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Where are we ? =
Five major sections of this course

L Regression (supervised) —‘

i>EI Classification (supervised)
U Unsupervised models

U Learning theory

O Graphical models
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Where are we ? =
Three major sections for classification

* We can divide the Iar%e variety of classification —‘
approaches into roughly three major types

> 1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

2. Generative:
- build a generative statistical model

- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

9/26/14
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X X X .Y A Dataset
for binary

’7 classiﬁcatip_p_—‘

_———

Output as Binary
Class Label:
1 or-1

» Data/points/instances/examples/samples/records: [ rows ]
* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]
* Target/outcome/response/label/dependent variable: special
o/26/1scolumn to be predicted [ last column ]
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Today: Review & Practical Guide

Support Vector Machine (SVM) —‘
v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter

v’ Optimization to learn model parameters (w, b)

v Non linearly separable case

v’ Optimization with dual form

v Nonlinear decision boundary

v Practical Guide
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

* Learn a boundary that leads to the largest margin from points on both

sides
*2 PY o ’
V4
° / Why?
Y/
° ® 4 « Intuitive, ‘makes
’ sense’
/
/ 0
® o ’ P PY » Some theoretical
4 support
/
(] (] . .
v ° * Works well in practice
/
A [ )
/
, { ]
/
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When linearly Separable Case

* The decision boundary should be as far away from
the data of both classes as possible

s N
1. Correctly classifies all points
. 2. Maximizes the margin (or equivalently minimizes ww)
* o L J
..0 . .
. W is a p-dim
_ . o vector; b is a
| “g Class 1 scalar
T
w WX+b=1
| ] ‘e,
Class -1

wlix4+b=_—-1"
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Maximizing the margin:
observation-1

*| Observation 1: the vector w is orthogonal to the +1 plan}e

@
“@ Class 2

owlx+b=1
Class 1 ’

wlix4+b=_—-1"
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]

Maximizing the margi

_observation-2
S
et c\as X
pred! W Classify as +1 if wTx+b =1
N Classify as -1 if wix+b=<-1
WO 50 Undefined  if -1 <w™x+b <1
\NT‘/C\' - sS -
A dict c\a
\Nx,g-vb pre

» Observation 1: the vector w is orthogonal to the +1 and -1 planes

» Observation 2: if x* is a point on the +1 plane and x is the closest point
to x* on the -1 plane then

xt=Aw+Xx

Since w is orthogonal to both planes
we need to ‘travel’ some distance

along w to get from x* to x-
9/26/14 10
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Putting it together

+
oredict 2% \ )
el - WT X +b=+1
=0
WIRE « c1ass A =

=A \
\NT*'\"O P‘-ed\

wl (AW + x°) + b = +1
=
cwWT x*+ b =+1
wix +b +AwTw = +1
cwWIx +b=-1
=
Xt =Aw+ X

| =M -1+ AwTw = +1
. X"'_X' =

=

We can now define M in A= 2/wTw
terms of wand b

9/26/14 11
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Putting it together

o ¥
5 tc\as X
, predic
— + -
\NT)@—‘O"M g M= - x
\NT\/:\'D=0 \255 A =
_ et ©
\NT)@-‘O’A p"ed‘ct M=lAwl=Alwl= A w'w
. =
. + =
wl xt+b=+1 wTw 2

*Wix +b=-1 M=2 w'w =\/WTW
eX*=AW+ X

s xt-x|=M

e A =2/wTw

We can now define M in
terms of wand b
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Optimization Step
i.e. learning optimal parameter for SVM

A 2
<ot €\as°® M=
\N‘Y)Q\—‘O:'\')\ <
w—v‘o’o A
W c\ass ”

\NTﬁ“'b;A \"‘red"‘"t
'a o . Y
1. Correctly classifies all points

. 2. Maximizes the margin (or equivalently minimizes w'w
Min (wTw)/2 L oin (oreq y )

subject to the following constraints:

argmin Ei ' w?
w,b -

F Il xincl +1 ] .
orall xinciass subjectto Vx, € Drrain: y, (xi ° w+b) =1

wTx+b = 1

A total of n
For all xin class -1 constraints if

we have n
wTx+b < -1

input samples
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SVM as a QP problem

