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Where are we ? =
Five major sections of this course

L Regression (supervised) —‘

ﬁEI Classification (supervised)
U Unsupervised models

U Learning theory

O Graphical models
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Where are we ? =
Three major sections for classification

* We can divide the Iar%e variety of classification —‘
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., logistic regression, support vector machine, decisionTree

> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

10/22/14 3
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X, X, X, C

A Dataset for

’7 classiﬁcation—‘

Output as Discrete
Class Label
C.,C, ....C.

I argmax P(C | X) = argmax P(X,C) = argmax P(X | C)P(C)
C C C

EEEERP P(CIX) C=c e,

Data/points/instanc: Pl ords: [ rows ]

Feat il dit i i variables/covariates/predictors/regressors: [ columns, except the last]
Targ P label, variable: special column to be predicted [ last column ]
10/22/14 4
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Multinomial
Naive Bayes as

the | boy
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likes [ the | dog

02 | 0.01 0.0001| 0.2 ) 0.0005

,—Stochastlc —
Language Multiply all five terms
Models
Model C1 Model C2
0.2 the
0.2 the the  boy  likes  black dog
0.01 boy 0.0001 boy
0.0001 said 0.03  said 0.2 001 00001  0.0001 0.0005
0.0001 likes 0.02  likes 0.2 0.0001 0.02 0.1 0.01
0.0001 black 0.1 black
0.0005 dog 0.01  dog P(s|C2) P(C2) > P(s|C1) P(C1)
0.01 garden 0.0001 garden
10/22/14 5

W@ Logistic regression models for e/ onesoreene

binary target variable coded 0/1.

P (C=1|X)
g 1.0
Probability of
disease 0.8 |
0.6 -
0.4
0.2
Logit function 0.0

-

logistic function

P(c= l‘x) = e

a+Px

l+e

X

m[M]:ln[
P(c=01x)

P(c=11x)

1-P(c=11x)

] =a+Bx + 6%, +...+ /szxp
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Binary Logistic Regression

In summary that the logistic regression tells us two things at once.
» Transformed, the “log odds” (logit) are linear.

In[p/(1-p)]

This means we

. — use Bernoulli
. — distribution to
Odds=p/(1-p) ; // model the
: = target variable
. with its Bernoulli
) ) ) i 0 : 20 40 60 80 100 120 140 pQereTer
* Logistic Distribution X p=p(y=1x)
predefined.
P (Y=1|x) ‘f
10/22/14 X
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Today : Relevant classifiers /
KNN / LOOCV

=

v’ Logistic regression (cont.)

v" Naive Bayes Gaussian Classifier
v’ K-nearest neighbor

v/ LOOCV
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Multinomial Logistic Regression Model

The method directly models the posterior probabilities as the output of regression

T
Pr(G k| X =x)=—SPBu*tBX) gy

K-1

1+ 2 exp(By, + B x)
1

Pr(G=K|X =x)=

K-1

1+ Z exp(f, + ﬂzrx)

x is p-dimensional input vector
B, is a p-dimensional vector for each k

Total number of parameters is (K-1)(p+1)

Note that the class boundaries are linear
10/22/14 9
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MLE for Logistic Regression Training
et’s fit the logistic regression model for K=2, i.e., number of classes is 2
/For Bernoulli distribution
Training set: (x, y)), i=1,..,N P : -
_—pOylx)yd-p)~
N P \ S J
Log-likelihood: 1(ﬁ)=2{10gPr(Y=y; X =x)}
i=1
N
= Ey[ log(Pr(Y =11 X =x,))+(1-y,)log(Pr(Y =01X =1x;,))
i=1
N exp(Bx,) 1
= 1 . I-y)log—m———
g(y, Og“exp(ﬁ,x’))ﬂ ) 0gl+exp([3rx[))
N
=Y (0.87x, —log(1+exp(B'x,)))
i=1
x; are (p+1)-dimensional input vector with leading entry 1
B is a (p+1)-dimensional vector
y;=1ifC, =1;y, =0if C, =0
10/22/14  We want to maximize the log-likelihood in order to estimate 8 10
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Newton-Raphson for LR (optional)

