UVA CS 4501 - 001 / 6501 - 007 Introduction to Machine Learning and Data Mining

Lecture 22: Feature Selection

Yanjun Qi / Jane, , PhD

University of Virginia Department of Computer Science

11/13/14

Yanjun Qi / UVA CS 4501-01-6501-07

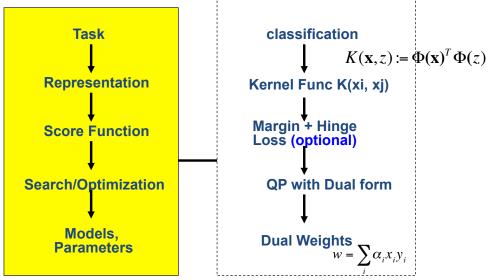
What we have covered

- ☐ Supervised Regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations
- Supervised Classification models
 - Support Vector Machine
 - Bayes Classifier
 - Logistic Regression
 - K-nearest Neighbor
 - Random forest / Decision Tree

- Neural Network (e.g. MLP)

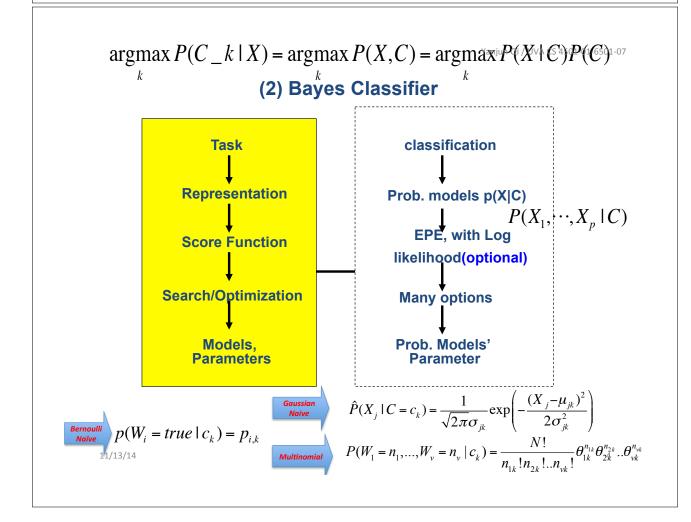
2

(1) Support Vector Machine



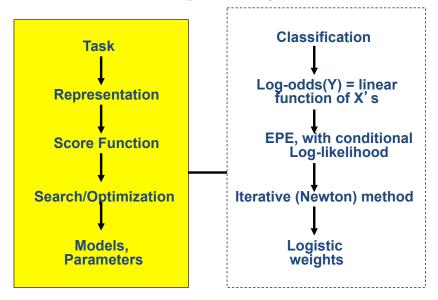
 $\underset{\mathbf{w},b}{\operatorname{argmin}} \sum_{i=1}^{p} w_i^2 + C \sum_{i=1}^{n} \varepsilon_i$

subject to $\forall \mathbf{x}_i \in Dtrain : y_i(\mathbf{x}_i \cdot \mathbf{w} + b) \ge 1 - \varepsilon_i$



