# UVA CS 4501 - 001 / 6501 - 007 Introduction to Machine Learning and Data Mining

Lecture 12: Probability and Statistics Review

Yanjun Qi / Jane

University of Virginia

Department of Computer Science

10/02/14

Yanjun Qi / UVA CS 4501-01-6501-07

## Where are we ? → Five major sections of this course

- ☐ Regression (supervised)
- Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

## Where are we ? → Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
  - directly estimate a decision rule/boundary
  - e.g., support vector machine, decision tree



- 2. Generative:
  - build a generative statistical model
  - e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
  - Use observation directly (no models)
  - e.g. K nearest neighbors

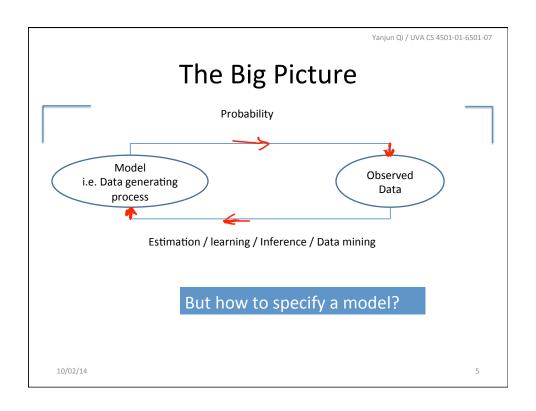
10/02/14

Yanjun Qi / UVA CS 4501-01-6501-07

## **Today:** Probability Review



- The big picture
- Events and Event spaces
- Random variables
- Joint probability, Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.



## Probability as frequency

- Consider the following questions:
  - 1. What is the probability that when I flip a coin it is "heads"?We can count → ~1/2
  - -2. why ?
  - 3. What is the probability of Blue Ridge
     Mountains to have an erupting volcano in the near future ? → could not count

**Message:** The frequentist view is very useful, but it seems that we also use domain knowledge to come up with probabilities.

10/02/14

Adapt from Prof. Nando de Freitas's review slides

#### Yanjun Qi / UVA CS 4501-01-6501-07 Probability as a measure of uncertainty

- Imagine we are throwing darts at a wall of size 1x1 and that all darts are guaranteed to fall within this 1x1 wall.
- What is the probability that a dart will hit the shaded area?

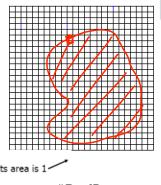
11

10/02/14

Adapt from Prof. Nando de Freitas's review slides

Yanjun Qi / UVA CS 4501-01-6501-07 Probability as a measure of uncertainty

- Probability is a measure of certainty of an event taking place.
- i.e. in the example, we were measuring the chances of hitting the shaded area.



10/02/14

Adapt from Prof. Nando de Freitas's review slides

#### **Today:** Probability Review



- · The big picture
- Sample space, Event and Event spaces
- Random variables
- Joint probability, Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.

10/02/14

Yanjun Qi / UVA CS 4501-01-6501-07

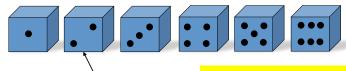
## **Probability**

**Probability** is the formal study of the laws of chance. Probability allows us to **manage uncertainty**.

The sample space is the set of all outcomes. For example, for a die we have 6 outcomes:

 $\Omega_{\text{die}} = \{1,2,3,4,5,6\}$ 

 $\Omega$ :



Elementary Event "Throw a 2"

The elements of  $\Omega$  are called elementary events.

10/02/14

$$\Omega_{\rm coin}$$
 = {H,T}

### **Probability**

- Probability allows us to measure many events.
- The events are subsets of the sample space  $\Omega$  . For example, for a die we may consider the following events: e.g.,

GREATER = 
$$\{5, 6\}$$
  
EVEN  $\neq \{2, 4, 6\}$ 

• Assign probabilities to these events: e.g.,

$$P(EVEN) = 1/2$$

10/02/14

Adapt from Prof. Nando de Freitas's review slides

11

Yanjun Qi / UVA CS 4501-01-6501-07

### Sample space and Events

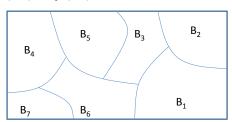
- $\Omega$  : Sample Space, result of an experiment
  - If you toss a coin twice Ω = {HH,HT,TH,TT}

Stossionia = {H, T}

- Event: a subset of  $\Omega$ 
  - First toss is head = {HH,HT}
- S: event space, a set of events:
  - Contains the empty event and  $\Omega$

