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Last Lecture Recap

U Three Ways to train / perform optimization —‘
for linear regression models

U Normal Equation
U Gradient Descent (GD)
U Stochastic GD
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Linear Regression Models

= e.g. Linear Regression Models
A 1 2
y=f(x)=0,+0x +0,x
= To minimize the cost function:|
1 n
A 2
JO)=2 3G ()=3)"
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Method |: normal equations

* Write the cost function in matrix form:
J(0)=%2(X,T0_yl)2 _ X’lr - yl
- 2(x0-5) (x0-5) S I I
=%(BTXTXB—BTXTy—yTX0+yTy) -— x -- y,
* To minimize J(0), take derivative and set to
zero:

= | X' X0=X"y
The normal equations

U
o =(x"x)' x"5
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Method Il: LR with batch Steepest
descent / Gradient descent

‘ Ht = Qt_l - O{V](Ht_l) For the t-th epocT‘

)

T

d < T

V,J=|—J,....—J =—Z . —X, O)x,
/ a6, a0, } < o )

0" =0 +a Y (v, -x,0))x,
=1

—This is as a batch gradient descent algorithm
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Method Ill: LR with Stochastic GD =
mm the batch steepest descent rule: —‘
6" =6/ +ai21(yl. -x,0")x/
For a single training point, we have:
0" =0 +a(y, -%, )%,

— This is known as the Least-Mean-Square update rule, or the Widrow-
Hoff learning rule

— This is actually a "stochastic", "coordinate" descent algorithm
— This can be used as a on-line algorithm
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Summary: three ways to learn LR

* -1 —
* Normal equations 0 =(XTX) XTy —‘

— Pros: a single-shot algorithm! Easiest to implement.
— Cons: need to compute pseudo-inverse (XTX)'!, expensive, numerical
issues (e.g., matrix is singular ..), although there are ways to get around this

n
t+1 t T At
* GD or Steepest descent 07 =0+ aZ (y,, -X, 0 )Xn
i=

— Pros: easy to implement, conceptually clean, guaranteed convergence
— Cons: batch, often slow converging

. 1 _ nt T nt
* Stochastic LMS update rule Hj = 9]. + O{(yn - an )xn j

— Pros: on-line, low per-step cost, fast convergence and perhaps less prone to
local optimum

— Cons: convergence to optimum not always guaranteed
9/9/14
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Today

U More optimization: —‘

U Stochastic gradient descent
U Newton’s method
U Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression
— Regression trees and Multilinear Interpolation
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Stochasticgradient descent /
Online Learning Algorithm
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Stochastic gradient descent :
More variations

e Single-sample:
@’Hl /9 +(><(“3 \ )X{/
* Mini-batch:

6" _ oF w%(“é X}et)x}
-éﬂ_ B::’S;
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Stochasticgradient descent

SGD can also be used for offline learning, by repeatedly cycling through
the data; each such pass over the whole dataset is called an epoch. This
is useful if we have massive datasets that will not fit in main memory.
In this offline case, it is often better to compute the gradient of a mini-
batch of B data cases. If B = 1, this is standard SGD, and if B = N,
this is standard steepest descent. Typically B ~ 100 is used.

cap-get—a fairly good estimate of the gradien
few examples. Carefully evaluating precise gradients using lar
datasets is i ince the algorlthm will have

of computer time to haveé noisy éstimate ﬁd to move rapidly through
parameter space.

SGD is Gften less prone to getting stuck in shallow local minima) because it

adds a certain amount of “noise”. Consequently it is quite popular in the
machine learning community for fitting models such as neural networks
and,deep belief networks with non-convex objectives.

12
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Today

U More optimization: —‘

U Stochastic gradient descent
U Newton’s method
U Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression
— Regression trees and Multilinear Interpolation
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Newton’s method for optimization

* The most basic second-order optimization —‘
algorithm

e Updating parameter with

Or+1 = 0r — }_{lgk
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Review: Hessian Matrix / d==2 case

* 1stderivative to gradient, —‘

2nd derivative to Hessian

f(x,y)
af
ox
g=Vf= ¥
ay
&2f 2
H = x2 axdy
9% f 9% f
mxdy gy
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Review: Hessian Matrix
[ ]

Suppose that f : R® — R is a function that takes a vector in R" and returns a real number.
Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n x n
matrix of partial derivatives,

i) Pe) | P

63571 01019 0z10z,
0%f(x)  O*f(x 1(z)
1 ax% 0902y

ng(l‘) c Rnxn — 89:2.695

) P . #he)

L Ooodz; Ozadz, 02
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Newton’s method for optimization

‘ * Making a quadratic/second-order Taylor _‘

series approximation
P "1
Fauaa(0) = f(0r) + &7 (6 — 6y) + 5(0 —0,)THL(0 - 6;)

the minimum solution of
the above right
guadratic approximation
(quadratic function
minimization is easy !)
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Q)= 5190+ 47 (0-6¢) +
L (6-9) H (6-6k)

I

J

\

3 (0HL 0 -26"Hie Ok 6. Hy)

93(9)
36 =0+ jk tg'—yke_ %Hkﬁk =0

\/Suf’zv-had;-('
Je tHe (6-0k) =0

-l
5/3/14 :;') 9= 8’( - Hk g’#
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Newton’s Method / second-ordet ™~
Taylor series approximation

’7 sz> Hk+1 —‘
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Newton’s Method / second-order
Taylor series approximation

- B
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Newton’s Method / second-order
Taylor series approximation

- B
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Newton’s Method / second-order
Taylor series approximation

- B
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Newton’s Method

* At each step: '
6 _0 f(Hk) —‘
1'(6,)

Hk+1 = Qk _H_I(Hk)vf(gk)

* Requires 15t and 2" derivatives
* Quadratic convergence

* =>» However, finding the inverse of the Hessian
matrix is often expensive
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Comparison

e Newton’s method vs. Gradient descent —‘

A comparison of gradient descent
(green) and Newton's method
(red) for minimizing a function
(with small step sizes).

