UVA CS 4501 - 001 / 6501 - 007 Introduction to Machine Learning and Data Mining

Lecture 16: Generative vs. Discriminative / K-nearest-neighbor Classifier / LOOCV

Yanjun Qi / Jane, , PhD

University of Virginia Department of Computer Science

10/22/14

Yanjun Qi / UVA CS 4501-01-6501-07

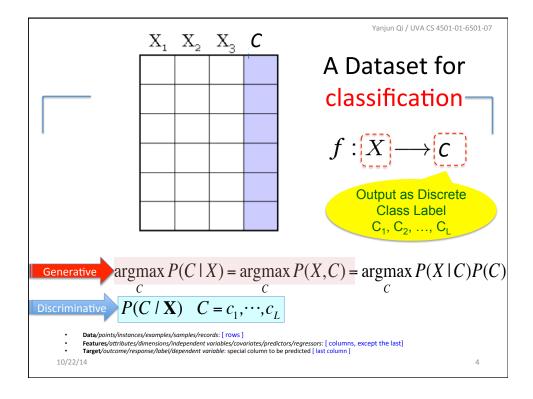
Where are we ? → Five major sections of this course

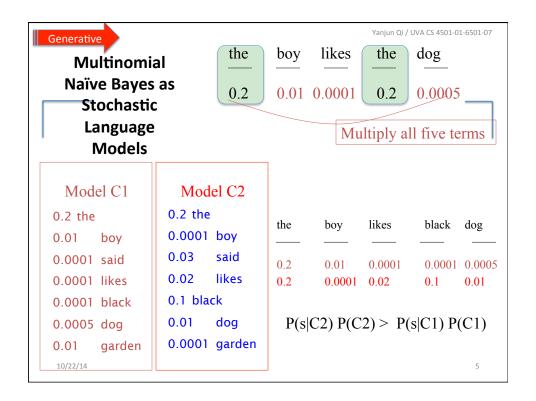
- ☐ Regression (supervised)
- Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

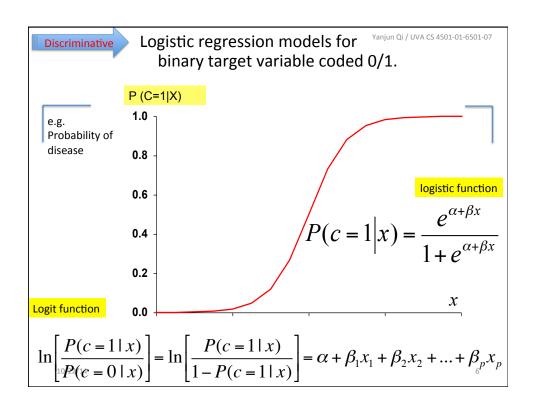
10/22/14 2

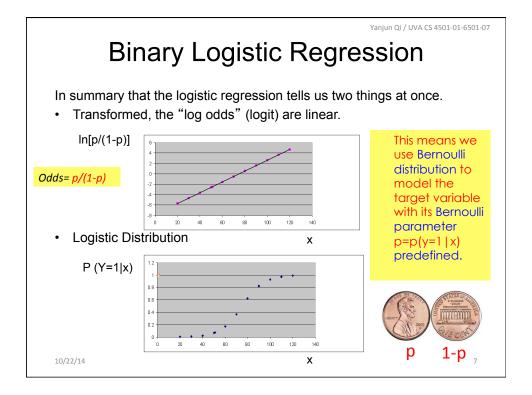
Where are we ? → Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, support vector machine, decisionTree
- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors









Today: Relevant classifiers / Anjun QI / UVA CS 4501-01-6501-07 KNN / LOOCV

- ✓ Logistic regression (cont.)
- ✓ Naïve Bayes Gaussian Classifier
- √ K-nearest neighbor
- ✓ LOOCV

Multinomial Logistic Regression Model

The method directly models the posterior probabilities as the output of regression

$$\Pr(G = k \mid X = x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)}, \ k = 1, ..., K - 1$$

$$\Pr(G = K \mid X = x) = \frac{1}{1 + \sum_{t=1}^{K-1} \exp(\beta_{t0} + \beta_t^T x)}$$

x is p-dimensional input vector

 β_k is a p-dimensional vector for each k

Total number of parameters is (K-1)(p+1)