A
—xA -

\N‘Y )(‘\‘b -

' y\-\—‘o=0

. ict
\NT*'\"O’ A p‘-ed‘c

Min (wTw)/2

clasS A

subject to the following inequality

constraints:
For all xin class + 1

wTx+b = 1
For all xin class -1
wTx+b < -1

9/26/14

A total of n
constraints if
we have n
input samples

Yanjun Qi / UVA CS 4501-01-6501-07

R as | matrix, d as zero
vector, c as 0 value

!

T
vwow . u'Ru
min,, +d u+c
2

subject to n inequality constraints:
a, U, + a,l, + ...< b,

a, i+ a,i, +..<b

n
and k equivalency constraints:

gty + Ay olly + =D,

gy + Ay Uy + .= b

n+k| n+k
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Non linearly separable case

’ *Instead of minimizing the number of misclassified points we can
minimize the (relative) distance between these points and their —‘
correct plane

The new optimization problem is:

w'w
min,, +EC5i
2 i=1

subject to the following inequality
constraints:

+1 plane
/

For all x;in class + 1
T - g

wix+b = 1-g Atotal of n

Forall x;in class -1 el

wix+b < -1+ ¢

For all i
Another n
g=0 constraints

9/26/14
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Where we are

Two optimization problems: For the separable and non separable cases

T n
W W . W W
min,, min,, > +EC£i
2 im
For all xin class + 1 Forall x;in class + 1

WTx+b = 1 wix+b = 1- g

. For all x;in class - 1
For all xinclass -1

wTx+b < -1+ ¢

wTx+b < -1
Forall i
, =0 ,
L] L]
° / o ° /7
o/ o/
e o 7 d ’ e o 7 d ’
’ , ’ ° ’ , ’
’ , ’ ’ , ’
° 4 4 ’ ° ° 4 4 4 °
o 7/ , 4 e 7 4 ’
Vs , e 4 /7 ‘e
’ 7 4 ° / V4 / °
7 , /7 ’ ; 4
’ p ’ ’ P ’ ° °
7 /7 L] L] 7 / L] L]
4 ° 4 °
’ , 4 7 , 4
, , ’ , , /

V2 . 4 hd / . 4 hd
~9/26/14 g 8
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Today: Review & Practical Guide

O Support Vector Machine (SVM)

v’ Large Margin Linear Classifier

.

v’ Define Margin (M) in terms of model parameter

v’ Optimization to learn model parameters (w, b)

v Non linearly separable case
v’ Optimization with dual form
v Nonlinear decision boundary
v Practical Guide

9/26/14
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Two optimization problems: For the separable and non separable cases

T n

. W
Min (wTw)/2 min, = +§C£i
Forall xin class + 1 Forall x;in class + 1
wTx+b = 1 wix+b = 1- g

For all xinclass -1

T
Wix+b < -1+ ¢
wTx+b < -1 '
Forall i

g=0

For all x;in class - 1

-

* Instead of solving these QPs directly we will solve a dual

formulation of the SVM optimization problem

* The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our

lives easier (and the run time faster)

9/26/14
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Optimization Review:
Constrained Optimization

=

1
- '
min, u? N 'y Allowed min
U ~ /
st.uzb S - 7
il) Global min
Case 1: 1
| ’ .
N Ve Allowed min
N Vs
by
~
~—
i
b Global min
Case 2: }
1
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Optimization Review:
Constrained Optimization with Lagrange

* When equal constraints T
* =>» optimize f(x), subject to g,(x)=0

* Method of Lagrange multipliers: convert to a
higher-dimensional problem

* Minimize

16+ 3 2g,(x)

° w.r.t. (xl...xn;ﬂ.l...ﬂk)

