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Announcements: Schedule Change

* Midterm — rescheduled
— Oct. 30t / 3:35pm — 4:35pm

— Homework 4 is totally for sample midterm questions
— HW3 will be out next Monday, due on Oct 25t

— HWA4 will be out next Tuesday, due on Oct 29 (i.e. for a
good preparation for midterm. Solution will be released
before due time. )

— Grading of HW1 will be available to you this evening
— Solution of HW1 will be available this Wed

— Grading of HW2 will be available to you next week
— Solution of HW2 will be available next week

10/7/14
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Where are we ? =
Five major sections of this course

L Regression (supervised) —‘

i>EI Classification (supervised)
U Unsupervised models

U Learning theory

O Graphical models
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Where are we ? =
Three major sections for classification

* We can divide the Iar%e variety of classification —‘
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors
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Last Lecture Recap: Probability Review

The big picture “

* Events and Event spaces
* Random variables

* Joint probability distributions, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

* Structural properties
* Independence, conditional independence
* Mean and Variance
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The Big Picture
Probability
—_
v
Observed
Data
<
Estimation / learning / Inference / Data mining

But how to specify a model?

Model
i.e. Data generating
process
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mobabi/ity isa —‘

measure of certainty of
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Probability as a measure of
uncertainty

an event taking place. ARG RR RN
* i.e. in the example, we sz
were measuring the '
chances of hitting the Its areais 1
shaded area. prob = *RedBoxes
# Boxes
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Adapt from Prof. Nando de Freitas’s review slides

Yanjun Qi / UVA CS 4501-01-6501-07

e.g. Coin Flips

mu flip a coin —‘

— Head with probability 0.5

* You flip 100 coins
— How many heads would you expect

10/7/14
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e.g. Coin Flips cont.

mu flip a coin —‘

— Head with probability p
— Binary random variable
— Bernoulli trial with success probability p
* You flip k coins
— How many heads would you expect
— Number of heads X: discrete random variable
— Binomial distribution with parameters k and p
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Discrete Random Variables

e Random variables (RVs) which may take on
only a countable number of distinct values

— E.g. the total number of heads X you get if you flip
100 coins

* Xis a RV with arity k if it can take on exactly
one value out of {xl,...,xk

— E.g. the possible values that X can take on are O, 1,
2,.., 100

10/7/14
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Probability of Discrete RV

mobability mass function (pmf): —‘

* Easy facts about pmf X2/
"5 P(X=x)=1 Ew
" PX = x0X=x) :@f.
= P(X=x,UX=x)=P(X= )@ (x=x) ifi#D)

= P(X=x,UX>= xzu...ux x) D
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Common Distributions

mniform X~U[1,...,N] —‘

— X takes values 1, 2, ..., N

- P(X=i)=l/N

— E.g. picking balls of different colors from a box
* Binomial X: Bin(n,p)

— X takes values 0, 1, ..., n

— P(X=i)= ’: p'(1-p)
— E.g. coin flips

n—i

10/7/14
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Coin Flips of Two Persons

* Your friend and you both flip coins —‘

— Head with probability 0.5
— You flip 50 times; your friend flip 100 times
— How many heads will both of you get
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Joint Distribution

* Given two discrete RVs X and Y, their joint —‘
distribution is the distribution of X and Y
together

— E.g. P(You get 21 heads AND you friend get 70
heads)

| “Ee Y Y P(X=xNY=y)=l

50 %100 _
E . E ‘ P(You get i heads AND your friend get j heads) =1
i=0 j=0
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Conditional Probability

. P(X = x|Y = y)is the probability of X = x, given—‘
the occurrence of Y =y

— E.g. you get 0 heads, given that your friend gets 61
heads

" plsey ) P
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Conditional Probability

events
— XW
P(X = x|Y J

=_ P

(x,)
P(| ) p\x,y

-10T r() @ -
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Law of Total Probability

* Given two discrete RVs X and Y, which take
values in{xl,m,xm}and {yl""’yn}' We have

P(X=x)= Y P(X=xnY=y,)

Y=y (Y =y;)

2
2

P(X-=x,

J

10/7/14
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B, /B | B
Marginalization | »
’7 37 \ Be | Bl—‘

Marginal Probability Joint Probability

\
P(X=x)=Y P(X=xNY=y,
(X=)= 3 X =AY =)

=E.P(X/=xi Y=y P(Y =)

] \
Conditional Probability ~ Marginal Probability
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Bayes Rule

e XandY are discrete RVs... —‘

P(X=xNY=y)
P(Y=y)

P(X=x|Y=y)=

!