Note that the class boundaries are linear

10/22/14

MLE for Logistic Regression Training

Let's fit the logistic regression model for K=2, i.e., number of classes is 2

For Bernoulli distribution

Training set: (x_i, y_i) , i=1,...,N

$$p(y \mid x)^{y} (1-p)^{1-y}$$

Log-likelihood:

$$l(\beta) = \sum_{i=1}^{N} \{ \log \Pr(Y = y_i \mid X = x_i) \}$$

$$= \sum_{i=1}^{N} y_i \log(\Pr(Y = 1 \mid X = x_i)) + (1 - y_i) \log(\Pr(Y = 0 \mid X = x_i))$$

$$\sum_{i=1}^{N} (y_i \log \frac{\exp(\beta^T x_i)}{y_i}) + (1 - y_i) \log \frac{1}{y_i}$$

$$\begin{split} &= \sum_{i=1}^{N} (y_i \log \frac{\exp(\boldsymbol{\beta}^T \boldsymbol{x}_i)}{1 + \exp(\boldsymbol{\beta}^T \boldsymbol{x}_i)}) + (1 - y_i) \log \frac{1}{1 + \exp(\boldsymbol{\beta}^T \boldsymbol{x}_i)}) \\ &= \sum_{i=1}^{N} (y_i \boldsymbol{\beta}^T \boldsymbol{x}_i - \log(1 + \exp(\boldsymbol{\beta}^T \boldsymbol{x}_i))) \end{split}$$

 x_i are (p+1)-dimensional input vector with leading entry 1 β is a (p+1)-dimensional vector

 $y_i = 1 \text{ if } C_i = 1; y_i = 0 \text{ if } C_i = 0$

10/22/14 We want to maximize the log-likelihood in order to estimate eta

Newton-Raphson for LR (optional)

$$\frac{\partial l(\beta)}{\partial \beta} = \sum_{i=1}^{N} (y_i - \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}) x_i = 0$$

(p+1) Non-linear equations to solve for (p+1) unknowns

Solve by Newton-Raphson method:

$$\beta^{new} \leftarrow \beta^{old} - [(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^T})]^{-1} \frac{\partial l(\beta)}{\partial \beta},$$

where,
$$\left(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^T}\right) = -\sum_{i=1}^N x_i x_i^T \left(\frac{\exp(\beta^T x_i)}{1 + \exp(\beta^T x_i)}\right) \left(\frac{1}{1 + \exp(\beta^T x_i)}\right)$$

10/22/14

Yanjun Qi / UVA CS 4501-01-6501-07

Newton-Raphson for LR (optional)

$$\frac{\partial l(\beta)}{\partial \beta} = \sum_{i=1}^{N} (y_i - \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}) x_i = X^T (y - p)$$

$$\left(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^T}\right) = -X^T W X$$

So, NR rule becomes:
$$\beta^{new} \leftarrow \beta^{old} + (X^T W X)^{-1} X^T (y - p),$$

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix}_{N-hv-(n+1)}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}_{N-hv-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \exp(\beta^T x_2)/(1 + \exp(\beta^T x_2)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-hv-1}$$

 $X: N \times (p+1)$ matrix of x_i

 $y: N \times 1$ matrix of y_i

 $p: N \times 1$ matrix of $p(x_i; \beta^{old})$

 $W: N \times N \text{ diagonal matrix of } p(x_i; \beta^{old})(1 - p(x_i; \beta^{old}))$ $(\frac{\exp(\beta^T x_i)}{(1 + \exp(\beta^T x_i))})(1 - \frac{1}{(1 + \exp(\beta^T x_i))})$

Newton-Raphson for LR...

