

Lecture 13: Probability and Statistics Review (cont.) + Naïve Bayes Classifier

Yanjun Qi / Jane, PhD

University of Virginia Department of Computer Science

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Announcements: Schedule Change

- Midterm rescheduled
 - Oct. $30^{th} / 3:35pm 4:35pm$
 - Homework 4 is totally for sample midterm questions
 - HW3 will be out next Monday, due on Oct 25th
 - HW4 will be out next Tuesday, due on Oct 29th (i.e. for a good preparation for midterm. Solution will be released before due time.)
 - Grading of HW1 will be available to you this evening
 - Solution of HW1 will be available this Wed
 - Grading of HW2 will be available to you next week
 - Solution of HW2 will be available next week

Where are we ? →

Five major sections of this course

Regression (supervised)

Classification (supervised)

Unsupervised models

Learning theory

Graphical models

Yanjun Qi / UVA CS 4501-01-6501-07

Where are we? →

Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., support vector machine, decision tree
- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
 - 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Last Lecture Recap: Probability Review

- Events and Event spaces
- Random variables
- Joint probability distributions, Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.
- Structural properties
 - Independence, conditional independence
- Mean and Variance

Probability as a measure of uncertainty

- Probability is a measure of certainty of an event taking place.
- i.e. in the example, we were measuring the chances of hitting the shaded area.

10/7/14

Adapt from Prof. Nando de Freitas's review slides

Yanjun Qi / UVA CS 4501-01-6501-07

e.g. Coin Flips

- You flip a coin
 - Head with probability 0.5
- You flip 100 coins
 - How many heads would you expect

e.g. Coin Flips cont.

- · You flip a coin
 - Head with probability p
 - Binary random variable
 - Bernoulli trial with success probability p
- You flip *k* coins
 - How many heads would you expect
 - Number of heads X: discrete random variable
 - Binomial distribution with parameters k and p

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Discrete Random Variables

- Random variables (RVs) which may take on only a **countable** number of **distinct** values
 - E.g. the total number of heads X you get if you flip 100 coins
- X is a RV with arity k if it can take on exactly one value out of $\{x_1,...,x_k\}$
 - E.g. the possible values that X can take on are 0, 1, 2,..., 100

Probability of Discrete RV

- Probability mass function (pmf): $P(X = x_i)$
- Easy facts about pmf

 - $P(X = x_i \cap X = x_j) = 0$ if $i \neq j$
 - $P(X = x_i \cup X = x_j) = P(X = x_i) + P(X = x_j) \text{ if } i \neq j$ $P(X = x_1 \cup X = x_2 \cup ... \cup X = x_k) \neq 1$

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Common Distributions

- Uniform $X \sim U[1,...,N]$
 - X takes values 1, 2, ..., N
 - P(X = i) = 1/N
 - E.g. picking balls of different colors from a box
- Binomial X : Bin(n, p)
 - X takes values 0, 1, ..., n

 - E.g. coin flips

Coin Flips of Two Persons

- · Your friend and you both flip coins
 - Head with probability 0.5
 - You flip 50 times; your friend flip 100 times
 - How many heads will both of you get

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Joint Distribution

- Given two discrete RVs X and Y, their joint distribution is the distribution of X and Y together
 - E.g. P(You get 21 heads AND you friend get 70 heads)

•

- E.g.
$$\sum_{x} \sum_{y} P(X = x \cap Y = y) = 1$$

 $\sum_{i=0}^{50} \sum_{j=0}^{100} P(\text{You get } i \text{ heads AND your friend get } j \text{ heads}) = 1$

Conditional Probability

- P(X = x | Y = y) is the probability of X = x, given the occurrence of Y = y
 - E.g. you get 0 heads, given that your friend gets 61 heads
- $P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Conditional Probability

$$P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$$

But we normally write it this way:

$$P(x|y) = \frac{p(x,y)}{p(y)}$$

Law of Total Probability

• Given two discrete RVs X and Y, which take values in $\{x_1,...,x_m\}$ and $\{y_1,...,y_n\}$, We have

$$P(X = x_i) = \sum_{j} P(X = x_i \cap Y = y_j)$$
$$= \sum_{j} P(X = x_i | Y = y_j) P(Y = y_j)$$