Introducing a Lagrange multiplier for each constraint

9/26/14 Construct the Lagrangian for the original optimization problem 22

9/30/14
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Optimization Review: Dual Problem

* Using dual problem Dual Problem

— Constrained optimization > A" =argmin/(A)
unconstrained optimization g
* Need to change maximization
to minimization
Primal Problem
* Only valid when the original
optimization problem is
convex/concave (strong
duality)

x =argmax f(x)

X

subject to g(x) =¢

[(A) = sup(f (x) + A(g(x) - ¢))

Yanjun Qi / UVA CS 4501-01-6501-07

An alternative (dual) representation
for SVM QP

’ Here a. is the lagrange multiplier variable ‘ Min (WTw)/2

(WTx+b)y; = 1

» We will start with the linearly separable case

« Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:

min, x?
stx=b @

N
To
Min, , x? +o(b-x) min, max, x2-o(x-b)
st.a=0

9/26/14
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Lagrange multiplier for SVMs /
Linearly Separable Case

/7/ Dual formulation \ Original formulation
W \

T
min,, , max,, w_ Eai[(wai +b)y, —1] Min (WTw)/2

2
(WT;*b)y; = 1

a; =0 Vi

Using this new formulation we can derive w and b by
taking the derivative w.r.t. w and o leading to:

w= Eaixiyi
:

b=y, —WTxi Set partial
derivatives to 0

for i st. a,>0

i

Finally, taking the derivative w.r.t. b we get:

Eaiyi =0
i
9/26/14 / 25
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A Geometrical Interpretation

w = Eaixl.yi—‘

For those o that
are 0, no influence

9/26/14 26

13



Yanjun Qi / UVA CS 4501-01-6501-07

Dual SVM for linearly separable case

T
T S lw i + by, - 1]

Substituting w into our target min,,, 2
function and using the .
additional constraint we get: ;=0 Vi

ﬁual formulation \ v Za,xiy,-

1 i b=y, -w'x,
max., Eai _Ezaiani)’in X; ' !
5 i

for i st. a;>0

i

EaiYi=0 Eaiyi=0
inzO Vi J |

Easier than original QP, a QP solver can be used to find o,
9/26/14 27
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Dual SVM for linearly separable case

Our dual target function: max, Eai _%EaiajyiijiT<j
- T

Eogyi =0 Dot product among all
i training samples

a, =0 Vi Dot product of test sample
with all training samples
To evaluate a new sample x; /
we need to compute:

T T
WX, +b= Eaiyixi X;+b
i

9/26/14 28
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1 T
max,, E Q, ) E a0y X X,
i ij

Dual target function: \

Ea'Yi =0

- ! Hyperparameter C
! ) should be tuned

C>aq;= 0,Vi through k-folds CV

\ The only difference is

that the o, s are now

bounded /

9/26/14
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Dual formulation for
non linearly separable case

To evaluate a new sample x;

we need to compute:

T T
WX, +b=20{iyixi X;+b
i

This is very similar to the
optimization problem in the linear
separable case, except that there is
an upper bound C on o; now

Once again, a QP solver can be used
to find o

29

v’ Practical Guide

9/26/14

v Non linearly separable case
v’ Optimization with dual form
m/ Nonlinear decision boundary
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Today: Review & Practical Guide

O Support Vector Machine (SVM) —‘

v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

30
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Classifying in 1-d

=

Can an SVM correctly
classify this data?

What about this?

9/26/14 31
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Classifying in 1-d

Can an SVM correctly

And now? (extend with polynomial basis )
classify this data?