- Newton-Raphson
 - $\begin{array}{l}
 -\beta^{\textit{new}} = \beta^{\textit{old}} + (X^T W X)^{-1} X^T (y p) \\
 = (X^T W X)^{-1} X^T W (X \beta^{\textit{old}} + W^{-1} (y p)) \\
 = (X^T W X)^{-1} X^T W z
 \end{array}$ Re expressing Newton step as weighted least square step
 - Adjusted response

$$z = X\beta^{old} + W^{-1}(y - p)$$

- Iteratively reweighted least squares (IRLS) $\beta^{new} \leftarrow \arg\min_{\beta} (z - X\beta^{T})^{T} W (z - X\beta^{T})$ $\leftarrow \arg\min_{\beta} (y - p)^{T} W^{-1} (y - p)$

10/22/14

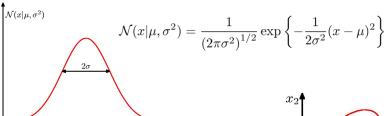
13

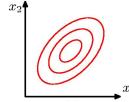
Today: Relevant classifiers / KNN / LOOCV

- ✓ Logistic regression (cont.)
- ✓ Gaussian Naïve Bayes Classifier
 - Gaussian distribution
 - Gaussian NBC
 - LDA, QDA
 - Discriminative vs. Generative
 - √ K-nearest neighbor
 - ✓ LOOCV

10/22/14

The Gaussian Distribution





$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$
 Mean Covariance Matrix

10/22/14

Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm

15

Multivariate Gaussian Distribution

• A multivariate Gaussian model: $\mathbf{x} \sim N(\mu, \Sigma)$ where

Here μ is the mean vector and Σ is the covariance matrix, if p=2

$$\mu = \{\mu_1,\,\mu_2\}$$

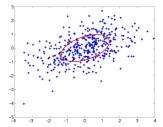
$$\Sigma =$$

$$var(x_1)$$
 $cov(x_1,x_2)$ $cov(x_1,x_2)$ $var(x_2)$

• The covariance matrix captures linear dependencies among the variables

10/22/14

MLE Estimation for Multivariate Gaussian



• We can fit statistical models by maximizing the probability / likelihood of generating the observed samples:

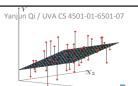
 $L(x_1, ..., x_n \mid \Theta) = p(x_1 \mid \Theta) ... p(x_n \mid \Theta)$ (the samples are assumed to be independent)

• In the Gaussian case, we simply set the mean and the variance to the sample mean and the sample variance:

$$\overline{\mu} = \frac{1}{n} \sum_{i=1}^{n} \chi_{i} \qquad \overline{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \overline{\mu})^{2}$$

10/22/14

Probabilistic Interpretation of Linear Regression



• Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

• By independence (among samples) assumption:

10/22/14

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Probabilistic Interpretation of Linear Regression (cont.)

• Hence the log-likelihood is:

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2$$

· Do you recognize the last term?

Yes it is:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

• Thus under independence assumption, residual means square is equivalent to MLE of ♥!

10/22/14

19

Today: Relevant classifiers / Anjun QI / UVA CS 4501-01-6501-07 KNN / LOOCV

- ✓ Logistic regression (cont.)
- 🔷 🗸 Gaussian Naïve Bayes Classifier
 - Gaussian distribution
 - Gaussian NBC
 - LDA, QDA
 - Discriminative vs. Generative
 - √ K-nearest neighbor
 - ✓ LOOCV

10/22/14

Gaussian Naïve Bayes Classifier

$$\underset{C}{\operatorname{argmax}} P(C \mid X) = \underset{C}{\operatorname{argmax}} P(X, C) = \underset{C}{\operatorname{argmax}} P(X \mid C) P(C)$$

$$\hat{P}(X_j \mid C = c_i) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$ of examples for which $C = c_i$: standard deviation of attribute values X_j of examples for which $C = c_i$

Naïve Bayes Classifier

$$P(X \mid C) = P(X_{1}, X_{2}, \dots, X_{p} \mid C)$$

$$= P(X_{1} \mid X_{2}, \dots, X_{p}, C)P(X_{2}, \dots, X_{p} \mid C)$$

$$= P(X_{1} \mid C)P(X_{2}, \dots, X_{p} \mid C)$$

$$= P(X_{1} \mid C)P(X_{2} \mid C) \dots P(X_{p} \mid C)$$

10/22/14

21

Yanjun Qi / UVA CS 4501-01-6501-07

Gaussian Naïve Bayes Classifier

- Continuous-valued Input Attributes
 - Conditional probability modeled with the normal distribution

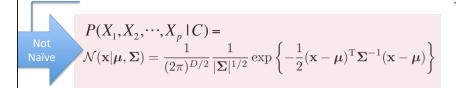
$$\hat{P}(X_{j} \mid C = c_{i}) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$ σ_{ji} : standard deviation of attribute values X_j of examples for which $C = c_i$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p), \quad C = c_1, \dots, c_L$ Output: $p \times L$ normal distributions and $P(C = c_i)$ $i = 1, \dots, L$
- Test Phase: for $\mathbf{X}' = (X'_1, \dots, X'_p)$
 - Calculate conditional probabilities with all the normal distributions
 - · Apply the MAP rule to make a decision

10/22/14

Naïve Gaussian means?