al(/?’) exp(B’ x)
Z( 1+exp(fS x))x =0 T

(p+1) Non-linear equations to solve for (p+1) unknowns

Solve by Newton-Raphson method:

new old a l(ﬂ) 1 al(ﬁ)
B B (aﬁaﬁ ) 5
where, (Z1B) | _” L RV,
a0 ﬁ l.= 1+exp(ﬁ x) 1+exp(,8 x)

10/22/14
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Newton-Raphson for LR (optional)

al(/s) E< xp(FT) |y

T+exp(Bix) »=pr)

LT N

apap’
So, NR rule becomes: B — ﬂ"ld + (XTWX)‘IXT(y -p),
x » exp(8"x) 1+ exp(5x,))
B i | exp(BT) 1+ exp(BTx,))
T V=1 > P= :
R T~ N Nty exp(B7x, ) [+ exp(B7x)) |,
X :Nx(p+1) matrix of x,
y:Nx1matrix of y,
p:Nx1 matrix of p(x,; 57)
W : N x N diagonal matrix otﬁxi;ﬂ""‘ Y1 - p(x,; 7))
CTGE ™~ )
10/22/14 (I+exp(B'x)" (1+exp(f'x,) 12
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Newton-Raphson for LR...

e Newton-Raphson —‘

- ﬁnew — [))old + (XTWX)—IXT(y_p)
— (XTWX)_IXTW(X/J’OM + W_l(y _ p)) Re expressing

Newton step as

= (XTWX)_IXTWZ ¢ weighted least

square step
— Adjusted response
z= X" + W (y-p)
— Iteratively reweighted least squares (IRLS)
p < argmin(z- XY W (z - Xp')

< argmin(y - P W (y-p)

10/22/14 13
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Today : Relevant classifiers /'
KNN / LOOCV

=

v’ Logistic regression (cont.)
j> v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= @Gaussian NBC
= DA, QDA
= Discriminative vs. Generative
v’ K-nearest neighbor
v’ LOOCV

10/22/14 14
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The Gaussian Distribution

N(z|p,0?)

2y _ L L 2
N(z|p, o )—Wexp{ﬁ(lﬂ) }

[\

71
1 1 1 _
N(x|p, 2) = @mDPR s P {—§(X -p)'E (x - N)}
Mean Covariance Matrix
10/22/14 15

Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm
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Multivariate Gaussian Distribution

<[ A multivariate Gaussian model: x ~ N(y,2) where

Here u is the mean vector and X is the covariance matrix, if p=2
M=AUy U} Z= var(x,) COV(X4,X5)
coVv(Xq,Xy) | var(xy)

e The covariance matrix captures linear dependencies among the variables

10/22/14 16
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MLE Estimation for
Multivariate Gaussian

: N AN * We can fit statistical models by maximizing—‘
‘ prsEe s the probability / likelihood of generating the

SPZ observed samples:

A ’ L(XI/ /Xn/ @) = p(Xl / @) p(xn / @)

_3 . ’ (the samples are assumed to be independent)

%% = 4 o 1+ + 5« Inthe Gaussian case, we simply set the
mean and the variance to the sample mean
and the sample variance:

;=l§)(:i 2=,11, (xi=4)

n = =

10/22/14 17
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Probabilistic Interpretation

of Linear Regression

* Let us assume that the target variable and the inputs are h w
related by the equation:

Yi= HTXi +¢&;
where £ is an error term of unmodeled effects or random noise

* Now assume that ¢ follows a Gaussian N(0,0), then we
have:

_ (yi _eTXi)Z )

20°

1
p(y;|x;0)= Foror eXp(

* By independence (among samples) assumption:

n

n n ‘ l-_HT i 2
L(9)=]_‘l[p(yi|xi;e)=(éa) exp(— '=‘(y202 x) )

10/22/14
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Probabilistic Interpretation of
Linear Regression (cont.)