10/7/14

Marginalization

Marginal Probability

Joint Probability

$$P(X = x_i) = \sum_{j} P(X = x_i \cap Y = y_j)$$

$$= \sum_{j} P(X = x_i | Y = y_j) P(Y = y_j)$$

Conditional Probability

Marginal Probability

Bayes Rule

• X and Y are discrete RVs...

$$P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$$

$$P(X = x_i | Y = y_j) = \frac{P(Y = y_j | X = x_i)P(X = x_i)}{\sum_{k} P(Y = y_j | X = x_k)P(X = x_k)}$$

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Today: Naïve Bayes Classifier

- Probability review
 - Structural properties, i.e., Independence, conditional independence
- ✓ Naïve Bayes Classifier
 - Spam email classification

Independent RVs

- Intuition: X and Y are independent means that X = x neither makes it more or less probable that Y = y
- Definition: X and Y are independent iff $P(X = x \cap Y = y) = P(X = x)P(Y = y)$

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

More on Independence

•
$$P(X = x \cap Y = y) = P(X = x)P(Y = y)$$

$$P(X = x \cap Y = y) = P(X = x)P(Y = y)$$

$$P(X = x | Y = y) = P(X = x) \quad P(Y = y | X = x) = P(Y = y)$$

• E.g. no matter how many heads you get, your friend will not be affected, and vice versa

More on Independence

- X is independent of Y means that knowing Y does not change our belief about X.
 - P(X|Y=y) = P(X)
 - P(X=x, Y=y) = P(X=x) P(Y=y)
 - The above should hold for all x_i, y_i
 - It is symmetric and written as X ⊥ Y

 $X \perp Y$

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Conditionally Independent RVs

- Intuition: X and Y are conditionally independent given Z means that once Z is known, the value of X does not add any additional information about Y
- Definition: X and Y are conditionally independent given Z iff

$$P(X = x \cap Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)$$

10/7/14

 $X \perp Y \mid Z$

More on Conditional Independence

$$P(X = x \cap Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)$$

$$P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

$$P(Y = y | X = x, Z = z) = P(Y = y | Z = z)$$

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Today: Naïve Bayes Classifier

- ✓ Probability review
 - Structural properties, i.e., Independence, conditional independence
- ✓ Naïve Bayes Classifier
 - Spam email classification

Where are we ? → Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., support vector machine, decision tree

2. Generative:

- build a generative statistical model
- e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Bayes classifiers

- Treat each attribute and class label as random variables.
- Given a sample **x** with attributes ($x_1, x_2, ..., x_p$):
 - Goal is to predict class C.
 - Specifically, we want to find the value of C_i that maximizes $p(C_i | x_1, x_2, ..., x_p)$.
- Can we estimate $p(C_i | \mathbf{x}) = p(C_i | x_1, x_2, ..., x_p)$ directly from data?

10/7/14

Yanjun Qi / UVA CS 4501-01-6501-07

Bayes classifiers→ MAP classification rule

- Establishing a probabilistic model for classification
- → MAP classification rule
 - MAP: Maximum A Posterior
 - Assign x to c* if

$$P(C = c^* | \mathbf{X} = \mathbf{x}) > P(C = c | \mathbf{X} = \mathbf{x}) \quad c \neq c^*, c = c_1, \dots, c_L$$

10/7/14

Review: Bayesian Rule

- Prior, conditional and marginal probability
 - Prior probability:
- P(C)
- $P(C_1), P(C_2), ..., P(C_L)$
- Likelihood (through a generative model): $P(\mathbf{X} \mid C)$
- Evidence (marginal prob. of sample): $P(\mathbf{X})$
- Posterior probability: $P(C \mid \mathbf{X})$ $P(C_1 \mid \mathbf{x}), P(C_2 \mid \mathbf{x}), ..., P(C_L \mid \mathbf{x})$
- Bayesian Rule

$$P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})}$$

 $Posterior = \frac{Likelihood \times Prior}{Evidence}$

10/7/14

Adapt from Prof. Ke Chen NB slides

Yanjun Qi / UVA CS 4501-01-6501-07

Bayes Classification Rule

- Establishing a probabilistic model for classification
 - (1) Discriminative model