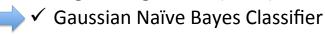


Naïve
$$P(X_1, X_2, \dots, X_p \mid C = c_j) = P(X_1 \mid C)P(X_2 \mid C) \dots P(X_p \mid C)$$

$$= \prod_i \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

Diagonal Matrix $\sum_{j} j = \Lambda_{j} j$

Today: Relevant classifiers / /anjun Qi / UVA CS 4501-01-6501-07 KNN / LOOCV

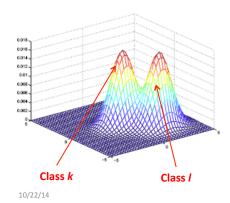


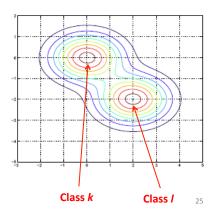
- Gaussian distribution
- Gaussian NBC
- LDA, QDA, RDA
- Discriminative vs. Generative
- √ K-nearest neighbor,
- ✓ LOOCV

If covariance matrix not Identity but same e.g. → LDA (Linear Discriminant Analysis)

Linear Discriminant Analysis : $\sum_{k} = \sum_{k} \forall k$ Each class' covariance matrix is the same

The Gaussian Distribution are shifted versions of each other





Yanjun Qi / UVA CS 4501-01-6501-07

Optimal Classification

 $\underset{k}{\operatorname{argmax}} P(C_{-}k \mid X) = \underset{k}{\operatorname{argmax}} P(X,C) = \underset{k}{\operatorname{argmax}} P(X \mid C)P(C)$

$$= \arg \max_{k} \left[-\log((2\pi)^{x/2} |\Sigma|^{1/2}) - \frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) + \log(\pi_k) \right]$$

$$= \arg \max_{k} \left[-\frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) + \log(\pi_k) \right]$$

- Note

Linear Discriminant Function for LDA

$$-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k) \, = \, x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k - \frac{1}{2} x^T \Sigma^{-1} x$$

10/22/14

Define Linear Discriminant Function

Yanjun Qi / UVA CS 4501-01-6501-07

$$\delta(x) = -\frac{1}{2}(x - \mu_k)^T \sum_{k=0}^{-1} (x - \mu_k) + \log \pi_k$$

The Decision Boundary Between class k and l, $\{x : \delta_k(x) = \delta_l(x)\}$, is linear

$$\log \frac{P(C_{-}k \mid X)}{P(C_{-}l \mid X)} = \log \frac{P(X \mid C_{-}k)}{P(X \mid C_{-}l)} + \log \frac{P(C_{-}k)}{P(C_{-}l)}$$

$$= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_\ell)$$
 (4.9)

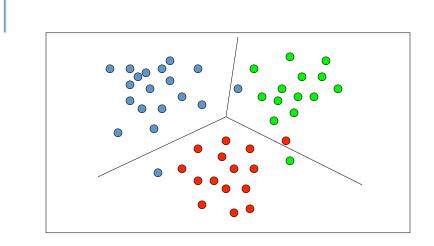
$$+ x^T \Sigma^{-1} (\mu_k - \mu_\ell),$$

10/22/14

Boundary points X: when P(c_k| X) == P(c_l|X), the left linear equation ==0, a linear line ²⁷

Yanjun Qi / UVA CS 4501-01-6501-07

Visualization (three classes)



10/22/14

If covariance matrix not Identity not same

e.g. -> QDA (Quadratic Discriminant Analysis)

- ▶ Estimate the covariance matrix Σ_k separately for each class k, k = 1, 2, ..., K.
- Quadratic discriminant function:

$$\delta_k(x) = -\frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log \pi_k$$
.

