UVA CS 4501 - 001 / 6501 - 007 Introduction to Machine Learning and Data Mining

Lecture 5: Newton's Method and Non-Linear Regression Models

Yanjun Qi / Jane

University of Virginia Department of Computer Science

9/9/14

Yanjun Qi / UVA CS 4501-01-6501-07

Last Lecture Recap

- ☐ Three Ways to train / perform optimization for linear regression models
 - Normal Equation
 - ☐ Gradient Descent (GD)
 - Stochastic GD

Linear Regression Models

→ e.g. Linear Regression Models

$$\hat{y} = f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2$$

→ To minimize the cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_i(\vec{x}_i) - y_i)^2$$

t−1

Yanjun Qi / UVA CS 4501-01-6501-07

Method I: normal equations

• Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$= \frac{1}{2} (X \theta - \bar{y})^{T} (X \theta - \bar{y})$$

$$= \frac{1}{2} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \bar{y} - \bar{y}^{T} X \theta + \bar{y}^{T} \bar{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix} \quad \bar{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

• To minimize $J(\theta)$, take derivative and set to zero:

$$\Rightarrow X^T X \theta = X^T \vec{y}$$
The normal equations

$$\theta^* = (X^T X)^{-1} X^T \vec{y}$$

9/9/14

Method II: LR with batch Steepest descent / Gradient descent

$$\theta_t = \theta_{t-1} - \alpha \nabla J(\theta_{t-1})$$
 For the t-th epoch

$$\nabla_{\theta} J = \left[\frac{\partial}{\partial \theta_1} J, \dots, \frac{\partial}{\partial \theta_k} J \right]^T = -\sum_{i=1}^n (y_i - \mathbf{x}_n^T \theta) \mathbf{x}_n$$

$$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_n - \mathbf{x}_n^T \theta^t) \mathbf{x}_n$$

-This is as a batch gradient descent algorithm

$$\nabla_{\mathbf{0}} J(\theta) = \chi^{T} \chi \theta - \chi^{T} \gamma$$

$$= \chi^{T} (\chi \theta - \chi)$$

$$= \chi^{T} \left(\begin{bmatrix} -\chi_{1}^{T} - \chi_{2}^{T} - \chi_{3}^{T} - \chi_{4}^{T} - \chi_{5}^{T} - \chi_{5$$

Method III: LR with Stochastic GD

From the batch steepest descent rule:

$$\theta_j^{t+1} = \theta_j^t + \alpha \sum_{i=1}^n (y_i - \bar{\mathbf{x}}_i^T \theta^t) x_i^j$$

• For a single training point, we have:

- This is known as the Least-Mean-Square update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as a on-line algorithm

9/9/14

Yanjun Qi / UVA CS 4501-01-6501-07

Summary: three ways to learn LR

Normal equations

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \vec{\boldsymbol{y}}$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse $(X^TX)^{-1}$, expensive, numerical issues (e.g., matrix is singular ..), although there are ways to get around this
- GD or Steepest descent

$$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_n - \mathbf{x}_n^T \theta^t) \mathbf{x}_n$$

- Pros: easy to implement, conceptually clean, guaranteed convergence
- Cons: batch, often slow converging
- $\theta_i^{t+1} = \theta_i^t + \alpha (y_n \mathbf{x}_n^T \theta^t) x_{n,i}$ Stochastic LMS update rule
 - Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
 - Cons: convergence to optimum not always guaranteed

Today

Today

More optimization:
Stochastic gradient descent
Newton's method
Regression Models Beyond Linear
- LR with non-linear basis functions
- Locally weighted linear regression
- Regression trees and Multilinear Interpolation

Stochastic gradient descent:

More variations

• Single-sample:

$$\theta^{tH} = \theta^t + \alpha \left(\mathcal{J}_{\hat{\lambda}} - \vec{X}_{\hat{\lambda}}^T \theta^t \right) \vec{\chi}_{\hat{\lambda}}$$

Mini-batch:

$$\theta^{tH} = \theta^{t} + \alpha \sum_{\tilde{j}=1}^{8} (y_{\tilde{j}} - \tilde{\chi}_{j}^{T} \theta^{t}) \vec{\chi}_{\tilde{j}}$$
eg. $\beta = 15$

9/9/14

11

Yanjun Qi / UVA CS 4501-01-6501-07

Stochastic gradient descent

SGD can also be used for offline learning, by repeatedly cycling through the data; each such pass over the whole dataset is called an **epoch**. This is useful if we have **massive datasets** that will not fit in main memory. In this offline case, it is often better to compute the gradient of a **minibatch** of B data cases. If B=1, this is standard SGD, and if B=N, this is standard steepest descent. Typically $B\sim 100$ is used.