## **Axioms for Probability**

- Defined over  $(\Omega,S)$  s.t.
  - 1 >=  $P(\alpha)$  >= 0 for all  $\alpha$  in S
  - $P(\Omega) = 1$
  - If A, B are disjoint, then
    - $P(A \cup B) = p(A) + p(B)$
- $P(\Omega) = \sum P(B_i)$



10/02/14

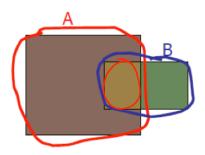
13

Yanjun Qi / UVA CS 4501-01-6501-07

## **OR** operation for Probability

- We can deduce other axioms from the above ones
  - Ex: P(A U B) for non-disjoint events

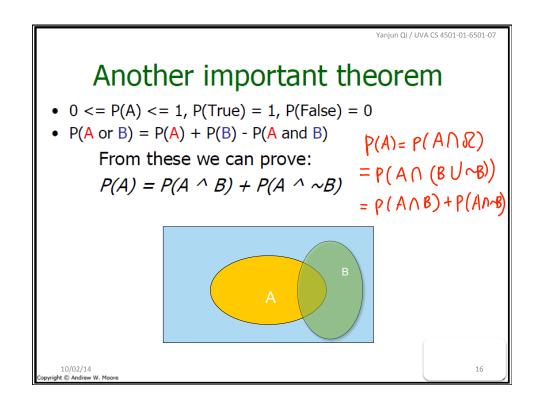
$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

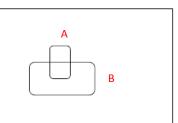


10/02/14

Theorems from the Axioms

•  $0 \le P(A) \le 1$ , P(True) = 1, P(False) = 0• P(A or B) = P(A) + P(B) - P(A and B)From these we can prove:  $P(not A) = P(\sim A) = 1 - P(A)$ 





Conditional

Yanjun Qi / UVA CS 4501-01-6501-07

Probability

 $P(A \ given \ B) = P(A \ and \ B) / P(B)$ 

That is, in the frequentist interpretation, we calculate the ratio of the number of times both A and B occurred and divide it by the number of times B occurred.

For short we write: P(A|B) = P(AB)/P(B); or P(AB)=P(A|B)P(B), where P(A|B) is the <u>conditional</u> probability, P(AB) is the <u>joint</u>, and P(B) is the <u>marginal</u>.

If we have more events, we use the chain rule:

from Prof. Nando de Freitas's review

P(ABC) = P(A|BC) P(B|C) P(C)

17

Yanjun Qi / UVA CS 4501-01-6501-07

#### Conditional Probability / Chain Rule

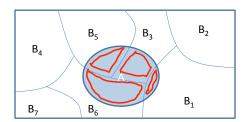
More ways to write out chain rule ...

$$P(A,B) = p(B|A)p(A)$$

$$P(A,B) = p(A|B)p(B)$$

10/02/14

# Rule of total probability => Marginalization



$$p(A) = \sum P(B_i)P(A | B_i)$$

$$p(A) = P(A \cap \mathcal{C}) = P(A \cap (B_1 \cup B_2 \dots \cup B_k))$$

$$= P((A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3) \dots \cup (A \cap B_k)$$

$$= P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_k)$$

$$= P(B_1)P(A | B_1) + P(B_2)P(A | B_2) + \dots + P(B_k)P(A | B_k)$$

Yanjun Qi / UVA CS 4501-01-6501-07

#### **Today:** Probability Review

The big picture

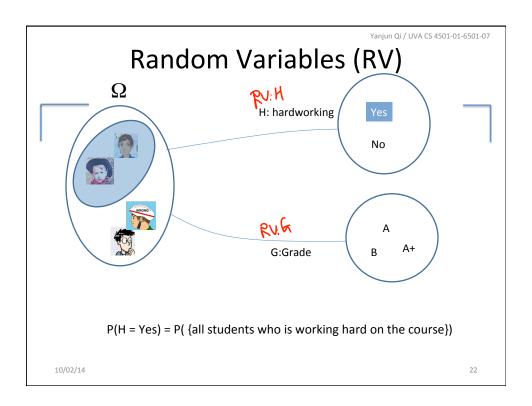
10/02/14

- Events and Event spaces
- Random variables
- Joint probability, Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.