Newton’s method uses curvature
information to get a more direct X,
route ...

S7S71% 24
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T(0)=5(Y-x6)" (Y- 20)
U3e)= 26 ~% ¥
H = Véjcs)z XX (B
2 0°=6° - W vfe)
-
<6t~ @3)"'[g20-37]

* (XTX )fl XFJ Newton’s method
for Linear Regression

25
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Today

U More optimization: T
U Regression Models Beyond Linear
— LR with non-linear basis functions

— Locally weighted linear regression

—Regression trees and Multilinear
Interpolation

26
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Beyond basic LR

* Linear model is an approximation —‘

* Three ways to moving beyond linearity
—LR with non-linear basis functions
—Locally weighted linear regression

—Regression trees and Multilinear
Interpolation (later)
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e.g. polynomial regression

For example, ¢(z) = [1, z, 2]

10+ tL")Q: ¢(*A>O
T Q,tX0O, ¢+ x‘ol

éoj(
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e.g. polynomial regression

KEY: if the bases are given, the problem of
learning the parameters is still linear.
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LR with non-linear basis functions

* LR does not mean we can only deal with —‘

linear relationships )
y=0o+ " 0,¢(x)=60"¢(x)

* We are free to design (non-linear) features
(e.g., basis function derived) under LR

where the ¢(x) are fixed basis functions (also define
Polx) = 1).
* E.g.: polynomial regression:

P(x) = |_1, x, x° ,x3j
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Many Possible Basis functions

* There are many basis functions, e.g.:

— Polynomial @,(x)= !

. , . X— U,
Radial basis functions ¢, (x) = exp(— ( ZSZJ)Z ]

Sigmoidal ¢,-(x) = g(x_ﬂf)
K

— Splines, . ; !
- qurier ; A i) ;M\‘/Jx A 111/
f 05 \ ”% 075 \ /\/>\></ Kl/:/ ////// /
— Wavelets, etc L /}// B \<\< /\>/\X\ / ///// ///
/ st AANAARAAA 025 / / /
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e.g. nonlinear regression with
predefined RBF basis functions

1
—x- H\l ix-21t ~Ux-41

YCx) = € o, t e 93

data pair (x: 73
W %

, WK(MHH)

[l /] v
'o[ 1 2 3 q-°s X

b

[grzen (W o it 1 AR POWS |
9/9/14 3% 't ve |§ /Q\nW WCJH’M} M curves
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1D and 2D RBFs

» 1D RBF | T

x B
yest=,6,(x) + + B3 45(%)

* After fit:

yest = 29 (x) + + 0.5¢5(X)
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Good and Bad RBFs

Blue dots denote —
* A good 2D RBF &z AR

_— Sphere of
4 significant
influence of
center

Xy

/r.
= —
2 .
—~ -
P
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() O
)
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&/ o/
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Two main issues:

* Learn the parameter \theta —‘

— Almost the same as LR, just =2 X to QO(X)

— Linear combination of basis functions (that can be
non-linear)

e Choose the model order, e.g. polynomial
degree for polynomial regression
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Issue: Overfitting and underfitting

| B

y=0,+0x Y =0y + O, + O,x° y=2j=09jx]
Generalisation: learn function /
hypothesis from past data in order K-fold Cross
to “explain”, “predict”, “model” or Validation !!!!

II'

o014 “control” new data examples

9/9/14
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Issue: Over-fitting and under-fitting

* Page 159 of “Elements of SL” book, Figure 5.9

Purple : true function
dfy =5 dfy =9 dfy =15

T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 0.0 02 04 06 08 10
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Today

U More optimization: “

U Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression

—Regression trees and Multilinear
Interpolation (later)
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(2) Locally weighted linear regression

*| The algorithm: IR R PSR
J(e)-zg(xi 0-)

Instead of minimizing

1 n
now we fit @ to minimize J(9)=EEW,»(X,-T6’—}’,-)2
i=1

2
Where do w,'s come from? w, = K(x,,x0) = exp(—(xiz_—io))
T

* where x0 is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (errors on)
training examples that are close to the query point x0
(than those that are further away from the query)
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Locally weighted regression

Locally weighted regression solves a separate weighted least

squares problem at each target point x0

N e.g. when
. . 2
Jmin 3" Ka(ao, ) [~ alzo) ~ Alo)ail®  |for only
=t one feature
The estimate is then f(.l'[)) = a(zo) + 3(.1’0).1~0. variable

Define the vector-valued function b(z)T = (1,z). Let B be the N x 2
regression matrix with ith row b(z;)7, and W(zg) the N x N diagonal
matrix with ith diagonal element K (zo,2;). Then

LWR f(zo) = blao)T (BTW(z0)B) 'BTW (zo)y

@ LR f(x)=(x)'6 =) (X'X) X5
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Parametric vs. non-parametric

* Locally weighted linear regression is a non-parametric
algorithm.

* The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

— because it has a fixed, finite number of parameters (the \theta),
which are fit to the data;

— Once we've fit the \theta and stored them away, we no longer need
to keep the training data around to make future predictions.

— In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

* The term "non-parametric" (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows with linearly the size of the training set.

9/9/14
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Today’s Recap

L More optimization for LR: —‘

U Stochastic gradient descent
U Newton’s method

L Regression Models Beyond Linear

— LR with non-linear basis functions

— Locally weighted linear regression
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