Intuitively, one can get a fairly good estimate of the gradient by leoking at just a few examples. Carefully evaluating precise gradients using large datasets is often a waste of time, since the algorithm will have to recompute the gradient again anyway at the next step. It is often a better use of computer time to have a noisy estimate and to move rapidly through parameter space.

SGD is often less prone to getting stuck in shallow local minimal because it adds a certain amount of "noise". Consequently it is quite popular in the machine learning community for fitting models such as neural networks and deep belief networks with non-convex objectives.

Nando de Freitas's tutorial slide

Today

- ☐ More optimization:
 - ☐ Stochastic gradient descent
 - Newton's method
- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation

9/9/14

Yanjun Qi / UVA CS 4501-01-6501-07

Newton's method for optimization

- The most basic second-order optimization algorithm
- Updating parameter with

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - \mathbf{H}_K^{-1} \mathbf{g}_k$$

9/9/14 14

Review: Hessian Matrix / d==2 case

1st derivative to gradient,
 2nd derivative to Hessian

$$f(x,y)$$

$$g = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

9/9/14

15

Yanjun Qi / UVA CS 4501-01-6501-07

Review: Hessian Matrix

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number. Then the **Hessian** matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}.$$

9/9/14

Newton's method for optimization

 Making a quadratic/second-order Taylor series approximation

$$oldsymbol{\widehat{f}_{quad}}(oldsymbol{ heta}) = f(oldsymbol{ heta}_k) + \mathbf{g}_k^T(oldsymbol{ heta} - oldsymbol{ heta}_k) + rac{1}{2}(oldsymbol{ heta} - oldsymbol{ heta}_k)^T \mathbf{H}_k(oldsymbol{ heta} - oldsymbol{ heta}_k)$$

the minimum solution of the above right quadratic approximation (quadratic function minimization is easy!)

9/9/14

$$\frac{\partial}{\partial \theta} = \int |\partial_{k}| + \int \int |\partial_{k}| + \partial_{k}| + \partial_{k$$

Newton's Method

At each step:

$$\theta_{k+1} = \theta_k - \frac{f'(\theta_k)}{f''(\theta_k)}$$

$$\theta_{k+1} = \theta_k - H^{-1}(\theta_k) \nabla f(\theta_k)$$

- Requires 1st and 2nd derivatives
- Quadratic convergence
- However, finding the inverse of the Hessian matrix is often expensive

9/9/14

Yanjun Qi / UVA CS 4501-01-6501-07

Comparison

• Newton's method vs. Gradient descent

A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes).

Newton's method uses curvature information to get a more direct route ...

9/9/14

$$J(\theta) = \frac{1}{2}(\mathcal{Y} - \mathcal{X}\theta)^{T}(\mathcal{Y} - \mathcal{X}\theta)$$

$$\nabla J(\theta) = \mathcal{X}^{T} \mathcal{X}\theta - \mathcal{X}^{T} \mathcal{J}$$

$$H = \nabla_{\theta}^{2} J(\theta) = \mathcal{X}^{T} \mathcal{X} \quad (P_{2}4)$$

$$\Rightarrow \theta^{t} = \theta^{t} - H^{-1} \nabla f(\theta)$$

$$= \theta^{t} - (\mathcal{X}\mathcal{X})^{-1} [\mathcal{X}^{T} \mathcal{X}\theta - \mathcal{X}^{T} \mathcal{J}]$$

$$WHY ???$$

$$= (\mathcal{X}^{T} \mathcal{X})^{-1} \mathcal{X} \mathcal{J}$$

$$Newton's method for Linear Regression
$$9/9/14$$$$

Today

- ☐ More optimization:
- ☐ Regression Models Beyond Linear
 - -LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation

