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Last Lecture Recap

U Linear regression (aka least squares) —‘

U Learn to derive the least squares estimate by
optimization
O Evaluation with Cross-validation
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e.g. SUPERVISED LEARNING

* Find function to map input space X to
output space Y

* Generalisation: learn function / hypothesis

n  u

. from past data in order to “explain”, “predict”,:
“model” or “control” new data examples
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Linear Regression Models

’7 i X —Y —‘
= e.g. Linear Regression Models

y=f(x)=6,+ Hlxl + 82x2

» Features:
Living area, distance to
campus, # bedroom ...
» Targety:

Rent =» Continuous
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training / learning goal

* Using matrix form, we get the

following general representation 0al'
of the linear function on train set: 0'" g .

T=Xx0
i hvp Pa)

Training
set

Learning
algorithm

 Our goal is to pick the optimal 6
that minimize the following cost
function:
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Method |: normal equations

* Write the cost function in matrix form:

1¢ )
J(0>=§;(xifa-yi)2 —— x —-
1 — xI -
-5 (x0-5) (xo-5) X = "2 Y-
=%Qﬂx”x0-ﬁh¥ﬁﬂgﬂX€+yﬁﬂ — x' -

To minimize J(6), take its gradient and set to
zero:

= | X' X0=X"y
The normal equations

U
o =(x"x)' x"5
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e.g. 10 fold Cross Validation

* Divide data into
10 equal pieces

* 9 pieces as
training set, the
rest 1 as test set

* Collect the
scores from the
diagonal
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Today

 More ways to train / perform optimization fcﬂ
linear regression models

U Gradient
U Gradient Descent (GD) for LR
U Stochastic GD for LR
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Review: Definitions of gradient
(from Stanford handout)

N N

Suppose that f: R™*" — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of

of(4) df(4) ... Of(A)

0A 0A OA
of(A) oith) . . ofth
VAf(A) € R™*" — A1  BAz 9Aa,

9f(A) of(A)  8f(4)

—
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Review: Definitions of gradient
(from Stanford handout)
’.75ize of gradient is always the same as —‘
the size of

of ()

o0z,
o1@) 1c R if x € R™
Vof(z)=| °7 -

of (z)
Ozxn
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Review: Definitions of gradient ==~
(from http://en.wikipedia.org/wiki/
atrix_calculus#Scalar-by-vector) —

The derivative of a scalar y function of a matrix X of
independent variables, with respect to the matrix X, is

given as - : S
dy dy ... Gy
dr11 Oz Oz p1

9 dy d ... Oy
Y

| 912 Oz Oz p2

0X : : :
o Oy .. Oy

| dz14 Oz O pq

Notice that the indexing of the gradient
with respect to X is transposed as

compared with the indexing of X. 1

9/4/14

(from http://en.wikipedia.org/wiki/ T
Matrix_calculus#Scalar-by-vector) >
2
The derivative of a scalar y by a vector X = | is

w_ [ w oy
Ix dxy 0 ox,,

This gradient is a 1xn row vector whose entries
respectively contain the n partial derivatives
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Review: Derivative of a Function

is called the derivative of fat d.

lim
h—0

f(a+h)—f(a)
h

We write: f’(x)=limf(x+h)_f(x)

h—0 h

“The derivative of f with respect to X is ...”

There are many ways to write the derivative of ) = f (X)

=>» e.g. define the slope of the curve y=f(x) at the point x
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i Review: Derivative of a QUiadratic Furétion
2

4 — —

) y=x -3

2

1

y' =hm %
0
y =lim2x +/ﬁ
h—0
y' =2x
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Today

U More ways to train / perform optimization for—‘
linear regression models

U Gradient
U Gradient Descent (GD) for LR
U Stochastic GD for LR
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A little bit more about [ Optimization ]

* Objective function [F'(x) —‘

* Variables X
e Constraints

To find values of the variables
that minimize or maximize the objective function
while satisfying the constraints
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e.g. Gradient Descent
( Steepest Descent )

A first-order optimization

algorithm.

To find a local minimum of a
function using gradient
descent, one takes steps
proportional to the
negative of the gradient of
the function at the current
point.
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Gradient Descent (GD)

* Initialize k=0, choose x,

* While k<kmax For the k-th epoch

X, =x,_,—aVxF(x,_,)

Please READ this note to clarify the confusion : http://
ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/
gradientDescent.pdf
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lllustration of Gradient Descent (2D case)

F(x)

Original point in
weight space

New point in
weight space
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Comments on Gradient Descent Algorithm

* Works on any objective function F(w)

— as long as we can evaluate the gradient
— this can be very useful for minimizing complex functions E

¢ Local minima

— Can have multiple local minima

— (note: for LR, its cost function only has a single global minimum, so
this is not a problem)

— If gradient descent goes to the closest local minimum:
* solution: random restarts from multiple places in weight space
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Method Ill: LR with batch GD

* The Cost Function: T

J(0) = %i(xfa )

* Consider a gradient descent algorithm:

J J

o' =0’ -aiJ(e)
96,

. | For the (t+1)-th epoch

J
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| Je)= (%0-9)7(%6-7Y)
= ((0)"-Y7)(z6-Y)
= (0" -97)(26-%)
= o'X20-0'xy-720+9Y
&/—-—\/‘—’f;/
Sw XY =Y 20
(X8,Y>  <4,26D