Yanjun Qi / UVA CS 4501-01-6501-07

(3) Logistic Regression

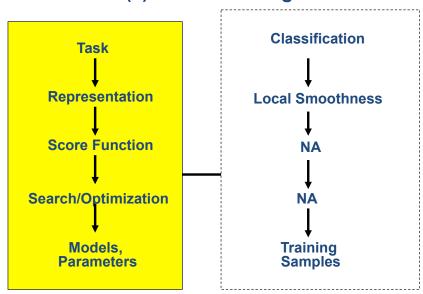


$$P(c=1|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$

11/13/14

Yanjun Qi / UVA CS 4501-01-6501-07

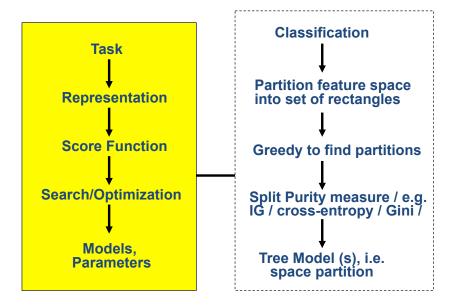
(4) K-Nearest Neighbor



11/13/14 6

Yanjun Qi / UVA CS 4501-01-6501-07

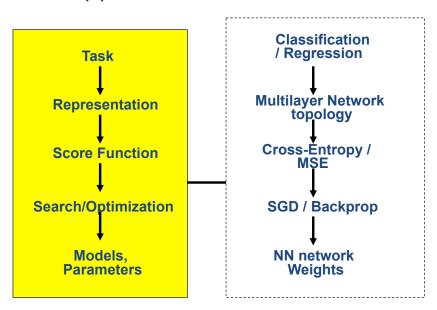
(5) Decision Tree / Random Forest

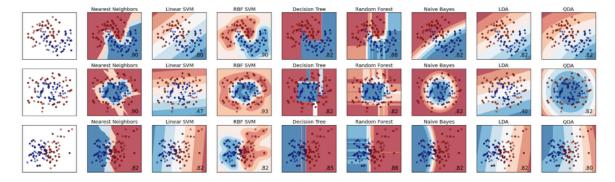


11/13/14

Yanjun Qi / UVA CS 4501-01-6501-07

(6) Neural Network



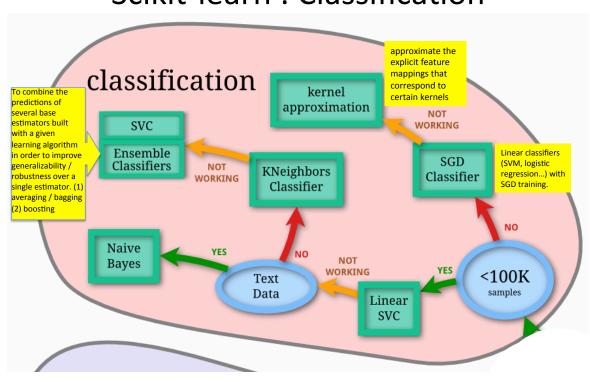


- ✓ different assumptions on data
- √ different scalability profiles at training time
- √ different latencies at prediction time
- √ different model sizes (embedability in mobile devices)

11/13/14 Olivier Grisel's talk

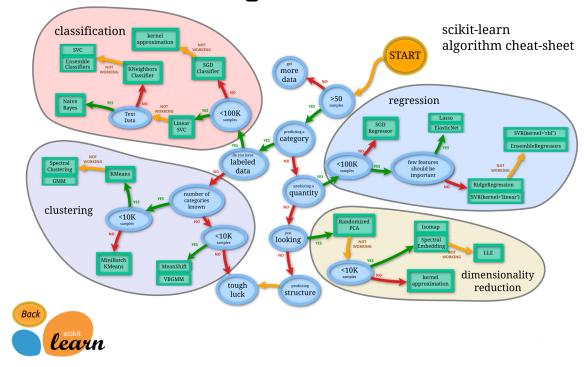
Yanjun Qi / UVA CS 4501-01-6501-07

Scikit-learn: Classification



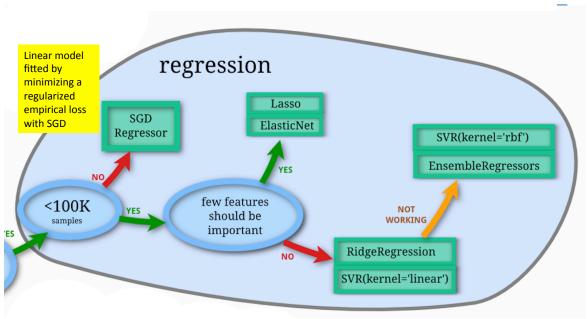
http://scikit-learn.org/stable/tutorial/machine learning map/

Scikit-learn algorithm cheat-sheet



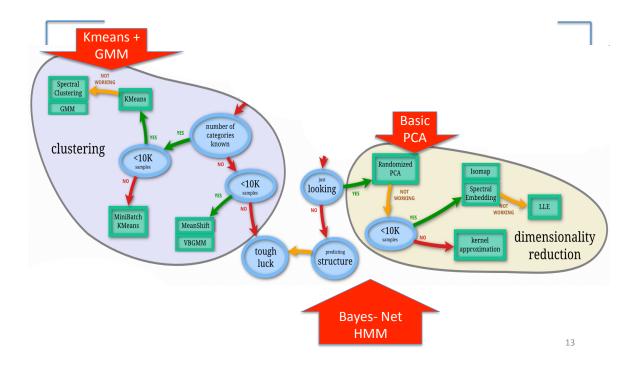
Yanjun Qi / UVA CS 4501-01-6501-07

Scikit-learn: Regression



12

next after classification?