* Hence the log-likelihood is: T

1 1 1o
1(0) = ﬂlogm—?gz,ﬂ(% —HTXi)Z

* Do you recognize the last term?

J(0) = ; 2 (5707,

Yes it is:

* Thus under independence assumption, residual
means square is equivalent to MLE of U !

10/22/14
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Today : Relevant classifiers /'
KNN / LOOCV

=

v’ Logistic regression (cont.)
:> v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= Gaussian NBC
= DA, QDA
= Discriminative vs. Generative
v’ K-nearest neighbor
v’ LOOCV

10/22/14 20
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Gaussian Naive Bayes Classifier

argmax P(C | X) = argmax P(X,C) = argmax P(X | C)P(C) —‘
C C C

1 ox (X;—u )?
V270, = 20

u;; :mean (avearage) of attribute values X, of examples for whichC =g,

P(X;IC=c;)=

0; :standard deviation of attribute values X; of examples for whichC =¢;

ll;la'fve P(X|C) = P(XNXZ’“"XP IC)

ayes

Classifier = P(X] |X2,"',XP,C)P(X2"“’XP 1C)
P(X,IC)P(X,, X, 1C)

P(X,IC)P(X,1C) - P(X,1C)

10/22/14
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Gaussian Naive Bayes Classifier

o __Continuous-valued Input Attributes
— Conditional probability modeled with the normal distribution—‘
1 (X —u;)’*
e

Jji

P(X,IC=c)=

u;; - mean (avearage) of attribute values X, of examples for which C =,

0 ; . standard deviation of attribute values X, of examples for which C =,

— Learning Phase: for X = (Xl,---’Xp), C= e,
Output: p x L normal distributionsand P(C=c¢;) i=1,""",L

— Test Phase: for X'=(X[,""+X])

¢ (Calculate conditional probabilities with all the normal distributions
e Apply the MAP rule to make a decision

10/22/14 22
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Naive Gaussian mean

P(X,,X,, X, 1C)=

S ?

NI, 2) = 7 o o { ~ 5= T2 - )

=~ enP2 |z TP 72

P(X,.X,,-X,1C=c;)=P(X,|C)P(X,1C)-
1 (X,'_;u,'i)z
= exp| — - -
1:[ V27o, P 20",

Diagonal Matri>> > _j = A _j

10/22/14

- P(X,1C)

Each class’
covariance
matrix is
diagonal

=

Today : Relevant classifiers /'
KNN / LOOCV

v’ Logistic regression (cont.)
i> v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= @Gaussian NBC
= LDA, QDA, RDA
= Discriminative vs. Generative
v’ K-nearest neighbor,
v’ LOOCV

10/22/14
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=

24
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If covariance matrix not Identity but same
e.g. = LDA (Linear Discriminant Analysis)

. T . Each class’ covariance
Linear Discriminant Analysis : ., = 3. VK atrix is the same

The Gaussian Distribution are shifted versions of each

other

e i /\*J\ \
N
CE '_\n ]
NSY

Class k Class | / \
10/22/14 Class k Class / 25
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Optimal Classification

argmax P(C _k | X) =argmax P(X,C)=argmax P(X | C )P(C)_‘
k k k

= argmax
k

—3( T — ,u;‘,)TS_l(.r — ) + log(my, jlw

= arg m:.ax —%(.r — [ )Tﬁfllj r — ) + log(my)

- Note - Linear Discriminant Function for LDA
—%(l — ;1;;)T‘v__,‘_1(.r — ) = 2Ty — %;IIE_I/J;‘. - %.z'TE_l.z'
10/22/14 26
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Define Linear Discriminant Function