_ aroT T U ld case
_ngz'_e;z&fymv \/m

2 JO) qudnda ,gmcffi B; 97;’
50 '

9/5/14

11



Yanjun Qi / UVA CS 4501-01-6501-07

Sp hednt 41 +43 > ety b | patial doi 26raticat
Y, [07F30)= 2Xx6  (f24)
Vp078)= =¥y (B4
Up (Y) =0

> y,T0)= ¥30- XY
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lllustration of Gradient Descent

(2D case)

9/4/14 24

9/5/14

12



9/5/14

Yanjun Qi / UVA CS 4501-01-6501-07

lllustration of Gradient Descent (2D case)
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Steepest descent / GD

‘ — Note that:
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LR with batch GD

Update Rule Per

0" =6+ az (v, =X, 60")x/

T
9 d - .
= de—=J| ==-N 0, -x0)x,

Based on Stanford

W{

0 =6+ az (v, -x, 0))x,

—This is as a batch gradient descent algorithm

Please READ this note to clarify the confusion : http://
ipvs.informatik.uni-stuttgart.de/mlir/marc/notes/
gradientDescent.pdf
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Choosing the Right Step-Size /
Learning-Rate is critical

9/4/14
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Method Ill: LR with Stochastic GD =»

* Now we have the following descent rule:

* For a single training point, we have:
t+1 t =T nt\=
0" =0 +a(y, -X, 0)X,

— This is known as the Least-Mean-Square update rule, or the Widrow-
Hoff learning rule

— This is actually a "stochastic", "coordinate" descent algorithm
— This can be used as a on-line algorithm

9/4/14
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Summary: three ways to learn LR

* Normal equations 6 = (XTX)_IXTj/ —‘

— Pros: a single-shot algorithm! Easiest to implement.
— Cons: need to compute pseudo-inverse (XTX)'!, expensive, numerical
issues (e.g., matrix is singular ..), although there are ways to get around this

n
t+1 t T nt
* GD or Steepest descent 07 =0+ az (yn - X, 0 )Xn
1=

— Pros: easy to implement, conceptually clean, guaranteed convergence
— Cons: batch, often slow converging

. 1 _ nt T nt
* Stochastic LMS update rule Hj = 9]. + O{(yn - xn0 )xn,j

— Pros: on-line, low per-step cost, fast convergence and perhaps less prone to
local optimum

— Cons: convergence to optimum not always guaranteed
9/4/14
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Direct (normal equation) vs.
lterative (GD) methods

* Direct methods: we can achieve the solution in a
single step by solving the normal equation

— Using Gaussian elimination or QR decomposition, we
converge in a finite number of steps

— It can be infeasible when data are streaming in in real
time, or of very large amount

* Iterative methods: stochastic or steepest gradient
— Converging in a limiting sense
— But more attractive in large practical problems
— Caution is needed for deciding the learning rate a
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Convergence rate

* Theorem: the steepest descent equation algorithm converge
to the minimum of the cost characterized by normal
equation:

9(00) — (XTX>_1XTy
If the learning rate parameter satisfy =

0<a<2/Amax| X1 X]

* A formal analysis of LMS need more math; in practice, one
can use a small a, or gradually decrease .
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Convergence Curves,
for an example

Log-log plot of training MSE versus epochs

810 :
© —
T Bat(_:h update * For the batch method,
2 —Online update the training MSE is
= ___Minimum MSE by initially large due to
S 108! normal equation || uninformed
c initialization
[}
o
o * Inthe online update, N
o 104 updates for every
o epoch reduces MSE to
g a much smaller value.
c
®
= 10° 0 2 4
10 10 10
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Performance vs. Training Size
for an example

. R

Variation of Test mean square error with percentage of data used for training
2000 T

e The results from B and O
update are almost identical.
So the plots coincide.

—Batch update
—Normal equation
—Online update

15001
e The test MSE from the

normal equation is more

i than that of B and O during
small training. This is
probably due to overfitting.

1000

Mean square error on test set

500~ 1
e In B and O, since only 2000
(for example) iterations are
. ‘ ‘ , ‘ ‘ ‘ , , ‘ allowed at most. This
0 10 20 30 40 50 60 70 8 90 100
Percentage of data used for training rOUghly .acts asa .
mechanism that avoids
overfitting.
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Geometric Interpretation of Least
Mean Square Solution
* The predictions on the training data are: —‘
Notethat 3= X0 = X(X"X ) X5
and "
5-p=lelerx ) xr -1 »
= _ |7
x"(G-5)=x"(x(erx)y xr -1 Sk
- (XTX(X’X)‘U(T ' )y Va
-0 1l
=>» the orthogonal projection of _— 2
X1

the true y vector into the space
spanned by the columns of X

<
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Today Recap

L More ways to train / perform optimization for—‘

linear regression models

UGradient
U Gradient Descent (GD) for LR

U Stochastic GD for LR

9/4/14

36

18



Yanjun Qi / UVA CS 4501-01-6501-07

References

* Big thanks to Prof. Eric Xing @ CMU for aIIowing“
me to reuse some of his slides
L Notes about Gradient Descent from Toussaint:
(please read) http://ipvs.informatik.uni-
stuttgart.de/mir/marc/notes/
gradientDescent.pdf
Whttp://en.wikipedia.org/wiki/
Matrix _calculus#Scalar-by-vector

9/2/14 37

9/5/14

19



