi

o =0

1

To evaluate a new sample x;
we need to compute:

=0

=

Dot product for all
training samples

Vi Dot product with

training samples

/

T T
WX, +b= Eoziyixi X;+b
i

Is this too much computational work (for
example when using transformation of the

data)?

9/26/14
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Dual formulation for non linearly
separable case

Dual target function:

1 T
max,, E a, ) E a,a;y,yX; X;
ij

i

~

EaiYi =0

C>a;=0,Vi

Hyperparameter C
should be tuned
through k-folds CV

\ The only difference is

that the o, s are now
bounded

/

9/26/14

To evaluate a new sample x;

we need to compute:

T T
w xj+b=2al.yixi X;+b

y .
/‘ i
/
/
/

/ This is very similar to the
/  optimization problem in the linear
/ separable case, except that there is
an upper bound C on o; now

Once again, a QP solver can be used
to find o

‘ 36
\
\
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Today

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case

v’ Optimization with dual form

‘\/ Nonlinear decision boundary

v Multiclass SVM
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Q Support Vector Machine (SVM) —‘

Classifying in 1-d

Can an SVM correctly What about this?
classify this data?

9/26/14 38

Yanjun Qi / UVA CS 4501-01-6501-07

-

9/30/14

19



Yanjun Qi / UVA CS 4501-01-6501-07

Classifying in 1-d

Can an SVM correctly
classify this data?

And now? (extend with polynomial basis )

/
X2 ’

9/26/14 39
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Non-linear SVMs: 2D

The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X:(XI’XZ) (P(X) :(X12’X22a\/2_X1X2)
V2 XX,
N :
° ° °
° . o o
P ®: x— (x) e
° ° ° °
* g L o °
[ ] ® ) [ ] [ ]
. e . ° X22
[ ] [ ] . [ ] ° o . . )
° 2 -, o
X 1 °

'Clvﬁl‘(glsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 0

9/30/14
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X},X,) o(x) :(X12,X22a‘/2_X1X2)

t P ﬁXlXZ 4
If data is mapped into sufficiently high dimension, then
%o samples will in general be linearly separable;
# N data points are in general separable in a space of N-1

o | dimensions or more!!!

'Clvﬁl‘(glsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt “
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A little bit theory:
Vapnik-Chervonenkis (VC) dimension

’7 If data is mapped into sufficiently high dimension, then samples
will in general be linearly separable;
N data points are in general separable in a space of N-1
dimensions or more!!!
* VC dimension of the set of oriented lines in R? is 3

— It can be shown that the VC dimension of the family of
oriented separating hyperplanes in RN is at least N+1

n g

O O

@ O O ([ ]
o o e ©
9/26/14 0 Py 0 PY 42
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Transformation of Inputs

» Possible problems
- High computation burden due to high-dimensionality T
- Many more parameters

* SVM solves these two issues simultaneously
—“Kernel tricks” for efficient computation

—Dual formulation only assigns parameters to samples, not
features

H@)
om)  pm) \0C)
o
Feature space

9/26/14 Input space

43
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Quadratic kernels

» While working in higher dimensions is maXaEai —Eaiajyiyp(xi)%(xj)
beneficial, it also increases our running time ' i
because of the dot product computation Ea[ya =0

i

* However, there is a neat trick we can use @ =0 Vi

« consider all quadratic terms for x4, X, ... X, e

number of
The v2 ! features in
ill T 2y, .
term wi : m+1 linear terms each vector
become Vox
clear in the B(x) =
next slide X .
: *— m quadratic terms
>
V2xx,
i ¥ m(m-1)/2 pairwise terms
’\E'xmflxm
9/26/14 44
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Dot product for quadratic kernels

many operations do we need for the dot product?
1 1
V2x, 2z,

Vs, iz,

O(x) d(z)=

x 7 = szizi + Exizziz + E sziszizj +1
: : i i i j=i+l
e % m m m(m-1)2  =~m?

V2xx, V222,

ﬁxm,lxm \EZ,,,,,Z,,,

9/26/14 45
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The kernel trick
How many operations do we need for the dot product?
D(x) D(z) = szizi + Exizziz + E Einij,»Zj +1

i i i =i+l
m m m(m-1)/2 =~ m?

However, we can obtain dramatic savings by noting that

(x.2)* +2(x.2) +1
(E xz) + E 2x,7,+1
E2xizi + Exizziz + E E 2xx,7,2; +1

O(x) D7) «(x"z+1)" = (x.z+1)

/

i j=i+l
We on!y need m So, if we define the kernel function as follows,
operations! there is no need to carry out ¢(.) explicitly

9/26/14 K(x,2)= (XTZ + 1)2 46

23



9/30/14

Yanjun Qi / UVA CS 4501-01-6501-07

Where we are

Our dual target function: To evaluate a new sample T
max , Eai _%Eaiajyiyjq)(Xi)T‘l)(Xj) we need to Compute:
| ) WT(D(XJ') +b= Eaiyiq)(xi)T q)(Xj) +b
Eaiyi =0 i
a; =0 Vi

mr operations where r
are the number of

mn? operations at each support vectors (0;>0)

iteration
So, if we define the kernel function as follows,
there is no need to carry out ¢(.) explicitly
T 2
9/26/14 K(x,2)=(x"z+1) 47

© Eric Xing @ CMU, 2006-2008

More examples of kernel functions

* Linear kernel (we've seenit)  K(x,x')=x"x'

* Polynomial kernel (we just saw an example)
K(x,x') = (1 + er,)p

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

2 )
In this case the feature space consists of functions and results in a non-
parametric classifier.

* Radial basis kernel

K(x,x") = exp(—;x—x’

Never represent features explicitly

4 Compute dot products in closed form

Very interesting theory — Reproducing Kernel Hilbert Spaces
O Not covered in detail here

24
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=

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

49

What if we have data from more than two

classes?

° ® ¢ all other data

classes

practice

9/26/14
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Multi-class classification with SVMs

.

* Most common solution: One vs. all

- create a classifier for each class against

° - for a new point use all classifiers and
P compare the margin for all selected

® ® Note that this is not necessarily valid
(] since this is not what we trained the
SVM for, but often works well in

9/30/14
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Handwritten digit recognition

o ]
O /|FHIM| 5|78
g

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error

Leﬁet: 768-192-30-10 unit MLP = 0.9% error

1999, SVM best (kernel machines, vision algorithms) a2 0.6% error

4

J
S

9/26/14 51
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Why do SVMs work?

N B

« If we are using huge features spaces (with kernels) how come we
are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care
about the support vectors and these are usually a small group of
samples

- The minimization (or the maximizing of the margin) function acts
as a sort of regularization term leading to reduced overfitting
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Software

+ Alist of SVM implementation can be found at
— http://www.kernel-machines.org/software.html

« Some implementation (such as LIBSVM) can handle
multi-class classification

« SVMLight is among one of the earliest implementation
of SVM

» Several Matlab toolboxes for SVM are also available
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