P(Y =y [X=x)P(X=x)

EkP(Y = y;[X =5 )P(X =x,)

P(X=x]Y=y,)-

10/7/14
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Today : Naive Bayes Classifier

s‘/ Probability review

= Structural properties, i.e., Independence,
conditional independence

v Naive Bayes Classifier
= Spam email classification

10/7/14

10/9/14
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Independent RVs

 Intuition: X and Y are independent means that—‘

X =x neither makes it more or less probable

* Definition: X and Y are independent iff
P(X=xNY=y)=P(X=x)P(Y=y)
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More on Independence

’.7P(X=xﬂY=y)=P(X=X)P(Y=)’) —‘
4,,,»—"""""""""~\-\\‘\\\-\\\-“\5\5\"““‘--,

P(X=x|Y=y)=P(X=x) P(Y=y[X=x)=P(Y=y

* E.g. no matter how many heads you get, your
friend will not be affected, and vice versa

10/7/14
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More on Independence

* Xis independent of Y means that knowing Y
does not change our belief about X.

* P(X]Y=y) = P(X)
* P(X=x, Y=y) = P(X=x) P(Y=y)

* The above should hold for all x;, y,
* Itis symmetric and writtenas X LY

XLY
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Conditionally Independent RVs

* Intuition: X and Y are conditionally —‘
independent given Z means that once Z is
known, the value of X does not add any
additional information about Y

» Definition: X and Y are conditionally
independent given Z iff

P(X=xNY=y|Z=2)=P(X=x|Z=z)P(Y=y|Z=2)

10/7/14 X J— Y | Z

10/9/14
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More on Conditional Independence

| B

P(X=xNY=y|Z=z)=P(X=x|Z=z)P(Y=y[Z=2z]

10/7/14
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Today : Naive Bayes Classifier

v’ Probability review

= Structural properties, i.e., Independence,
conditional independence

‘ v" Naive Bayes Classifier

= Spam email classification

10/7/14

10/9/14
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Where are we ? =
Three major sections for classification

* We can divide the Iar%e variety of classification —‘
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors
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X, X, X, C

A Dataset for

’7 classiﬁcation—‘

Output as Discrete
Class Label
Cc.,C, ...,C

—

» Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special
10/7712column to be predicted [ last column ]

10/9/14
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Bayes classifiers

* Treat each attribute and class label as random
variables.

* Given a sample x with attributes ( x;, x,, ..., X, ):
— Goal is to predict class C.
— Specifically, we want to find the value of C, that
maximizes p( C; | Xq, X, ..., X, ).
* Can we estimate p(C; [x) = p( C; | x;, X5, ..., X;,)

directly from data?

10/7/14
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Bayes classifiers
=» MAP classification rule

» Establishing a probabilistic model for cIassificatim

=>» MAP classification rule
— MAP: Maximum A Posterior
— Assign x to ¢* if

—— o mm mm mm mm = omm omm w

—— wm mm mm mm mm mm mm = owm omm wf

10/7/14 Adapt from Prof. Ke Chen NB slides

10/9/14
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Review: Bayesian Rule

e Prior, conditional and marginal probability

— Prior probability: P(C) P(C.), P(C,), ..., P(C,)
Likelihood (through a generative model): P(X/C)
Evidence (marginal prob. of sample ): P(X)
Posterior probability: P(C1X) P(C,|x), P(C,|x), ..., P(C,|x)
e Bayesian Rule

PX/C)P(C kel '
{P(C IX) = ( )P( )] Posterior < szellho'od x Prior
P(X) Evidence
10/7/14 Adapt from Prof. Ke Chen NB slides
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Bayes Classification Rule
e Establishing a probabilistic model for classification

— (1) Discriminative model

‘P(C/X) C=c,c, X =(X,,-X,)

P(c,Ix) P(c,1x) P(c, Ix)

(A AL

Discriminative
Probabilistic Classifier

X = (X%, ", X,,)
10/7/14 Adapt from Prof. Ke Chen NB slides

10/9/14
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Bayes Classification Rule

tablishing a probabilistic model for classification (cont:
— (2) Generative model

P(X/C) C=C1,"',CL,X =(X]7.“9Xp)

P(xlc)) P(xlc,) P(xlc,;)
1
Generative Generative Generative
Probabilistic Model Probabilistic Model ... Probabilistic Model
for Class 1 for Class 2 for Class L
I I eeoe I I I eeoe I I I eeoe I
X X X, X1 X Xy X X X

X= (xlsxz’“'9xp)

10/7/14 Adapt from Prof. Ke Chen NB slides
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Bayes Classification Rule

