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Where are we ? =
Five major sections of this course

L Regression (supervised) —‘

ﬁEI Classification (supervised)
U Unsupervised models

U Learning theory

O Graphical models
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Where are we ? =
Three major sections for classification

* We can divide the Iar%e variety of classification —‘
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors
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Today : Probability Review

;The big picture T

* Events and Event spaces
* Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.
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The Big Picture
Probability —‘
Data
S—

Estimation / learning / Inference / Data mining

But how to specify a model?

Model
i.e. Data generating
process
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Probability as frequency

* Consider the following questions: —‘

— 1. What is the probability that when | flip a coin

itis “heads™? \ya can count & ~1/2
—2.why?

— 3. What is the probability of Blue Ridge
Mountains to have an erupting volcano in the

near future ? =» could not count

Message: The frequentist view is very useful, but it seems that we
also use domain knowledge to come up with probabilities.
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Probability as a measure of
uncertainty

*/ Imagine we are throwing o!
darts at a wall of size 1x1
and that all darts are
guaranteed to fall within
this 1x1 wall.

* What is the probability
that a dart will hit the
shaded area? 9,0
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Probability as a measure of
uncertainty

mobabi/ity isa —‘

measure of certainty of
an event taking place.

=

* i.e. in the example, we sz
were measuring the '
chances of hitting the Its areais 1
shaded area. prob = #RedBoxes

# Boxes
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Today : Probability Review

’7-The big picture T

» Sample space, Event and Event spaces
* Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.
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Probability

Probability is the formal study of the laws of chance. Probability
allows us to manage uncertainty.

The sample space is the set of all outcomes. For example, for a die we

have 6 outcomes: Qdie = {1,2,3,4,5;6}

c INSS0S

The elements of Q are called
elementary events.

o £2coin = {H'T} N

Elementary Event “Throw a 2”
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Probability

* Probability allows us to measure many events.—‘

» The events are subsets of the sample space
Q. For example, for a die we may consider the

following events: e.qg.,
GREATER = {5, 6}

{2, 4, 6}

 Assign probabilities to these events: e.g.,

P(EVEN) = 1/2

10/02/14 . . . 1
Adapt from Prof. Nando de Freitas’s review slides
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Sample space and Events

e (2 :Sample Space, result of an experimeﬂ
* If you toss a coin twice@:
HHHT, TH,TT
{ ’ ’ ’ } Sl"to%.m(p’ {H,T]'
* Event: a subset of Q2

* First toss is head = {HH,HT}
e S: event space, a set of events:
e Contains the empty event and Q

10/02/14 12
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Axioms for Probability

* Defined over (R,5) s.t. _‘
e 1>=P(at)>=0forallain$
e P(Q)=1
* If A, B are disjoint, then
* P(AUB) =p(A) + p(B)

¢ P(Q) = EP(BI.) oW \ )BS

10/02/14 f< B
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OR operation for Probability

* We can deduce other axioms from the above ones _‘

* Ex: P(A U B) for non-disjoint events
P(A or B) = P(A) + P(B) - P(A and B)
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Theorems from the Axioms

e 0<=P(A) <=1, P(True) = 1, P(False) =0

e P(AorB)=P(A) + P(B) - P(A and B)
From these we can prove:
P(not A) = P(~A) = 1-P(A)

(o
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Another important theorem
e 0<=P(A) <=1, P(True) = 1, P(False) = 0
e P(AorB)=P(A) + P(B) - P(A and B) P(A)= P(AHJZ)
From these we can prove: -~ g U“B))
PCA) = PAAB) +PAA~B) (AL (
= p(ANB)+P(An$
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Conditional

Probability
@ Z P(A given B) = P(A and B) /P(m

That is, in the frequentist interpretation, we calculate the ratio of the
number of times both A and B occurred and divide it by the number of
times B occurred.

For short we write:P(AIB) = P(AB)/IP(B), or P(AB)=P(AIB)P(B),
where P(AIB) is the conditional probability, P(AB) is the joint, and
P(B) is the marginal.

\_\——'

If we have more events, we use the chain rule:

fromlg of. Nando de

Freitas{%Z{’lélview P(ABC) = P(AIBC) @IC) P(C) v
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Conditional Probability / Chain Rule
* More ways to write out chain rule ... —‘

P(A,B) = p(B|A)p(A)
P(A,B) = p(A|B)p(B)

10/02/14 18
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Rule of total probability” "
=> Marginalization

EP AIB WHY ???
P(A) F(/-\(\dZ)— P(A/\(BUBz UBE))

= AERNBOU (AnB) U (A6 DY

= PLAANB)+ P(ARB2) + - ~tP(AMK)
= B)P(ALE) T PIEBARY+ e
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Today : Probability Review

ﬁThe big picture —‘
* [Events and Event spaces
» » Random vaviables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.
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From Events to Random Variable

| Concise way of specifying attributes of outcomes —‘
*' Modeling students (Grade and Intelligence):
. @(éll possible students)(sample space)
* What are@vents (subset of sample space)
* Grade_A = all students with grade A
* Grade_B = all students with grade B
* HardWorking_Yes = ... who works hard
* Very cumbersome

. Need@that maps from Q to an attribute space T.