/
X2 ’

9/26/14 32

9/30/14

16



Yanjun Qi / UVA CS 4501-01-6501-07

RECAP: Polynomial regression

For example, ¢p(z) = [1,z,x

Y

9/26/14

’]

tL,_)I/‘: ¢lC><) ©
T Q,+X0, +x191

33
Dr. Nando de Freitas’s tutorial slide
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X1,X,)
e e
® o
e
H ]
® e
R ) L4
°

'Clvﬁl‘(glsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

o(x) :(X12,X22a‘/2_X1X2)

V2 XX,
[ ]
[
[
[
[ J
[ ]
b © - Y
Y [ ] [ ]
° X22
¢ o o [ ] ° ®
[ ]

34
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X},X,) o(x) :(X12>X22a‘/2_X1X2)

t P ﬁXlXZ 4
If data is mapped into sufficiently high dimension, then
%o samples will in general be linearly separable;
# N data points are in general separable in a space of N-1

o | dimensions or more!!!

?/ﬁfglsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 35
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A little bit theory:
Vapnik-Chervonenkis (VC) dimension

[7 If data is mapped into sufficiently high dimension, then samples
will in general be linearly separable;
N data points are in general separable in a space of N-1
dimensions or more!!!
* VC dimension of the set of oriented lines in R? is 3

— It can be shown that the VC dimension of the family of
oriented separating hyperplanes in RN-!is at least N

]

O [ ]

@ O O ([ ]
o o e o
9/26/14 O ) o) ) 36
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Transformation of Inputs

» Possible problems
- High computation burden due to high-dimensionality

- Many more parameters
» SVM solves these two issues simultaneously
—“Kernel tricks” for efficient computation

—Dual formulation only assigns parameters to samples,
not features

@)
) om) \9©)

9/26/14 Input Space Feature space 37
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“Kernel tricks” for efficient computation
=» e.g. Quadratic kernels
« While working in higher dimensions is maxaza,- —zaia,yiyjq’(xi)T‘I’(Xj)

beneficial, it also increases our running time
because of the dot product computation Eaiyi =0

i

* However, there is a neat trick we can use a =0 Vi

« consider all quadratic terms for x4, X, ... X, e

number of

The v2 ! features in
term will [ ﬁ:x' m+1 linear terms each vector
become Vox
clear in the D(x) =
= il Y “—— m quadratic terms [K(X,z) = q:(x)ch(z%

wﬁx,xz

¢ m(m-1)/2 pairwise terms
’\E'xmflxm
9/26/14 38
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Dot product for quadratic kernels

many operations do we need for the dot product?
1 1
Jax, 2z,

D) B(2)=

@ 2 = E2xizi + Exfzf + E Einszizj +1

: : i i i jeitl

2 _!Z

K W m m m(m-1)2  =~m?
ﬁxlxz \EZIZZ ( T \

; : V((x,z) = D(x) <I>(z1
ﬁxm—lxm ﬁszlzm

9/26/14 39
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The kernel trick

How many operations do we need for the dot product?
K(x,z) = P(x) O
D(x) D(z) = Ele.z, + Exl.zz,.2 + E Einszizj +1 t (x,2) = (x)’ (z)

i j=i+l

m m m(m-1)/2 =~ m?

However, we can obtain dramatic savings by noting that

(x.2)" +2(x.2)+1
(Exizl.)2 + E2x,.zl. +1
E2xl.zl. + Exfzf + E E 2x,x,2,2; +1

O(x) D7) «(x"z+1)" = (x.z+1)

/

i j=i+l
We onl_y need m So, if we define the kernel function as follows,
operations! there is no need to carry out ¢(.) explicitly

9/26/14 K(x,2)= (XTZ + 1)2 40
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Where we are (x9=2®'2@)

1 we need to compute:
max,, Eai —Ezaiajyiyjl((xi,xj)
i ij

Eaiyi =0

o =0 Vi

qu)(xj)+b = EaiyiK(xi,xj)+b

mr operations where r
are the number of

mn? operations at each support vectors (0;>0)

iteration
So, if we define the kernel function as follows,
there is no need to carry out ¢(.) explicitly
T 2
9/26/14 K(X,Z) = (x I+ 1) a1
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf Yanjun Qi / UVA CS 4501-01-6501-07

More examples of kernel functions

o linear: K(x;,x;) = x7x;.

e polynomial: K(x;,x;) = (yx:7x; +71)%, v > 0.

e radial basis function (RBF): K (x;,%;) = exp(—7||x; — x;|*), 7 > 0.
e sigmoid: K (x;,x;) = tanh(yx;"x; + 7).