. P classification rule
— MAP: Maximum A Posterior
— Assign x to c*if

|rP(C=C*|X=x)>P(C=c|X=x): c#C,Cc=000,

— Apply Bayesian rule to convert them into posterior probabilities
_P(X=xIC=¢)P(C=¢)

P(C=c¢;I1X=x)=
P(X=x)
[« P(X=xIC=c,)P(C=c,)
‘o fori=12:L )
— Then apply the MAP rule
10/7/14 Adapt from Prof. Ke Chen NB slides

10/9/14
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Naive Bayes

e Bayes classification
P(C I X) ocP(X/C)P(C)=P(X1,---,Xp |C)P(C) —‘

Difficulty: learning the joint probability P(Xp"',Xp 1C)
¢ Naive Bayes classification
— Assumption that all input attributes are conditionally independent!

P(X,,X,, X, 1C) = P(X,1X,,~+X,,C)P(X,, "+ X, 1C)
= P(X,IC0)P(X,,+X,1C)
= P(X,10)P(X,1C)--P(X,IC)

— MAP classification rule: for x=(x;,x,,**,X,)

[P(x, | c)--- P(x, | cHIP(c) > [P(x,1c)--- P(x,1c)]P(c),

ws o cmel, © =8B,
Adapt from Prof. Ke Chen NB slides
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Naive Bayes

ive Bayes Algorithm (for discrete input attributes)
— Learning Phase: Given a training set S, —‘

For each target value of ¢, (¢, =c,,"**,c;)
f’(C =¢,) < estimate P(C = c,) with examples in S;
For every attribute value x, of each attribute X, (j=1,-,p; k=1,+K )
ﬁ(Xj =x, |C =)< estimate P(X, = x, |C = ¢;) with examples in S;
Output: conditional probability tables; for X;,K xL elements
~ Test Phase: Given an unknown instance X'=(a;,"**,a,)

Look up tables to assign the label c*to X’ if
[P(a]1c) - P(a, Ic)P(c") > [P(a] I ¢)-+- P(d, | 0)]P(c),

CEC,C=0C, 0
10/7/14
Adapt from Prof. Ke Chen NB slides

10/9/14
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Example

) ample: Play Tennis

PlayTennis: training examples
o O
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Day Outlook  Temperature ~ Humidity =~ Wind | PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

10/7/14

) arning Phase

Example
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P(XAIC1), POXICY)

Outlook | Play=Yes | Play=No Temperature | Play=Yes | Play=No
Sunny 2/9 3/5 Hot 2/9 2/5
Overcast 4/9 0/5 Mild 4/9 2/5
Rain 3 /9 2 /5 Cool 3 /9 1 /5
Humidity | Play=Ye | Play=N POAC,), POGIC)
s 0 Wind | Play=Yes | Play=No
High 3/9 4/5 Strong 3/9 3/5
Normal 6 /9 1 /5 Weak 6 /9 2 /5
P(Play=Yes)=9/14 P(Play=No)=5/14  P(C,), P(C,), ..., P(C,)

10/7/14

10/9/14
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Example

e Test Phase
— Given a new instance,
X’ =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

— Look up tables
P(Outlook=Sunny|Play=Yes) = 2/9 P(Outlook=Sunny | Play=No) = 3/5
P(Temperature=Cool | Play=Yes) =3/9 P(Temperature=Cool|Play==No) =1/5
P(Huminity=High|Play=Yes)=3/9  P(Huminity=High|Play=No) = 4/5

P(Wind=Strong | Play=Yes) = 3/9 P(Wind=Strong | Play=No) = 3/5
P(Play=Yes) = 9/14 P(Play=No) = 5/14
— MAP rule
P(Yes|x'): [P(Sunny|Yes)P(Cool | Yes)P(High|Yes)P(Strong| Yes)|P(Play=Yes) =
0.0053
P(No|x"): [P(Sunny | No) P(Cool INo)P(High| No)P(Strong | No)]P(Play=No) =
0.0206

10/7 Given the fact P(Yes|x") < P(No|X’), we label X’ to be “No”.
Adapt from Prof. Ke Chen NB slides
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Next: Naive Bayes Classifier

v’ Probability review

= Structural properties, i.e., Independence,
conditional independence

v Naive Bayes Classifier
= Text article classification

10/7/14

20



References

Yanjun Qi / UVA CS 4501-01-6501-07

O Prof. Andrew Moore’ s review tutorial —‘

[ Prof. Ke Chen NB slides

[ Prof. Carlos Guestrin recitation slides

10/7/14

10/9/14

21