#### From Events to Random Variable

- Concise way of specifying attributes of outcomes
- Modeling students (Grade and Intelligence):
  - $\Omega$ = all possible students (sample space)
  - What are events (subset of sample space)
    - Grade A = all students with grade A
    - Grade B = all students with grade B
    - HardWorking\_Yes = ... who works hard
  - Very cumbersome
  - Need "functions" that maps from  $\Omega$  to an attribute space T.
  - $P(H = YES) = P(\{student \in \Omega : H(student) = YES\})$

0/02/14



#### **Notation Digression**

- P(A) is shorthand for P(A=true)
- P(~A) is shorthand for P(A=false)
- Same notation applies to other binary RVs: P(Gender=M), P(Gender=F)
- Same notation applies to multivalued RVs:
   P(Major=history), P(Age=19), P(Q=c)
- Note: upper case letters/names for variables, lower case letters/names for values

10/02/14 23

Yanjun Qi / UVA CS 4501-01-6501-07

#### **Discrete Random Variables**

- Random variables (RVs) which may take on only a countable number of distinct values
- X is a RV with arity k if it can take on exactly one value out of  $\{x_1, ..., x_k\}$

#### Probability of Discrete RV

- Probability mass function (pmf):  $P(X = x_i)$
- Easy facts about pmf

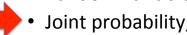
  - $P(X = x_i \cap X = x_j) = 0$  if  $(i \neq j)$
  - $P(X = x_i \cup X = x_j) = P(X = x_i) + P(X = x_j) \text{ if } i \neq j$   $P(X = x_1 \cup X = x_2 \cup ... \cup X = x_k) \neq 1$

10/02/14 25

Yanjun Qi / UVA CS 4501-01-6501-07

## **Today:** Probability Review

- · The big picture
- Events and Event spaces
- Random variables



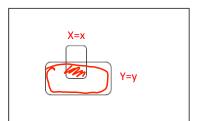
Joint probability, Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.



 $P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$ 

But we will always write it this way:

$$P(x \mid y) = \frac{p(x,y)}{p(y)}$$



Yanjun Qi / UVA CS 4501-01-6501-07

27

Yanjun Qi / UVA CS 4501-01-6501-07

10/02/14

## Marginalization

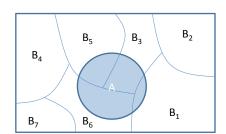
• We know p(X, Y), what is P(X=x)?

We can use the law of total probability, why?

total prob. Daw

$$p(x) = \sum_{y} P(x, y)$$

$$= \sum_{y} P(y)P(x \mid y)$$



## Marginalization Cont.

Another example

$$p(x) = \sum_{y,z} P(x,y,z)$$

$$= \sum_{z,y} P(y,z)P(x \mid y,z)$$
chain Rule

10/02/14 29

Yanjun Qi / UVA CS 4501-01-6501-07

## **Bayes Rule**

- We know that P(rain) = 0.5
  - If we also know that the grass is wet, then how this affects our belief about whether it rains or not?

$$P(rain \mid wet) = \frac{P(rain)P(wet \mid rain)}{P(wet)}$$

$$P(x \mid y) = \frac{P(x)P(y \mid x)}{P(y)}$$

10/02/14

## What we just did...

$$P(B|A) = \frac{P(A \land B)}{P(A)} = \frac{P(A|B) P(B)}{P(A)}$$

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418



10/02/14

Copyright © Andrew W. Moore

Yanjun Qi / UVA CS 4501-01-6501-07

## More General Forms of Bayes Rule

$$P(\underline{A}|\underline{B}) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

$$P(A = a_1 | B) = \frac{P(B | A = a_1)P(A = a_1)}{\sum_{i} P(B | A = a_i)P(A = a_i)}$$

10/02/14

## Bayes Rule cont.

You can condition on more variables

$$P(x \mid y, z) = \frac{P(x \mid z)P(y \mid x, z)}{P(y \mid z)}$$

10/02/14 33

Yanjun Qi / UVA CS 4501-01-6501-07

## Conditional Probability Example

Assume we have a dark box with 3 red balls and 1 blue ball. That is, we have the  $set \{r,r,r,b\}$ . What is the probability of drawing 2 red balls in the first 2 tries?

To int
$$P(B_1 = r, B_2 = r) = P(B_1 = r) P(B_2 = r) B_1 = r$$

$$= \frac{3}{4}, \frac{2}{3}$$

$$= \frac{1}{3}$$

10/02/14

Adapt from Prof. Nando de Freitas's review slides 34

#### Conditional Probability Example

What is the probability that the  $2^{nd}$  ball drawn from the **set**  $\{r,r,r,b\}$  will be red?