► Classification rule:

$$\hat{G}(x) = \arg\max_{k} \delta_k(x)$$
 .

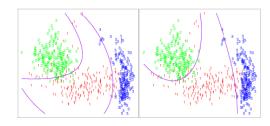
- Decision boundaries are quadratic equations in x.
- QDA fits the data better than LDA, but has more parameters to estimate.

10/22/14

Yanjun Qi / UVA CS 4501-01-6501-07

LDA on Expanded Basis

- ▶ Expand input space to include X_1X_2 , X_1^2 , and X_2^2 .
- ▶ Input is five dimensional: $X = (X_1, X_2, X_1X_2, X_1^2, X_2^2)$.



LDA with quadratic basis Versus QDA

Figure 4.6: Two methods for fitting quadratic boundaries. The left plot shows the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA in the five-dimensional space $x_1, x_2, x_{12}, x_1^2, x_2^2$). The right plot shows the quadratic decision boundaries found by QDA. The differences are small, as is usually the case.

30

Regularized Discriminant Analysis

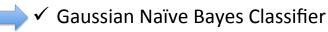
- ▶ A compromise between LDA and QDA.
- ► Shrink the separate covariances of QDA toward a common covariance as in LDA.
- ► Regularized covariance matrices:

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1 - \alpha) \hat{\Sigma} .$$

- ▶ The quadratic discriminant function $\delta_k(x)$ is defined using the shrunken covariance matrices $\hat{\Sigma}_k(\alpha)$.
- ightharpoonup The parameter α controls the complexity of the model.

10/22/14 31

Today: Relevant classifiers / Anjun QI / UVA CS 4501-01-6501-07 KNN / LOOCV



- Gaussian distribution
- Gaussian NBC
- LDA, QDA
- Discriminative vs. Generative
- √ K-nearest neighbor
- ✓ LOOCV

10/22/14 32

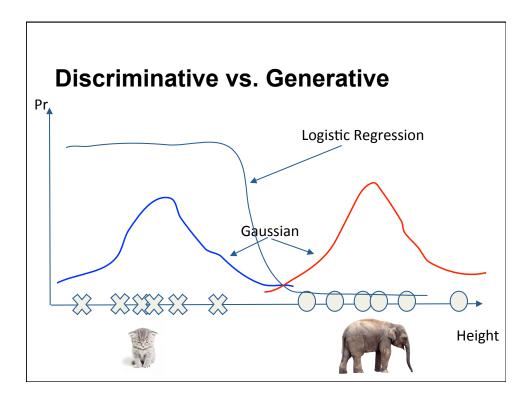
LDA vs. Logistic Regression

LDA (Generative model)

- Assumes Gaussian class-conditional densities and a common covariance
- Model parameters are estimated by maximizing the full log likelihood, parameters for each class are estimated independently of other classes, $K_p + \frac{p(p+1)}{2} + (K-1)$ parameters
- Makes use of marginal density information Pr(x)
- Easier to train, low variance, more efficient if model is correct
- Higher asymptotic error, but converges faster

Logistic Regression (Discriminative model)

- Assumes class-conditional densities are members of the (same) exponential family distribution
- Model parameters are estimated by maximizing the conditional log likelihood, simultaneous consideration of all other classes, (K-1)(p+1) parameters
- Ignores marginal density information Pr(x)
- Harder to train, robust to uncertainty about the data generation process 10/22 Lower asymptotic error, but converges more slowly



Discriminative vs. Generative

- Definitions
 - h_{gen} and h_{dis}: generative and discriminative classifiers
 - h_{gen, inf} and h_{dis, inf}: same classifiers but trained on the entire population (asymptotic classifiers)
 - \circ n \Rightarrow infinity, $h_{gen} \rightarrow h_{gen, inf}$ and $h_{dis} \rightarrow h_{dis, inf}$

Ng, Jordan,. "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes." *Advances in neural information processing systems* 14 (2002): 841.

