UVA CS 4501 - 001 / 6501 — 007
Introduction to Machine Learning and
Data Mining

Lecture 24: Unsupervised Clustering (l)

Announcements

* HWS5:
— Due on Sunday, Nov 23 midnight

— 6501: Proposal / Original tex or doc files are needed for the
submission

— 4501: Source code
* HW6
— Due on Wed, Dec 3@ @ 5pm
— 11 sample questions for Final exam

— Both collab submission or handwritten submission are
acceptable

* Final exam:
— In class, 70mins
— Thursday, Dec 4" @ 3:30pm, the same classroom
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Where are we ? =
major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)

[ Feature selection

m) U Unsupervised models
1 Dimension Reduction (PCA)
O Clustering (K-means, GMM/EM, Hierarchical )

U Learning theory

11/20/14
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X, X, X,
s, An unlabeled
|7 s2 Dataset X —‘
S3
Sq a data matrix of n observations on
p variables x;,x,,...x,
Ss
S6

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a classification label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]

11/20/14
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Where are we ? =
Five major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)

[ Feature selection

O Unsupervised models
- O Dimension Reduction (PCA)
O Clustering (K-means, GMM/EM, Hierarchical )

U Learning theory
J-Graphicalmeodels

11/20/14

Yanjun Qi / UVA CS 4501-01-6501-07

Last Lecture Recap

m Dimensionality Reduction (unsupervised) with T
Principal Components Analysis (PCA)

= Review of eigenvalue, eigenvector

m How to project samples into a line capturing the variation of the
whole dataset =» Eigenvector / Eigenvalue of covariance matrix

m Another explanation of PCA
m PCA for dimension reduction

» Eigenface = PCA for face recognition

11/20/14




Review: Eigenvalue, e.g.

" Let us take two variables with covariance c¢>0
ey car= (1-A ¢
c 1 c 1-A

det(C-LD)=(1- 1)%-c? =Q <: Cu=\u

uz0

o C=

Q)lving this we find A, =1+c

Ar=1-c < A, /

From Dr. S. Narasimhan

Review: Eigenvector, e.g.

* Any eigenvector U satisfies the condition
Cu=\u

uz(al) Cu= 1 ¢\ (q _ (@ +ca _ A,
% c 1)\a ca, +a, ha,

Solving we find u, = ( 1; \2 ) u, = ( 1; \2)
1/4/2 -

In practice, much more advance methods, e.g. power method From Dr. S. Narasimhan
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Algebraic Interpretation — 1D

‘ * Minimizing sum of squares of distances to the line is the same \

as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras.

max( v X" Xv), sujectto VIV =1

O U=X"V X: p*1 vector

v: p*1 vector

assuming data
is centered

11/20/14
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Algebraic Interpretation — 1D

. Rewriting this: max( vIXT Xv), subjectto VTV =1 T
VIXTXv=A=Aviv=vT(Av)
<=> V' (X™Xv—=2Av)=0

e Show that the maximum value of VTXTXV is
obtained for those u satisfying X™Xv = Av

* So, A is the largest eigenvalue of X™X
* So, u is the eigenvector corresponding to A for X™X

11/20/14




Yanjun Qi / UVA CS 4501-01-6501-07

PCA Eigenvectors =2 Principal Components

—

-

5 I I I
2nd Principal
Component, u, o Ist Principal
Al ) Component, u,
3 — —
2 | | |
4.0 4.5 5.0 5.5 6.0
11/20/14
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PCA: explanation Il
® \
Consider the variation along direction
T is the mean v among all of the orange points:
of the orange 0. ©

points *
® < o Rad
o
N7

var(v) = Y [l(x=%)T v

o® var(v)= Y x—-%)T v|?

o orange point X

-

rx)=y (v ~u) P(X=v)

When for

= vT X —X)(x—X TV
N Xx: ( A ) centered data:
= VI Y x-0x-0T|v max(vTX™Xv ),

' Ty, =
= vTAv where A = d(x—x)(x— %) subjectto vv=1
X

11/20/14

From Dr. S. Narasimhan
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Interpretation of PCA

* The new variables (PCs) have a variance equal
to their corresponding eigenvalue, since
Var(u)=u X"Xu; = u \u,=Nu;"u; =\,
forall i=1...p

* Small A; & small variance <> data change little
in the direction of component v,

PCA is useful for finding new, more informative,
uncorrelated features; it reduces dimensionality

11/20/14 by rejecting low variance features

Example: principal Components projection of the digits (time 0.02s)

In the new
lower-dim
space, the
dataset is
easier to be
visualized and
interpreted
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Where are we ? =
major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)

U Feature selection
L Unsupervised models
[ Dimension Reduction (PCA)
» O Clustering (K-means, GMM/EM, Hierarchical )
U Learning theory
J-Graphicalmeodels

11/20/14
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Today: What is clustering?