Yanjun Qi / UVA CS 4501-01-6501-07

Where are we ? → Five major sections of this course

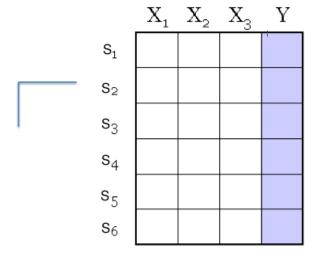
- ☐ Regression (supervised)
- ☐ Classification (supervised)
- Feature selection
 - ☐ Unsupervised models
 - ☐ Dimension Reduction
 - Clustering
 - ☐ Learning theory
 - ☐ Graphical models

Today

■ Feature Selection (supervised)

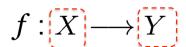
- Filtering approach
- Wrapper approach
- Embedded methods

11/13/14



Yanjun Qi / UVA CS 4501-01-6501-07

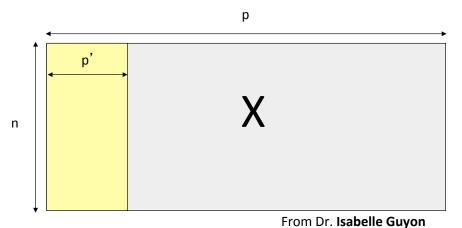
A labeled Dataset



- Data/points/instances/examples/samples/records: [rows]
- **Features**/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

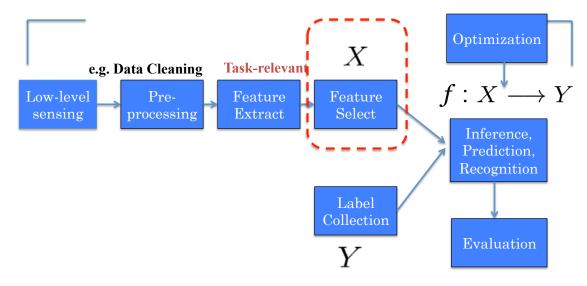
Feature Selection

 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.



Yanjun Qi / UVA CS 4501-01-6501-07

A Typical Machine Learning Pipeline

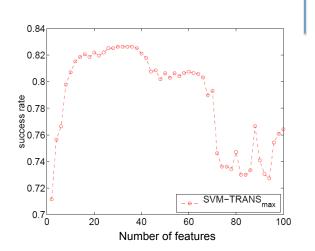


9/16/14

e.g., QSAR: Drug Screening

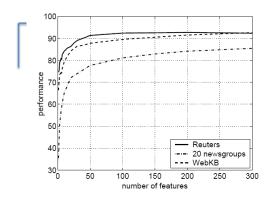
Binding to Thrombin (DuPont Pharmaceuticals)

- 2543 compounds tested for their ability to bind to a target site on thrombin, a key receptor in blood clotting; 192 "active" (bind well); the rest "inactive". Training set (1909 compounds) more depleted in active compounds.
- 139,351 binary features, which describe three-dimensional properties of the molecule.



Weston et al, Bioinformatics, 2002

e.g., Text Categorization with feature Filtering



Reuters: 21578 news wire, 114

semantic categories.

20 newsgroups: 19997 articles, 20

categories.

WebKB: 8282 web pages, 7

categories.

Bag-of-words: >100,000 features.

Top 3 words of some output Y categories:

• **Alt.atheism**: atheism, atheists, morality

Comp.graphics: image, jpeg, graphics

• Sci.space: space, nasa, orbit

Soc.religion.christian: god, church, sin

Talk.politics.mideast: israel, armenian, turkish

• Talk.religion.misc: jesus, god, jehovah

Bekkerman et al, JMLR, 2003

Feature Selection

- Filtering approach:

ranks features or feature subsets independently of the predictor (classifier).