Here, 7, r, and d are kernel parameters.

Never represent features explicitly

4 Compute dot products in closed form

Very interesting theory — Reproducing Kernel Hilbert Spaces
O Not covered in detail here

K(x;,x;) = ¢(x;)Td(x;) is called the kernel function
9/26/14

4
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Why do SVMs work?

QO If we are using huge features spaces (with kernelj)‘
how come we are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care
about the support vectors and these are usually a small group of
samples

- The minimization (or the maximizing of the margin) function acts
as a sort of regularization term leading to reduced overfitting

9/26/14 43
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Today: Review & Practical Guide

O Support Vector Machine (SVM) —‘

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case

v’ Optimization with dual form

v Nonlinear decision boundary

-\/ Practical Guide
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Software

+ Alist of SVM implementation can be found at —‘

— http://www.kernel-machines.org/software.html

« Some implementation (such as LIBSVM) can handle
multi-class classification

« SVMLight is among one of the earliest implementation
of SVM

» Several Matlab toolboxes for SVM are also available

9/26/14 45
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Practical Guide to SVM

* From authors of as LIBSVM: —‘

— A Practical Guide to Support Vector Classification
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin, 2003-2010

— http://www.csie.ntu.edu.tw/~cjlin/papers/guide/

guide.pdf

9/26/14 46
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LIBSVM

e http://www.csie.ntu.edu.tw/~cjlin/libsvm/ —‘
v'Developed by Chih-Jen Lin etc.
v'Tools for Support Vector classification

v'Also support multi-class classification
v'C++/Java/Python/Matlab/Perl wrappers
v'Linux/UNIX/Windows

v'SMO implementation, fast!!!

A Practical Guide to Support Vector
Classification

(a) Data file formats for LIBSVM

* Training.dat —‘

+1 1:0.708333 2:1 3:1 4:-0.320755
-11:0.583333 2:-1 4:-0.603774 5:1

+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-11:0.458333 2:1 3:1 4:-0.358491 5:0.374429

* Testing.dat

9/30/14
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(b) Feature Preprocessing

*| (1) Categorical Feature —‘

— Recommend using m numbers to represent an m-
category attribute.

— Only one of the m numbers is one, and others are zero.

— For example, a three-category attribute such as {red,
green, blue} can be represented as (0,0,1), (0,1,0), and
(1,0,0)

A Practical Guide to Support Vector
49

9/26/14 Classification
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Feature Preprocessing

m) Scaling before applying SVM is very —‘
important
— to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges.
— to avoid numerical difficulties during the
calculation

— Recommend linearly scaling each attribute to the
range [1, +1] or [0, 1].

A Practical Guide to Support Vector
50

9/26/14 Classification
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Of course we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
(—10,+410] to [—1,+1]. If the first attribute of testing data lies in the range [—11, +8],
we must scale the testing data to [—1.1,40.8]. See Appendix B for some real examples.

If training and testing sets are separately scaled to [0, 1], the resulting accur;is
lower than 70%.

$ ../svm-scale -1 O svmguide4 > svmguide4.scale

$ ../svm-scale -1 O svmguided4.t > svmguided.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)

Using the same scaling factors for training and testing sets, we obtain much better
accuracy.