Discriminative vs. Generative

Proposition 1:

$$\epsilon \left(h_{dis, inf} \right) \le \epsilon \left(h_{gen, inf} \right)$$

Proposition 2:

$$\epsilon (h_{dis}) \le \epsilon (h_{dis,inf}) + O\left(\sqrt{(\frac{p}{n} * \log(\frac{n}{p}))}\right)$$

- p: number of dimensions

- n: number of observations

- ε : generalization error

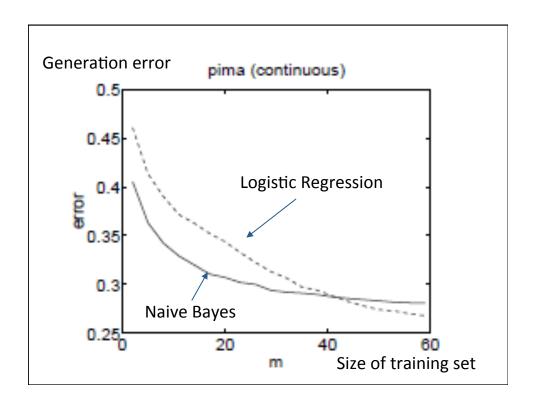
Logistic Regression vs. NBC

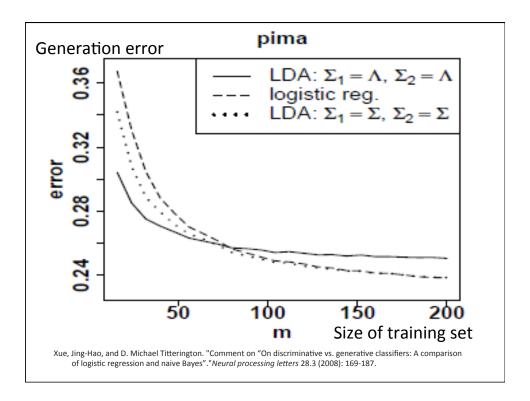
Discriminative classifier (Logistic Regression)

- Smaller asymptotic error
- Slow convergence ~ size of training set O(p)

Generative classifier (Naive Bayes)

- Larger asymptotic error
- Can handle missing data (EM)
- Fast convergence ~ size of training set O(lg(p))





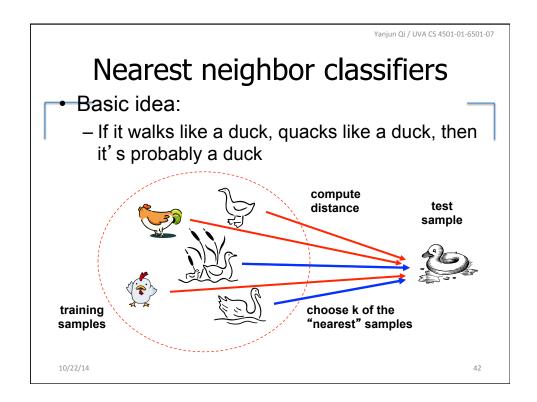
Logistic Regression vs. NBC

- Empirically, generative classifiers approach their asymptotic error faster than discriminative ones
 - o Good for small training set
 - o Handle missing data well (EM)
- Empirically, discriminative classifiers have lower asymptotic error than generative ones
 - o Good for larger training set

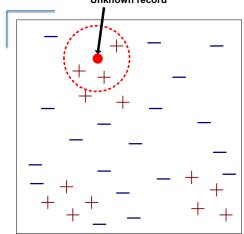
Today: Generative vs. Yanjun Qi / UVA CS 4501-01-6501-07 Discriminative / KNN / LOOCV

- ✓ Logistic regression (cont.)
- √ Gaussian Naïve Bayes Classifier
 - Gaussian distribution
 - Gaussian NBC
 - LDA, QDA
 - Discriminative vs. Generative
- → K-nearest neighbor,
 - ✓ LOOCV

10/22/14 41



Nearest neighbor classifiers



Requires three inputs:

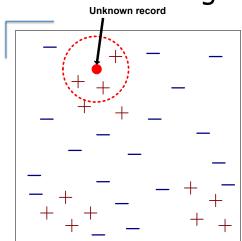
Yanjun Qi / UVA CS 4501-01-6501-07

- 1. The set of stored training samples
- 2. Distance metric to compute distance between samples
- 3. The value of *k*, i.e., the number of nearest neighbors to retrieve