- ...using univariate methods: consider one variable at a time
- ...using multivariate methods: consider more than one variables at a time

– Wrapper approach:

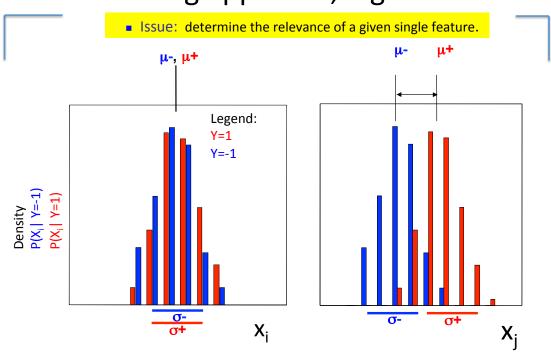
uses a classifier to assess (many) features or feature subsets.

- Embedding approach:

uses a classifier to build a (single) model with a subset of features that are internally selected.

21/54

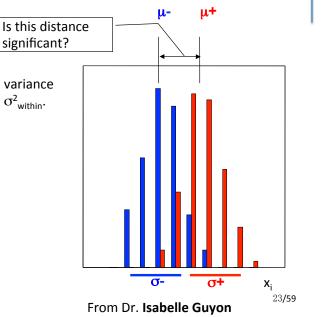
Feature Selection I: univariate filtering approach, e.g. T-test



Feature Selection I: univariate filtering approach, e.g. T-test

- Normally distributed classes, equal variance σ^2 unknown; estimated from data as σ^2_{within} .
- Null hypothesis H_0 : μ + = μ -
- T statistic:
 If H₀ is true, then

 $t = (\mu + - \mu -)/(\sigma_{within}\sqrt{1/m^+ + 1/m^-}) \sim$ Student(m^++m^--2 d.f.)



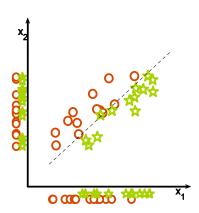
Feature Selection I: univariate filtering,

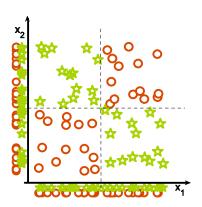
(many other criteria)

Method			-	X		Y		Comments
Name	Form	ula	В	M	C I	В M	[C	
Bayesian accuracy	Eq. 3	3.1	+	s	T-	- s	ī	Theoretically the golden standard, rescaled Bayesian relevance Eq. 3.2.
Balanced accuracy	Eq. 3	3.4	+	s	-	- s		Average of sensitivity and specificity; used for unbalanced dataset,
Bi-normal separation	Eq. 3	۱ ۲	ᅵ		-	- s		same as AUC for binary targets. Used in information retrieval.
F-measure	Eq. 3				-			Harmonic of recall and precision, popular in information retrieval.
Odds ratio	Eq. 3				-			Popular in information retrieval.
Means separation	Eq. 3	3.10	+	i -	+ -	-	I	Based on two class means, related to Fisher's criterion.
T-statistics	Eq. 3	3.11	+	i	+ -	-		Based also on the means separation.
Pearson correlation	Eq. 3	3.9	+	i	+ -	- i	+	Linear correlation, significance test Eq. 3.12, or a permutation test.
Group correlation	Eq. 3	3.13	+	i	+ -	- i	+	Pearson's coefficient for subset of features.
χ^2	Eq. 3	3.8	+	s	-	- s		Results depend on the number of samples m .
Relief	Eq. 3	3.15	+	s	+ -	- s	+	Family of methods, the formula is for a simplified version ReliefX,
a	_							captures local correlations and feature interactions.
Separability Split Value	Eq. 3	3.41	+	s	+ -	- s		Decision tree index.
Kolmogorov distance								Difference between joint and product probabilities.
Bayesian measure								Same as Vajda entropy Eq. 3.23 and Gini Eq. 3.39.
								Equivalent to mutual information.
Jeffreys-Matusita distance								Rarely used but worth trying.
Value Difference Metric	Eq. 3	3.22	+	s	-	- s		Used for symbolic data in similarity-based methods,
								and symbolic feature-feature correlations.
Mutual Information	Eq. 3	3.29	+1	s -	+ -	- s	1+	Equivalent to information gain Eq. 3.30.
Information Gain Ratio								Information gain divided by feature entropy, stable evaluation.
Symmetrical Uncertainty								Low bias for multivalued features.
J-measure								Measures information provided by a logical rule.
Weight of evidence								So far rarely used.
MDL	Eq. 3	3.38	+	s	-	- s		Low bias for multivalued features.