1 -1
8(x) = =5 (=" (x — ) + logmy

|
=» The Decision Boundary Between class k and /, ‘
{x:6, (x) =8/(x)}, is linear

log PC_KIX) _ PXIC_K) \  PC_K)
iy Eraacn T re)

Tk 1 _ —19
=log — — o (pk + pe) " Z7 (ke — pre) (4.9)
e Z
-+ .l'TZ_l (#‘k — ;[.[)_ Boundary points X : when P(c_k|

X) == P(c_l|X), the left linear

10/22/14 equation ==0, a linear line
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Visualization (three classes)

| B

10/22/14 28
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If covariance matrix not Identity not same

e.g. = QDA (Quadratic Discriminant Analys

» Estimate the covariance matrix ¥ separately for each class k,
k=1.2....K.

» Quadratic discriminant function:

1 1 _
Ik(x) = ) log |2k | — E(X — ) T (x — k) + log T
» Classification rule:
G(x) = arg max Ok(x) .

» Decision boundaries are quadratic equations in x.

» QDA fits the data better than LDA, but has more parameters
to estimate.

10/22/14
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LDA on Expanded Basis

» Expand input space to include X;Xp, X2, and X3.
» Input is five dimensional: X = (X1.X2.X1X2.X12.X22).

6501-07

-

LDA with
quadratic basis
Versus

QDA

Figure 4.6: Two methods for fitting quadratic bound-
aries. The left plot shows the quadratic decision bound-
aries for the data in Figure 4.1 (obtained using LDA in
the five-dimensional space 1, T2, T12,75,73). The right
plot shows the quadratic decision boundaries found by

10/22/14 QDA. The differences are small, as is usually the case.

30
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Regularized Discriminant Analysis

» A compromise between LDA and QDA.

» Shrink the separate covariances of QDA toward a common
covariance as in LDA.

» Regularized covariance matrices:
Si(@) =a¥i +(1—a)x .

» The quadratic discriminant function d,(x) is defined using the
shrunken covariance matrices 24 ().

» The parameter o controls the complexity of the model.

10/22/14 31
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Today : Relevant classifiers /
KNN / LOOCV

=

v’ Logistic regression (cont.)
j> v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= @Gaussian NBC
= DA, QDA
= Discriminative vs. Generative
v’ K-nearest neighbor
v’ LOOCV

10/22/14 32

10/22/14

16



Yanjun Qi / UVA CS 4501-01-6501-07

LDA vs. Logistic Regression

s LDA (Generative model)
— Assumes Gaussian class-conditional densities and a common covariance
— Model parameters are estimated by maximizing the full log likelihood,
parameters for each class are estimated independently of other classes,
K, + @ + (K — 1) parameters
— Makes use of marginal density information Pr(x)
— Easier to train, low variance, more efficient if model is correct
— Higher asymptotic error, but converges faster
* Logistic Regression (Discriminative model)
— Assumes class-conditional densities are members of the (same) exponential
family distribution
— Model parameters are estimated by maximizing the conditional log likelihood,
simultaneous consideration of all other classes, (K — 1)(p + 1)parameters
— Ignores marginal density information Pr(x)
— Harder to train, robust to uncertainty about the data generation process
,,kower asymptotic error, but converges more slowly 2
Discriminative vs. Generative
Pr

Logistic Regression

Gaussian

Height

7
-

&

AS
<

10/22/14
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Discriminative vs. Generative

e Definitions
O hg.,and hy,: generative and discriminative
classifiers

O Ngen, inf N g it SAmMe classifiers but trained on
the entire population (asymptotic classifiers)

°©n- mﬁmty' hgen - hgen,im‘ and hdis - hdis,im‘
Ng, Jordan,. "On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes." Advances in
neural information processing systems 14 (2002): 841.