10/22/14 43

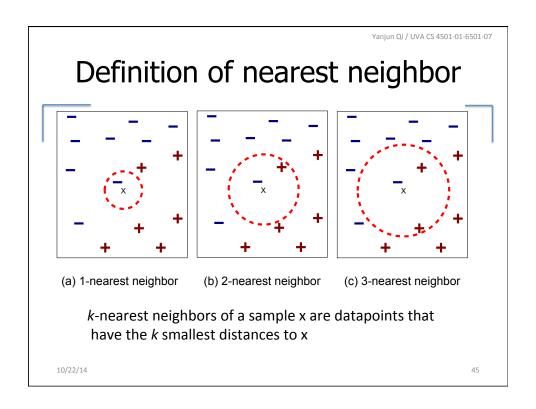
Yanjun Qi / UVA CS 4501-01-6501-07

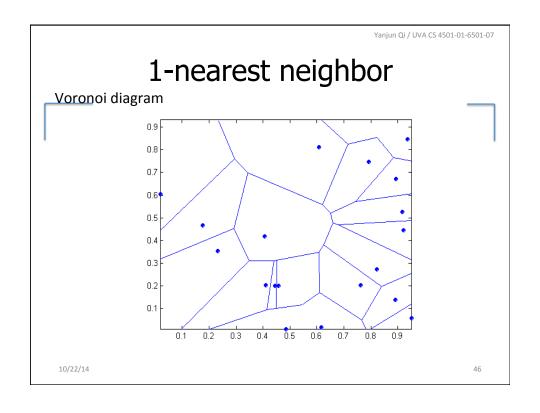
Nearest neighbor classifiers



To classify unknown sample:

- Compute distance to other training records
- 2. Identify *k* nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)





Nearest neighbor classification

- · Compute distance between two points:
 - For instance, Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

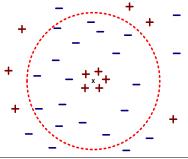
- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the k-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor w = 1 / d²

10/22/14

Yanjun Qi / UVA CS 4501-01-6501-07

Nearest neighbor classification

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes



10/22/14

Nearest neighbor classification

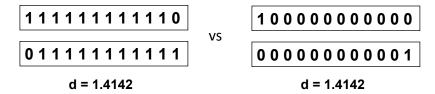
- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5 m to 1.8 m
 - · weight of a person may vary from 90 lb to 300 lb
 - income of a person may vary from \$10K to \$1M

10/22/14

Yanjun Qi / UVA CS 4501-01-6501-07

Nearest neighbor classification...

- Problem with Euclidean measure:
 - High dimensional data
 - · curse of dimensionality
 - Can produce counter-intuitive results



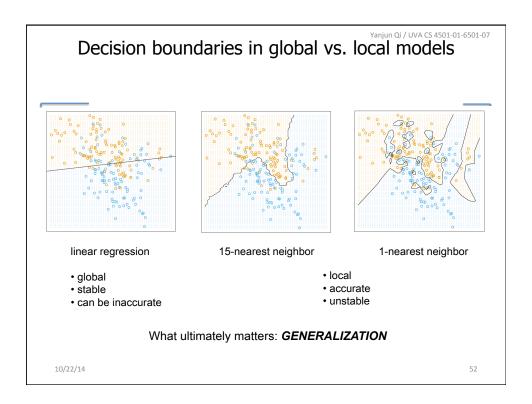
one solution: normalize the vectors to unit length