* P(H=YES) = P({student € Q2 : H(student) = YES})

10/02/14 R\/ 21
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Random Variables (RV)
M

’g;,: hardworking

P(H = Yes) = P( {all students who is working hard on the course})

10/02/14 22
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Notation Digression

is shorthand forL(A_irE’e_)/ —‘

e P(~A) is shorthand for P(A=false)

e Same notation applies to other binary RVs:
P(Gender=M), P(Gender=F)

e Same notation applies to multivalued RVs:

P(Maj istory), P(Age=19), P(Q=m
. @1 %r case Iéﬂers/nan@/anaﬁres,
lower case letters/names for values
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Discrete Random Variables

 Random variables@ which may take on om
a countable number of distinct values

* XisaRV with if it can take on exactly one
_—_——

value out of {x,, ..., x;}

)
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Probability of Discrete RV

mobability mass function (pmf): —‘

* Easy facts about pmf X2/
"5 P(X=x)=1 Ew
" PX = x0X=x) :@f.
= P(X=x,UX=x)=P(X= )@ (x=x) ifi#D)

= P(X=x,UX>= xzu...ux x) D
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Today : Probability Review

* The big picture T

* Events and Event spaces
* Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.
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Conditional Probability
[ ﬁ
P(X=x|Y =_ P}

X X=x
Plx|y)= p(x,y)

- pW») @ -
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[Marginalization]

* We know p(X, Y), what is P(X=x)? —‘

* We can use the law of total probability, why?
Botik b Daw

plx)=3 Plx,y)

.nfnl. v \Zd‘, pule

—EP P(x|y)

10/02/14 28

10/3/14

14



Yanjun Qi / UVA CS 4501-01-6501-07

Marginalization Cont.

* Another example —‘

A= SP) L

= EP(y,Z P(x|‘2/,_2)
z,y
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Bayes Rule

* We know that P(rain) = 0.5

* If we also know that the grass is wet, then
how this affects our belief about whether it
rains or not?

P(rain)P(wet | rain),

P(rain | wet) =
(rain | wet P(wer)

P(x)P(y |
platy) - PO

10/02/14 30

10/3/14

15



10/3/14

Yanjun Qi / UVA CS 4501-01-6501-07

What we just did...

P(A~B) P(A|B) P(B)
P(B|A) = ----------- = e
P(A) P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

10/02/14
Copyright © Andrew W. Moore
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More General Forms of Bayes Rule

PO~ P(B| AP
= PBIAPA+PBI~HP~A)

P(B| ANX)P(ANX)
P(BAX)

P(BIA=a)P(A=gq,

EP(BIA =a)P(A=g,)

P(AIBAX)=

P(A=a |B)=

10/02/14 32
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Bayes Rule cont.

* You can condition on more variables

)= P(x|z)P(y|x,z)
P(y|z)

P(x | v,z
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Conditional Probability Example

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries:

chein Rele
Tt (5 =) P (Bo=v | 811
P(B,=r,B;,=r) = pl&i- (G=v]®
= 3 P ‘_2—'
- 3
~ L
- 2
10/02/14 Adapt from Prof. Nando de Freitas’s review slides
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Conditional Probability Example

What is the probability that th @r all drawn from the set {r,r,r,b}
will be red?

totad Prb- 7%
Using marginalization, P(B, =r) = P(B=Y, 6:=1)+P(B)=}, B,,; )

= P(Bi=r) P(Ba=r| B=D)* Plbi:b) PlBrst|81=1) G heinfl]
= -Z. v 2 3+ F 9,

2
%

\!
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Conditional Probability Example
=» Matrix Notation

* X_1:random variable representing first draw—‘
* X_2: random variable representing second draw

e X ==1 means “red I:Lall 0 mean “blue ball”
fvf\’e&
use the math notation: Xt { 0 1}

drawn from the set {r,r,r,b}
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Conditional Probability Example
=» Matrix Notation

. P(X,=0) = T rm:g} N
p

* P(X;=1)= . _

C P(X,=0[X,=0) = | "

* P(X,=1]X,=0) = :[wn%xwﬂF”‘z='a></=')

* P(X,=0|X;=1) = plxa=2 )’“’(‘” *‘;{X;-»;’x:—ll){xr

21| Xj=0) PlXrzo =

" PXELXE) = [:Zz:Iltro>§(x-io)+rfm—ob:3£m-l)}
Phaa=!|xi=0)  Phlazl|X=s) T Phe=1)

* > P(X,=0) [ ) P(Xz-D/XI‘J&/""}

« D P(X,=1) _,,_\,\_/
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Conditional Probability Example, ;,,

= Matrix Notation {4, "™
M T

We can obtain an expression for P(X,) easily using matrix notation:

‘ Ry X, ><L| X,

- © | o
I | o

L 3/1_‘ \/~1 _] = L 3 \/‘-f] 2/ \/3 1
— ——

Ty -,r""' | Q
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Conditional Probability Example

=» Matrix Notation
[ T

We can obtain an expression for P(X,) easily using matrix notation:

P(X)= 3 P(x,) P(X,IX,)
X,€{0,13

Ix2 241 \

T L
T6=n

1

i
M@= ) TG
(=0
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For short, we write this using vectors and a stochastic matrix:
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Today : Probability Review

* The big picture T

* Sample space, Event and Event spaces

* Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.
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