N . B

Are there any “groups’ ?
What is each group ?

* How many ?

* How to identify them?

11/20/14
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What is clustering?

‘- Find groups (clusters) of data points such that data points in a \
group will be similar (or related) to one another and different from

(or unrelated to) the data points in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized

11/20/14
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What is clustering?

‘ * Clustering: the process of grouping a set of objects into \
classes of similar objects
— high intra-class similarity

— low inter-class similarity
— It is the commonest form of unsupervised learning

A common and important task that finds many
applications in Science, Engineering, information
Science, and other places, e.g.

* Group genes that perform the same function

* Group individuals that has similar political view
* Categorize documents of similar topics

* |deality similar objects from pictures

11/20/14
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Toy Examples

L Image -
aidian

Pt ¥ 4

11/20/14
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Issues for clustering

What is a natural grouping among these objects? _‘
— Definition of "groupness"
« What makes objects “related”?
— Definition of "similarity/distance"
* Representation for objects
— Vector space? Normalization?
* How many clusters?
— Fixed a priori?
— Completely data driven?
* Avoid “trivial” clusters - too large or small
* Clustering Algorithms
— Partitional algorithms
— Hierarchical algorithms
e Formal foundation and convergence

11/20/14
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Today Roadmap: clustering

ﬁ)eﬁniﬁon of "groupness”

= Definition of "similarity/distance"

= Representation for objects

= How many clusters?
= Clustering Algorithms
= Partitional algorithms

= Hierarchical algorithms

=

" Formal foundation and convergence

11/20/14

1

Clustering is subjective

a R

L%

Simpson's Family

School Employees
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What is a natural grouping among
these objects?

J& KT R
i |[ag
Females Males




Another example: clustering is
subjective

ATl AT gt B

Two possible Solutions...
11/20/14 Yanjun Qi / UVA CS 4501-01-6501-07
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Today Roadmap: clustering

‘ = Definition of "groupness” T

# = Definition of "similarity/distance"
= Representation for objects
= How many clusters?
= Clustering Algorithms
= Partitional algorithms
= Hierarchical algorithms
" Formal foundation and convergence

11/20/14
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What is Similarity?

=

Hard to define!
But we know it

| when we see it

* The real meaning of similarity is a philosophical question. We will take a
more pragmatic approach

» Depends on representation and algorithm. For many rep./alg., easier to

"*think in terms of a distance (rather than similarity) between vectors.
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What properties should a distance
measure have?

‘ * D(A,B) =D(B,A) Symmetry T

* D(ALA) =0 Constancy of Self-Similarity
« D(A,B)=01If A=B Positivity Separation

* D(A,B) <= D(A,C) + D(B,C) Triangular Inequality

11/20/14




Intuitions behind desirable properties
of distance measure

* D(A,B)=D(B,A) Symmetry
— Otherwise you could claim "Alex looks like Bob, but Bob looks nothing
like Alex"
* DAA)=0 Constancy of Self-Similarity

— Otherwise you could claim "Alex looks more like Bob, than Bob does"

* DAB)=0IIfA=B Positivity Separation
— Otherwise there are objects in your world that are different, but you
cannot tell apart.

* D(A,B)<=D(A,C) + D(B,C) Triangular Inequality
— Otherwise you could claim "Alex is very like Bob, and Alex is very like
Carl, but Bob is very unlike Carl"

Distance Measures: Minkowski Metric

* Suppose two object x and y both have p
features x= (X, X, X))
y=,y,y,)

* The Minkowski metric is defined by ) /fl |’
X, y)= ) |xi—yi

* Most Common Minkowski Metrics

1, r =2(Euclidean distance )

p
2, r=1(Manhattan distance) d(x,y)= ZI xi— yil
i=1

3,r=+co("sup" distance ) d(x,y):rlnaX|Xi—yi|
<i<p




An Example

>

1: Euclideandistance: 4/4°+3° =5.
2 : Manhattan distance: 4+3=7.
3: "sup"distance: max{4,3} = 4.

Hamming distance: binary features

* Manhattan distance is called Hamming distance
when all features are binary. 2
d(x,y)= Y | xi— yil
i=1

— E.g., Gene Expression Levels Under 17 Conditions (1-High,0-Low)
123456 7 89 1011 12 13 14 15 16 17
GeneAOllﬂO]Of\OOlfO]ﬂO}l 1 1 OﬂO}l

GeneB 01 111/0000111/1/1 1 1 011 1
Hamming Distance: #(01)+#(10)=4+1=5.