$ ../svm-scale -1 0 -s range4 svmguide4 > svmguided.scale
$ ../svm-scale -r range4 svmguide4.t > svmguided.t.scale
$ python easy.py svmguided.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)

Yanjun Qi / UVA CS 4501-01-6501-07

Feature Preprocessing

’-7(3) missing value —‘

— Very very tricky !
) — Easy way: to substitute the missing values by the
mean value of the variable

— A little bit harder way: imputation using nearest
neighbors

— Even more complex: e.g. EM based (beyond the
scope)

A Practical Guide to Support Vector
52
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(c) Model Selection

Our goal: find the model M which minimizes the test error:
A
test error

error

training error

model complexity

9/26/14 53
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RECAP: Overfitting and underfitting
during regression models

| B

y=0,+0x Y =0y + O, + O,x° y=2j=09jx]
Generalisation: learn function /
hypothesis from past data in order K-fold Cross
to “explain”, “predict”, “model” or Validation !!!!

o014 “control” new data examples

V]

27
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(c) Model Selection (e.g. for linear kernel)

ear: — xT
e linear: K(x;,X;) = X X;.

Select the

9/26/14

55
(c) Training data and a better classifier (d) Applying a better classifier on testing data
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(c) Model Selection

l— B
e radial basis function (RBF): K (xi,x;) = exp(—7||x: — x;]°), 7 > 0.

two parameters for an RBF kernel: C' and 7

e polynomial: K(x;,x;) = (yx;7x; +7)%, v > 0.

Three parameters for a polynomial kernel

A Practical Guide to Support Vector
56
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(d) Pipeline Procedures

5(1) train / test —‘

9/26/14

(2) k-folds cross validation

(3) k-CV on train to choose
hyperparameter / then test

57

training
dataset

test
dataset

9/2/14
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Evaluation Choice-I:
Train and Test

target/class
}
: Training dataset
B model consists of input-
i learn S output pairs
B

o2 BECS N BECS B BRSNS )
el |m|m| o
=
<
)
=2
=
©
=
o
B

apply
model

Measure Loss on pair

f(x,) > (Jix), )

58

9/30/14

29



Yanjun Qi / UVA CS 4501-01-6501-07

Evaluation Choice-I1I:
Cross Validation

e Problem: don’t have enough data to set aside a
test set
e Solution: Each data point is used both as train
and test
e Common types:
-K-fold cross-validation (e.g. K=5, K=10)
-2-fold cross-validation
-Leave-one-out cross-validation (LOOCV)

A good practice is : to random shuffle all
training sample before splitting

9/2/14

Why Maximum Margin for SVM ?

1. Intuitively this feels safest.
. denotes +1 2. If we’ ve made a small error in the
chotes location of the boundary (it’ s been jolted
in its perpendicular direction) this gives us

least chance of causing a
° ° misclassification.

o ° 3. LOOCYV is easy since the model is

denotes -1

T~ ———%
Support Vectors immune to removal of any non-support-
are those vector datapoints.
datapoints that the

There’ s some theory (using VC
dimension) that is related to (but not the
same as) the proposition that this is a good
thing.

margin pushes up
against

Empirically it works very very well.

Copyright © 2001, 2003, Andrew
W. Moore

9/30/14
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Many beginners use the following procedure now: —‘emn@/UVAcs 450101650107
e Transform data to the format of an SVM package
e Randomly try a few kernels and parameters

We propose that beginners try the following procedure first:

e Transform data to the format of an SVM package

solution

e Conduct simple scaling on the data For HW2-Q2

e Consider the RBF kernel K (x,y) = e 7IxI’
e Use cross-validation to find the best parameter C' and «

e Use the best parameter C' and + to train the whole training set®

Evaluation Choice-IIT A Practical Guide to Support Vector
61

012618 'Test Classification

= SVYM for Dummies

File  Run
Training File Scalar - Grid
Teainat
Tast Fila Scak > Prad

Running ~/libsvm-2 36d/svm—predict impA@12792.8 Ampi@13338.10 AmpA@13338.12
Accuracy = 87.8049% (36/41) (classification)
Mean squared error = 0.487805 (regression)

Squared correlation coefficient = nan (regression) A Practical Guide to Support Vector

Classification
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Today: Review & Practical Guide

U Support Vector Machine (SVM) T
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
v Optimization with dual form
v Nonlinear decision boundary

v’ Practical Guide
v’ File format / LIBSVM
v’ Feature preprocsssing
v/ Model selection

v Pipeline procedure
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