Discriminative vs. Generative

Proposition 1:

€ (hdis,inf) S € (hgen,inf)

Proposition 2:

€ (hais) < € (hais,int) + O (ﬂﬁ * log(ﬁ))

n p
- p : number of dimensions

- n : number of observations

- € : generalization error

)

10/22/14
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Logistic Regression vs. NBC

Discriminative classifier (Logistic Regression)
- Smaller asymptotic error
- Slow convergence ~ size of training set O(p)

Generative classifier (Naive Bayes)

- Larger asymptotic error

- Can handle missing data (EM)

- Fast convergence ~ size of training set O(lg(p))

Generation error
0.5

pima (continuous)

0.45} "

a4k . Logistic Regression

nor

0.35] \

04l / :__"_‘_--_.._;_M B

Naive Bayes

0 20 40 80
m Size of training set

19



Generation error [PES
g_ 1 — LDA:}:, =A,Z>,=A
o | -—— logistic reg.
- -\ seee DA Z, =X 3, =X
o~ E
o
- O
o N
@ o
o
o
. N ————
-t ."PF—“'\. - -
o - e ———— -
o
50 100 150 200
m Size of training set

Xue, Jing-Hao, and D. Michael Titterington. "Comment on “On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes”."Neural processing letters 28.3 (2008): 169-187.

Logistic Regression vs. NBC

e Empirically, generative classifiers approach
their asymptotic error faster than
discriminative ones
o Good for small training set
o Handle missing data well (EM)

® Empirically, discriminative classifiers have
lower asymptotic error than generative ones
o Good for larger training set

10/22/14
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Today : Generative vs.
Discriminative / KNN / LOOCV

=

v’ Logistic regression (cont.)
v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= @Gaussian NBC
= DA, QDA
= Discriminative vs. Generative
i> v’ K-nearest neighbor,
v’ LOOCV

10/22/14 41
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Nearest neighbor classifiers

’—v—Basic idea:
If it walks like a duck, quacks like a duck, then—‘

it' s probably a duck

) compute
S R—a . distance test

tralnlng T M choose k of the

samples " “nearest” samples

10/22/14 42
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Nearest neighbor classifiers

Unknown record

10/22/14

Requires three inputs:

1. The set of stored
training samples

2. Distance metric to
compute distance
between samples

3. Thevalue of k, i.e., the
number of nearest
neighbors to retrieve

43
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Nearest neighbor classifiers

Unknown record

Sl
T
.-

10/22/14

To classify unknown sample:

1. Compute distance to
other training records

2. Identify k nearest
neighbors

3. Use class labels of nearest
neighbors to determine
the class label of unknown
record (e.g., by taking
majority vote)

44

10/22/14
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Definition of nearest neighbor

- o
lxx K

_ -'+ +
+ +

ST 4
+ °

— 1

X ]

[}

q
S+

s‘.--:h,

+ +

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints that
have the k smallest distances to x

10/22/14
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1-nearest neighbor

oi diagram
09r

08F
071
0.64
05¢
0.4+
03F
0.2F

01r

=

10/22/14
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Nearest neighbor classification

« Compute distance between two points:
— For instance, Euclidean distance

Ay = [5G -2)

» Options for determining the class from
nearest neighbor list

— Take maijority vote of class labels among the
k-nearest neighbors

— Weight the votes according to distance
« example: weight factor w =1/ d?

10/22/14 47
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Nearest neighbor classification

» Choosing the value of k:

— If kis too small, sensitive to noise points

— If kis too large, neighborhood may include points
from other classes

—_— + B
+ < Tt
- 4+
] ++
+ = -
_ - +

10/22/14 48
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Nearest neighbor classification

Rcaling issues —‘

— Attributes may have to be scaled to prevent
distance measures from being dominated by
one of the attributes

— Example:

» height of a person may vary from 1.5 mto 1.8 m
» weight of a person may vary from 90 Ib to 300 Ib
« income of a person may vary from $10K to $1M

10/22/14 49
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Nearest neighbor classification...