Similarity Measures: Correlation
Coefficient

Expression Level Expression Level

& /\ /\ Gene B
VNN
DCZRY VA >Gene A

Time
Expression Level

/‘. Gene B
\‘\/./.7’ Gene A

S N

Time

Similarity Measures: Correlation
Coefficient

* Pearson correlation coefficient

Z(x ~X)(, - )

* Measuring the linear correlation

s(x,y) =
\/Z(x —3)x z(y i between two sequences, x and y,

e giving a value between +1 and -1
inclusive, where 1 is total positive
where x = 72’“ and y = 2y correlation, O is no correlation, and
-1 is total negative correlation.

‘s(x, y)‘ <1
unit independent

» Special case: cosine distance  s(x,y) = ry

x|y
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Edit Distance:

A generic technique for measuring similarity

‘ * To measure the similarity between two objects, transform \

one of the objects into the other, and measure how much
effort it took. The measure of effort becomes the distance
measure.

The distance between Patty and Selma.

Change dress color, 1 point
Change earring shape, 1 point
Change hair part, 1 point

D(Patty,Selma) =3

The distance between Marge and Selma.

Change dress color, 1 point
Add earrings, 1 point

Decrease height, 1 point This is called the Edit distance

Uelerdly enteld itz 3l or the Transformation distance
Lose weight, 1 point

11/

; D(Marge,Selma) =5
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Today Roadmap: clustering

‘ = Definition of "groupness” T

= Definition of "similarity/distance"
= Representation for objects
= How many clusters?
m) = Clustering Algorithms
= Partitional algorithms
= Hierarchical algorithms
" Formal foundation and convergence

11/20/14
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Clustering Algorithms

‘ * Partitional algorithms _T‘
— Usually start with a random %
(partial) partitioning * U = ~

— Refine it iteratively i K >

* K means clustering —

* Mixture-Model based clustering

e Hierarchical algorithms l_l_El*
— Bottom-up, agglomerative ¢ | l_

— Top-down, divisive

o

br

o=
oo 4

11/20/14
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Today Roadmap: clustering

‘ = Definition of "groupness” T

= Definition of "similarity/distance"
= Representation for objects
= How many clusters?
= Clustering Algorithms
= Partitional algorithms
m) = Hierarchical algorithms
" Formal foundation and convergence

11/20/14
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Hierarchical Clustering

‘ * Build a tree-based hierarchical taxonomy (dendrograrﬂ

from a set of objects, e.g. organisms, documents.

animal

With backbone verre\( ﬁebme Without backbone
?iih 1‘7)\Ule an?\hib. ma/l\nlnal w/oim il/lTCt mu?icean

* Note that hierarchies are commonly used to organize
information, for example in a web portal.

— Yahoo! hierarchy is manually created, we will focus on
automatic creation of hierarchies in data mining.

11/20/14

(How-to) Hierarchical Clustering

The number of dendrograms with n leafs

=2n -3)!/[2" D) (n-2)!] BOttOIIl-Up (agglomerative):
Starting with each item in its own \
Number ~ Number of Possible cluster, find the best pair to merge
gf Leafs ?endmgramg into a new cluster. Repeat until all
3 3 clusters are fused together.
4 15
5 105
10 34459425 A greedy
| local
| optimal
| | | Clustering: the process of grouping a

set of objects into classes of similar
objects =

high intra-class similarity

low inter-class similarity




We begin with a distance
matrix which contains the
distances between every pair
of objects in our database.

11/20/1
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Bottom-Up (agglomerative): Starting
with each item in its own cluster, find
the best pair to merge into a new
cluster. Repeat until all clusters are

rsea together.

]

[l

Consider all &1 & \
. ¢ — ( 7
possible @ .. L .Y 2 I T o
merges. .. i 4
11/20/14 ; |
- 4 Y

[ 1]

~  Choose

%J the best
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Bottom-Up (agglomerative): Starting
with each item in its own cluster, find
the best pair to merge into a new
cluster. Repeat until all clusters are

rsea together.

|

/\/’“

possible Choose 4

- )
> 5 { :\\ 4 ,?5
merges. .. ) e
@ x g g ‘

Consider all [ 1 3_1 1_1 1_1 Choose

poss1ble @ . e @Cé . . £ the best &
7,;x -
11/20/14 % ; / '

g

Consider all I_F'_L 1_1% [l [dl —

= U

A
o
wr
o
E' W
. &
e i
A
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Bottom-Up (agglomerative): Starting
with each item in its own cluster, find
the best pair to merge into a new
cluster. Repeat until all clusters are

Fsea together. |

Consider all | | l:|_l I 5 E 3 ch I i ; 3
possible -y Y 1D @y 00 . - Y -
merges. . & ) 2 i "X VS g the best %

i/ 68 7 = & \

Consider all I I ? v l % Choose

o

K

[
(2

|
]