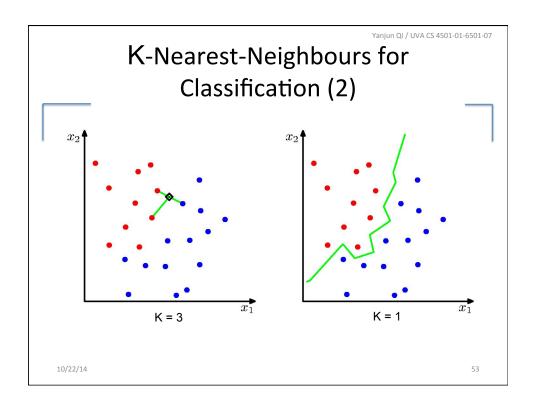
10/22/14 50

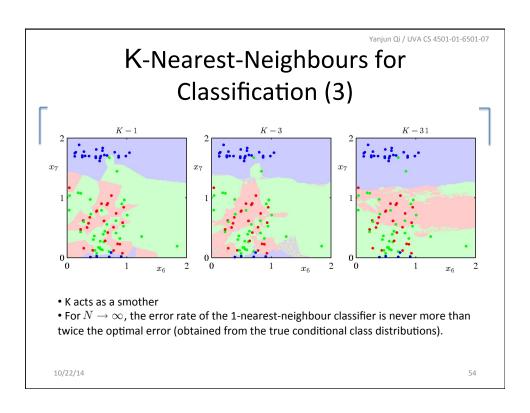
Nearest neighbor classification

- k-Nearest neighbor classifier is a lazy learner
 - Does not build model explicitly.
 - Unlike eager learners such as decision tree induction and rule-based systems.
 - Classifying unknown samples is relatively expensive.
- k-Nearest neighbor classifier is a local model, vs. global model of linear classifiers.

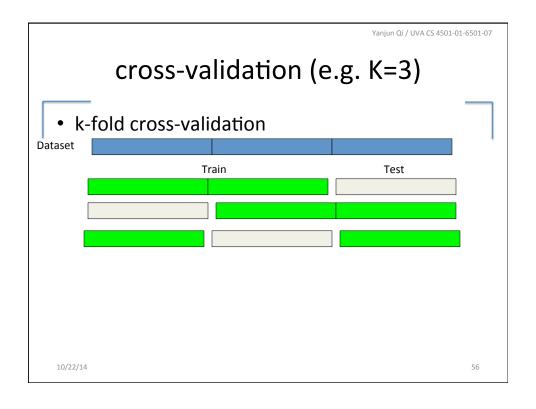
10/22/14 51

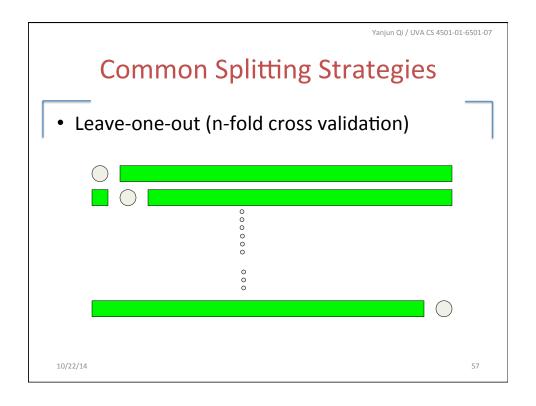






Today: Generative vs. Discriminative / KNN / LOOCV ✓ Logistic regression (cont.) ✓ Gaussian Naïve Bayes Classifier ■ Gaussian distribution ■ Gaussian NBC ■ LDA, QDA ■ Discriminative vs. Generative ✓ K-nearest neighbor, ✓ LOOCV





Leave-one-out cross validation

• Leave-one-out cross validation (LOOCV) is K-fold cross validation taken to its logical extreme, with K equal to n, the number of data points in the set.

• That means that n separate times, the function optimization is trained on all the data except for one point and a prediction is made for that point.

• As before the average error is computed and used to evaluate the model.

CV-based Model Selection Vanjun Qi / UVA CS 4501-01-6501-07 We're trying to decide which algorithm to use.

• We train each machine and make a table...

i	f_i	TRAINERR	10-FOLD-CV-ERR	Choice
1	f_1			
2	f ₂			
3	f ₃			√
4	f ₄			
5	f ₅			
6	<i>f</i> ₆	_		

10/22/14

Yanjun Qi / UVA 6804501-01-6501-07

Which kind of cross-validation?

	Downside	Upside	
Test-set	Variance: unreliable estimate of future performance	Cheap	
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data	
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.	
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set	
R-fold	Identical to Leave-one-out		

Today Recap: Generative VS. Discriminative / KNN / LOOCV

- ✓ Logistic regression (cont.)
- √ Gaussian Naïve Bayes Classifier
 - Gaussian distribution
 - Gaussian NBC
 - LDA, QDA
 - Discriminative vs. Generative
- ✓ K-nearest neighbor,
- ✓ LOOCV

10/22/14

61

Yanjun Qi / UVA CS 4501-01-6501-07

References

- ☐ Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
- ☐ Prof. Andrew Moore's slides
- ☐ Prof. Eric Xing's slides
- ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.

10/22/14