* Problem with Euclidean measure: —‘

— High dimensional data
 curse of dimensionality

— Can produce counter-intuitive results

111111111110 100000000000
Vs
o11111111111 000000000001
d=1.4142 d=1.4142

# one solution: normalize the vectors to unit length

10/22/14 50
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Nearest neighbor classification

» k-Nearest neighbor classifier is a lazy Iearner—‘
— Does not build model explicitly.

— Unlike eager learners such as decision tree
induction and rule-based systems.

— Classifying unknown samples is relatively
expensive.

* k-Nearest neighbor classifier is a local model,
vs. global model of linear classifiers.

10/22/14 51
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Decision boundaries in global vs. local models

Qe
N
) @,
/ 5265 v
i NN é
))//J/. S QQQ
linear regression 15-nearest neighbor 1-nearest neighbor
* global * local
» stable * accurate
* can be inaccurate * unstable

What ultimately matters: GENERALIZATION

10/22/14 52
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K-Nearest-Neighbours for

Classification (2)
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oy |
® Y ® )
° °
° °
o o L ®
° /0 ® ° °
° \ °
L ° ® ) °
° & ° &
- . e o e o
o [ ] ® o ® [
o °® _ ) °* _
T1 T1
K=3 K=1
10/22/14 53
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K-Nearest-Neighbours for

Classification (3)

10/22/14

* K acts as a smother
* For N — o0, the error rate of the 1-nearest-neighbour classifier is never more than

twice the optimal error (obtained from the true conditional class distributions).

K=1 K=3
2 2
o g te £ 3o g et BBty o
7 Ty x7
o o o
1 . 1 . 1 .
v o *e o ce o
. . 4 . 2 .
': AR ": 2 . ’: . 0
s . o g e .
:0 o Dl ’ =
0 b .l‘. E ..I .' 0 . .l ) ... .. 0 . -l ) ... ..
0 1 zg 2 0 1 g 2 0 1 g 2

10/22/14
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Today : Generative vs.
Discriminative / KNN / LOOCV

-

v’ Logistic regression (cont.)
v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= Gaussian NBC
= DA, QDA
= Discriminative vs. Generative
v’ K-nearest neighbor,

) v LoocV

10/22/14 55
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cross-validation (e.g. K=3)

‘ e k-fold cross-validation T
pataset [

Train Test

I | |
| |

[ | |
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Common Splitting Strategies

‘ * Leave-one-out (n-fold cross validation) j

O
H O
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Leave-one-out cross validation

‘ * Leave-one-out cross validation (LOOCV) is K-fold cross \

validation taken to its logical extreme, with K equal to
n, the number of data points in the set.

* That means that n separate times, the function
optimization is trained on all the data except for one
point and a prediction is made for that point.

* As before the average error is computed and used to
evaluate the model.
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CV-based Model Selection
We're trying to decide which algorithm to use.

* We train each machine and make a table... T

i |f, | TRAINERR 10-FOLD-CV-ERR Choice

1 |f, I

2 |f I

3 | O v

4 |f, I

SENiE I

6 |f, I

10/22/14 59
Yanjun Qi / UVA @4501-01-6501-07
Which kind of cross-validation ?

Downside Upside

Test-set |Variance: unreliable Cheap
estimate of future
performance

Leave- Expensive. Doesn’t waste data

one-out | Has some weird behavior

10-fold Wastes 10% of the data. | Only wastes 10%. Only
10 times more expensive |10 times more expensive
than test set instead of R times.

3-fold Wastier than 10-fold. Slightly better than test-
Expensivier than test set |set

R-fold. Identical to Leave-one-out
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Today Recap: Generative Vs.
Discriminative / KNN / LOOCV

v’ Logistic regression (cont.)
v’ Gaussian Naive Bayes Classifier
= Gaussian distribution
= @Gaussian NBC
= LDA, QDA
= Discriminative vs. Generative
v’ K-nearest neighbor,
v’ LOOCV
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