. JY §
ossible . e . =} 6 ¢
p B Y B B V4 the best % e ¢
merges. .. ) e P
©ou g ﬁ ﬁ

Consider all [ 1 & 1 1_1 1_1 Choose

. " aan o ( ] & . ’? = //%
S B ( 28
merges. .. Y )
11/20/14 % , \ X
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Bottom-Up (agglomerative): Starting
with each item in its own cluster, find
the best pair to merge into a new
cluster. Repeat until all clusters are

Tisea together.
Consider all I i ; 3 Choose

possible Vo oD@ ) ?5 3
EEEs. 2 <Buthow do we compute distances 4 &
between clusters rather than
Consider all 1_ objects‘7 o
Y
L

3 =N b) = ¢ s &= z
possible e . ¢ the best Ol e
merges... “ ] ; )

" : t/ -
KX X po¥ para|
Consider all I 1 § 3 9 I 1 Choose Yo |

X N . . A 4 = Y = N3
possible @' . e J ?5\ 1 Cf the best T {ﬂr
MeTEes 714 2 a gf v

[ ae gl L= & i \& e@‘ : -
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How to decide the distances between
clusters ?

| B

* Single-Link
— Nearest Neighbor: their closest members.
* Complete-Link
— Furthest Neighbor: their furthest members.

* Average:
— average of all cross-cluster pairs.

11/20/14
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Computing distance between
clusters: Single Link

=

e cluster distance = distance of two closest
members in each class

° - Potentially
e long and skinny
® e clusters
@ .\. °
0./.
® :
()

.
®e
.
®e
., .
.....
...........

11/20/14
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Computing distance between
|— clusters: : Complete Link —‘

* cluster distance = distance of two farthest
members

+ tight clusters

11/20/14
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Computing distance between
clusters: Average Link “

* cluster distance = average distance of all
pairs

the most widely
used measure

Robust against
noise

11/20/14

Yanjun Qi / UVA CS 4501-01-6501-07

Example: single link

S N

[ N L
0 O W O
(S BN B )

~ O

11/20/14
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Example: single link

‘ 12345 (12) 3 4 5 \
L 1o a,2)[o
212 0 ‘ 313 0
316 30 4197 0
4110 97 0 sls s 40
519 8 540

d,,,, =mn{d,,d, }=mn{ 63} =3
d iy, =min{ d,.d,,} =min{ 10,9} =9
d s =min{ d,d, } =mn{98} =38

11/20/14
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Example: single link

‘ 12345 12) 3 45 123 4 s \

1 To
1270
I (1.2) (123)
‘ 3 (3 0 4
o e a0 270 5 40
508 5 4 0
519 85 4 0

d(l,z,s),4 = min{ d(],z),4 ad3,4} =miny 9,7} =7
d(1,2,3),5 = min{ d(1,2),5’d3,5} =min{ 8,5} =5

11/20/14
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Example: single link

—

123 45 12 3 45
1o 1,2)[0
212 0 ‘ 303 0
tlio s 70 slo 70
509 8 540 S8 5 40

123) 4 5 \

1,2,3)[0
4 |7 0
5 15 40

d(l,2,3),(4,5) =min{ d(l,2,3),4 >d(1,2,3),5} =5

11/20/14

Partitions by cutting the dendrogram at a desired
level: each connected component forms a cluster.

Height represents
distance between
objects / clusters )
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-

29 2 611 917101324252620223027 1 3 8 412 5 1423 1516 18 19 21 28 7

11/20/14

Average linkage
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Hierarchical Clustering

‘ * Bottom-Up Agglomerative Clustering _‘
— Starts with each object in a separate cluster
— then repeatedly joins the closest pair of clusters,
— until there is only one cluster.

The history of merging forms a binary tree or hierarchy (dendrogram)

* Top-Down divisive
— Starting with all the data in a single cluster,

— Consider every possible way to divide the cluster into two. Choose
the best division

— And recursively operate on both sides.

11/20/14
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Computational Complexity

‘ * Inthe first iteration, all HAC methods need to compute \
similarity of all pairs of n individual instances which is O(n?).

* In each of the subsequent n-2 merging iterations, compute
the distance between the most recently created cluster and
all other existing clusters.

* |n order to maintain an overall O(n?) performance,
computing similarity to each other cluster must be done in
constant time.

* Else O(n? log n) or O(n3) if done naively

11/20/14




Summary of Hierarchal
Clustering Methods

* No need to specify the number of clusters in
advance.

e Hierarchical structure maps nicely onto human
intuition for some domains

e They do not scale well: time complexity of at least
O(n?), where n is the number of total objects.

e Like any heuristic search algorithms, local optima
are a problem.

e Interpretation of results is (very) subjective.
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