Beyond basic LR

- Linear model is an approximation
- Three ways to moving beyond linearity
 - -LR with non-linear basis functions
 - -Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

9/9/14

27

Yanjun Qi / UVA CS 4501-01-6501-07

e.g. polynomial regression

For example, $\phi(x) = [1, x, x^2]$

9/9/14

Dr. Nando de Freitas's tutorial slide

e.g. polynomial regression

$$\phi(\mathbf{x}) = [1, x_1, x_2]$$
 $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$

KEY: if the bases are given, the problem of learning the parameters is still linear.

Yanjun Qi / UVA CS 4501-01-6501-07

LR with non-linear basis functions

· LR does not mean we can only deal with linear relationships

 $y = \theta_0 + \sum_{j=1}^m \theta_j \phi(x) = \theta^T \phi(x)$

 We are free to design (non-linear) features (e.g., basis function derived) under LR

where the $\phi_i(x)$ are fixed basis functions (also define $\phi_0(x) = 1$).

• E.g.: polynomial regression:

$$\phi(x) := |\mathbf{1}, x, x^2, x^3|$$

Many Possible Basis functions

- There are many basis functions, e.g.:
 - Polynomial $\varphi_i(x) = x^{j-1}$
 - Radial basis functions $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$
 - Sigmoidal $\phi_j(x) = \sigma \left(\frac{x \mu_j}{s} \right)$
 - Splines,
 - Fourier,
 - Wavelets, etc

-0.5

9/9/14

e.g. nonlinear regression with predefined RBF basis functions

9/9/14

green curve to fit train data points]

green curve is linear weighted som of hed curves

Dr. Nando'de Freitas's tutorijal slide

Two main issues:

- Learn the parameter \theta
 - Almost the same as LR, just \rightarrow X to $\varphi(x)$
 - Linear combination of basis functions (that can be non-linear)
- Choose the model order, e.g. polynomial degree for polynomial regression

Today

More optimization:
Regression Models Beyond Linear
- LR with non-linear basis functions
- Locally weighted linear regression
- Regression trees and Multilinear Interpolation (later)

(2) Locally weighted linear regression

• The algorithm:
Instead of minimizing

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

now we fit $oldsymbol{ heta}$ to minimize

Where do w_i 's come from? $w_i = K(\mathbf{x}_i, \mathbf{x}0) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}0)^2}{2\tau^2}\right)$

- where x0 is the query point for which we'd like to know its corresponding y
- → Essentially we put higher weights on (errors on) training examples that are close to the query point x0 (than those that are further away from the query)

9/9/14

39

Yanjun Qi / UVA CS 4501-01-6501-07

Locally weighted regression

Locally weighted regression solves a separate weighted least squares problem at each target point x0

$$\min_{\alpha(x_0), \beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) \left[y_i - \alpha(x_0) - \beta(x_0) x_i \right]^2$$

The estimate is then $\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$.

e.g. when for only one feature variable

Define the vector-valued function $b(x)^T = (1, x)$. Let **B** be the $N \times 2$ regression matrix with *i*th row $b(x_i)^T$, and $\mathbf{W}(x_0)$ the $N \times N$ diagonal matrix with *i*th diagonal element $K_{\lambda}(x_0, x_i)$. Then

Parametric vs. non-parametric

- Locally weighted linear regression is a non-parametric algorithm.
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
 - because it has a fixed, finite number of parameters (the \theta), which are fit to the data;
 - Once we've fit the \theta and stored them away, we no longer need to keep the training data around to make future predictions.
 - In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows with linearly the size of the training set.

9/9/14

41

Yanjun Qi / UVA CS 4501-01-6501-07

Today's Recap

- ☐ Stochastic gradient descent
- Newton's method

☐ Regression Models Beyond Linear

- LR with non-linear basis functions
- Locally weighted linear regression

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Nando de Freitas's tutorial slide

9/9/14 43