Feature Selection: multivariate approach

Univariate selection may fail

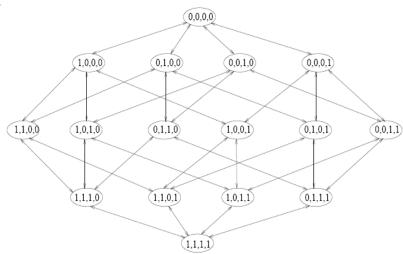




Guyon-Elisseeff, JMLR 2004; Springer 2006

25/59

Feature Selection: search strategies



p features, 2^p possible feature subsets!

26/59

Feature Selection II: search strategies for wrapper approaches

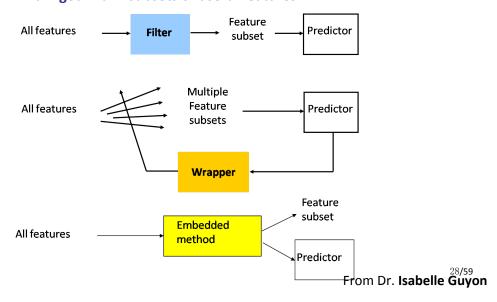
- Forward selection or backward elimination.
- Beam search: keep k best path at each step.
- **GSFS:** generalized sequential forward selection when (n-k) features are left try all subsets of g features. More trainings at each step, but fewer steps.
- **PTA(I,r):** plus I , take away r at each step, run SFS I times then SBS r times.
- Floating search: One step of SFS (resp. SBS), then SBS (resp. SFS) as long as we find better subsets than those of the same size obtained so far.

From Dr. Isabelle Guyon

27/59

Feature Selection: filters vs. wrappers vs. embedding

• Main goal: rank subsets of useful features

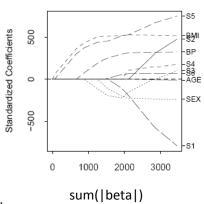


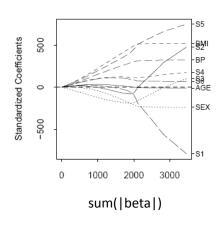
Feature Selection III: e.g. Feature Selection via Embedded Methods: L₁-regularization

 l_1 penalty: $y \sim Model(X\beta) + \lambda \sum |\beta_i|$ (lasso) l_2 penalty: $y \sim Model(X\beta) + \lambda \sum \beta_i^2$ (ridge regression)

LASSO

Ridge Regression



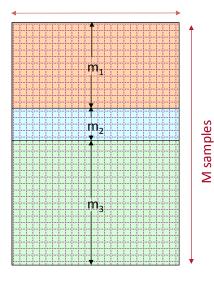


From ESL book

29/59

Feature Selection: feature subset assessment (for wrapper approach)

N variables/features



Split data into 3 sets:

training, validation, and test set.

- 1) For each feature subset, train predictor on training data.
- 2) Select the feature subset, which performs best on validation data.
 - Repeat and average if you want to reduce variance (cross-validation).
- Test on test data.

Danger of over-fitting with intensive search! From Dr. Isabelle Guyon

In practice...

- No method is universally better:
 - wide variety of types of variables, data distributions, learning machines, and objectives.
- Feature selection is not always necessary to achieve good performance.

NIPS 2003 and WCCI 2006 challenges: http://clopinet.com/challenges

From Dr. Isabelle Guyon

Yanjun Qi / UVA CS 4501-01-6501-07

References

☐ Prof. Andrew Moore's slides
☐ Hastie, Trevor, et al. <i>The elements of statistical</i>
learning. Vol. 2. No. 1. New York: Springer, 2009
☐ Dr. Isabelle Guyon's feature selection tutorials