Using marginalization, 
$$P(B_2 = r) = P(B_2 = r, B_1 = r) + P(B_2 = r, B_7 = b)$$

$$= P(B_1 = r) P(B_2 = r | B_1 = r) + P(B_1 = b) P(B_2 = r | B_1 = b)$$

$$= \frac{3}{4} \cdot \frac{2}{3} + \frac{1}{4} \cdot 1$$

$$= \frac{3}{4} \cdot \frac{2}{3} + \frac{1}{4} \cdot 1$$

10/02/14 35

Yanjun Qi / UVA CS 4501-01-6501-07

## Conditional Probability Example → Matrix Notation

- X\_1: random variable representing first draw
- X\_2: random variable representing second draw
- X == 1 means "red ball", 0 mean "blue ball"

use the math notation:  $X \in \{0,1\}$ 

drawn from the set {r,r,r,b}

## Conditional Probability Example → Matrix Notation

• 
$$P(X_1=0) =$$

• 
$$P(X_2=0|X_1=0) =$$

• 
$$P(X_2=0 | X_1=0) =$$
  
•  $P(X_2=1 | X_1=0) =$   
•  $P(X_2=0 | X_1=1) =$ 

• 
$$P(X_2=0|X_1=1)=$$

• 
$$P(X_2=1 | X_1=1) =$$

• 
$$\rightarrow$$
 P(X<sub>2</sub>=0)

• 
$$\rightarrow$$
 P(X<sub>2</sub>=1)

10/02/14

$$\begin{aligned}
&\text{Ti}_{2} \left\{ \begin{array}{l} P(x_{2}=1) \\ P(x_{2}=0) \end{array} \right\} \\
&= \left[ \begin{array}{l} P(x_{2}=1) \\ P(x_{2}=0) \end{array} \right] + P(x_{2}=1, X_{1}=1) \\ P(x_{2}=0, X_{1}=0) + P(X_{2}=0, X_{1}=1) \end{array} \right] \\
&= \left[ \begin{array}{l} P(x_{2}=1 \mid x_{1}=0) \\ P(x_{2}=1 \mid x_{1}=0) \end{array} \right] P(x_{1}=0) + P(x_{2}=0 \mid x_{1}=1) P(x_{1}=1) \\ P(x_{2}=0 \mid x_{1}=0) P(x_{1}=0) + P(x_{2}=0 \mid x_{1}=1) P(x_{1}=1) \end{array} \right] \\
&= \left[ \begin{array}{l} P(x_{2}=1 \mid x_{1}=1) \\ P(x_{2}=0 \mid x_{1}=1) \end{array} \right] P(x_{2}=0 \mid x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \end{array} \right] P(x_{1}=0) \\
&= \left[ \begin{array}{l} P(x_{2}=1 \mid x_{1}=1) \\ P(x_{2}=0 \mid x_{1}=1) \end{array} \right] P(x_{2}=0 \mid x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \end{array} \right] P(x_{1}=0) \\
&= \left[ \begin{array}{l} P(x_{2}=1 \mid x_{1}=0) \\ P(x_{2}=0 \mid x_{1}=0) \end{array} \right] P(x_{1}=0) P(x_{1}=0) \\ P(x_{2}=0 \mid x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) P(x_{1}=0) \\ P(x_{1}=0) P($$

## Conditional Probability Example, Blue → Matrix Notation

We can obtain an expression for  $P(X_2)$  easily using matrix notation:

$$\begin{bmatrix}
3/4 & 1/4 \\
 & 1/4
\end{bmatrix} = \begin{bmatrix}
3/4 & 1/4 \\
 & 1/4
\end{bmatrix} \begin{bmatrix}
2/3 & 1/3 \\
 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
3/4 & 1/4 \\
 & 1/4
\end{bmatrix} \begin{bmatrix}
2/3 & 1/3 \\
 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
1 & 1/4
\end{bmatrix}$$

## Conditional Probability Example → Matrix Notation

We can obtain an expression for  $P(X_2)$  easily using matrix notation:

$$P(X_2) = \sum_{X_1 \in \{\diamond_1\}} P(X_1) P(X_2 | X_1)$$

For short, we write this using vectors and a stochastic matrix:

$$\prod_{i \in J} G = \prod_{i \in J} = \prod_{i \in J} = \prod_{i \in J} (i) = \sum_{i \in J} \prod_{i \in J} (i) G(i,i)$$

10/02/14

Adapt from Prof. Nando de Freitas's review slides 39

Yanjun Qi / UVA CS 4501-01-6501-07

#### **Today:** Probability Review

- The big picture
- Sample space, Event and Event spaces
- Random variables
- Joint probability, Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.

References

Prof. Andrew Moore's review tutorial
Prof. Nando de Freitas's review slides
Prof. Carlos Guestrin recitation slides