10/7/14

Bayes Classification Rule

- MAP classification rule
 - MAP: Maximum A Posterior
 - Assign x to c^* if $P(C = c^* | \mathbf{X} = \mathbf{x}) > P(C = c | \mathbf{X} = \mathbf{x}), c \neq c^*, c = c_1, \dots, c_L$
- Generative classification with the MAP rule
 - Apply Bayesian rule to convert them into posterior probabilities

$$P(C = c_i \mid \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$

$$\mathbf{x} = P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)$$
for $i = 1, 2, \dots, L$
Then apply the MAP rule

10/7/14

Naïve Bayes

Bayes classification

$$P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C)P(C) = P(X_1, \dots, X_p \mid C)P(C)$$

Difficulty: learning the joint probability $P(X_1, \dots, X_p \mid C)$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p \mid C) = P(X_1 \mid X_2, \dots, X_p, C) P(X_2, \dots, X_p \mid C)$$

$$= P(X_1 \mid C) P(X_2, \dots, X_p \mid C)$$

$$= P(X_1 \mid C) P(X_2 \mid C) \dots P(X_p \mid C)$$

- MAP classification rule: for $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$[P(x_1 | c^*) \cdots P(x_p | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_p | c)]P(c),$$

10/7/14

 $c \neq c^*, c = c_1, \dots, c_L$

Adapt from Prof. Ke Chen NB slides

Yanjun Qi / UVA CS 4501-01-6501-07

Naïve Bayes

- Naïve Bayes Algorithm (for discrete input attributes)
 - Learning Phase: Given a training set S,

For each target value of
$$c_i$$
 ($c_i = c_1, \dots, c_L$)
$$\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$$
For every attribute value x_{jk} of each attribute X_j ($j = 1, \dots, p$; $k = 1, \dots, K_j$)
$$\hat{P}(X_j = x_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};$$

Output: conditional probability tables; for X_i , $K_i \times L$ elements

- Test Phase: Given an unknown instance $\mathbf{X}' = (a_1', \dots, a_p')$ Look up tables to assign the label c^* to \mathbf{X}' if

$$[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_p | c^*)] \hat{P}(c^*) > [\hat{P}(a'_1 | c) \cdots \hat{P}(a'_p | c)] \hat{P}(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

10/7/14

Example

Yanjun Qi / UVA 🔏 450**X**91-6**X**91-07**C**

Yanjun Qi / UVA CS 4501-01-6501-07

Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

10/7/14

Example

Learning Phase

ng Phase					$P(X_2 C_1),$	$P(X_2 C_1)$
	DI. V.	DL. M.	Ī	T	DI. Y.	DI.

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

_		
Humidity	Play=Ye	Play=N
	S	0
High	3/9	4/5
Normal	6/9	1/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

 $\begin{array}{c|c} P(X_4|C_1), P(X_4|C_2) \\ \hline Wind & Play=Yes & Play=No \\ \hline Strong & 3/9 & 3/5 \\ \hline Weak & 6/9 & 2/5 \\ \hline \end{array}$

P(Play=Yes) = 9/14 P(Play=No) = 5/14 $P(C_1), P(C_2), ..., P(C_L)$

Example

Test Phase

Given a new instance,

x' =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Look up tables

P(Outlook=Sunny | Play=Yes) = 2/9P(Huminity=High | Play=Yes) = 3/9P(Wind=Strong | Play=Yes) = 3/9P(Play=Yes) = 9/14

P(Outlook=Sunny | Play=No) = 3/5P(Temperature=Cool | Play=Yes) = 3/9 P(Temperature=Cool | Play==No) = 1/5P(Huminity=High | Play=No) = 4/5 P(Wind=Strong | Play=No) = 3/5P(Play=No) = 5/14

MAP rule

 $P(Yes \mid \textbf{x}'): [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) =$

 $P(No|\mathbf{x}')$: [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) =0.0206

Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No".

Adapt from Prof. Ke Chen NB slides

Yanjun Qi / UVA CS 4501-01-6501-07

Yanjun Qi / UVA CS 4501-01-6501-07

Next: Naïve Bayes Classifier

- ✓ Probability review
 - Structural properties, i.e., Independence, conditional independence
- Naïve Bayes Classifier

Text article classification

References

Prof. Andrew Moore's review tutorial
Prof. Ke Chen NB slides
Prof. Carlos Guestrin recitation slides