Yanjun Qi / UVA CS 4501-01-6501-07

UVA CS 4501 - 001 / 6501 - 007 Introduction to Machine Learning and Data Mining

Lecture 9: Classification with Support Vector Machine (cont.)

Yanjun Qi / Jane

University of Virginia Department of Computer Science

9/25/14

Where we are ? →
Five major sections of this course

_		
	Pogrossion	(cuporvicod)
_	Regression	(supei viscu)

- ☐ Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

9/25/14 2

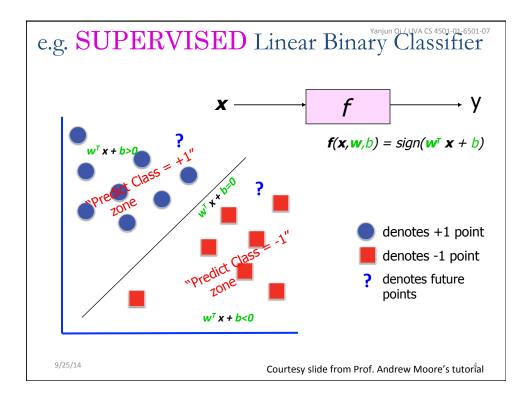
Today

Yanjun Qi / UVA CS 4501-01-6501-07

☐ Review of Classification

- ☐ Support Vector Machine (SVM)
 - ✓ Large Margin Linear Classifier
 - ✓ Define Margin (M) in terms of model parameter
 - ✓ Optimization to learn model parameters (w, b)
 - ✓ Non linearly separable case
 - ✓ Optimization with dual form

9/25/14



Types of classifiers

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., support vector machine, decision tree
- 2. Generative:
 - build a generative statistical model
 - e.g., Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

9/25/14

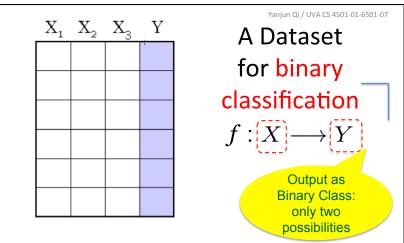
A study comparing Classifiers

→ 11 binary classification problems / 8 metrics

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	-	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	-	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
\mathbf{RF}	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	-	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884
BST-DT	-	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837
KNN	-	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808
SVM	- 1	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810
BST-STMP	-	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774

9/25/14



- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

9/25/14

Yanjun Qi / UVA CS 4501-01-6501-07

History of SVM

- SVM is inspired from statistical learning theory [3]
- SVM was first introduced in 1992 [1]
- SVM becomes popular because of its success in handwritten digit recognition
 - 1.1% test error rate for SVM. This is the same as the error rates of a carefully constructed neural network, LeNet 4.
 - See Section 5.11 in [2] or the discussion in [3] for details
- SVM is now regarded as an important example of "kernel methods", arguably the hottest area in machine learning ten years ago

 B.E. Boser *et al.* A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory 5 144-152, Pittsburgh, 1992.
 L. Bottou *et al.* Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th

[2] L. Bottou et al. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994.

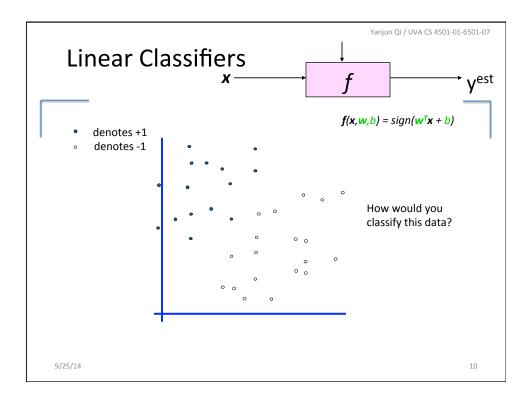
[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.

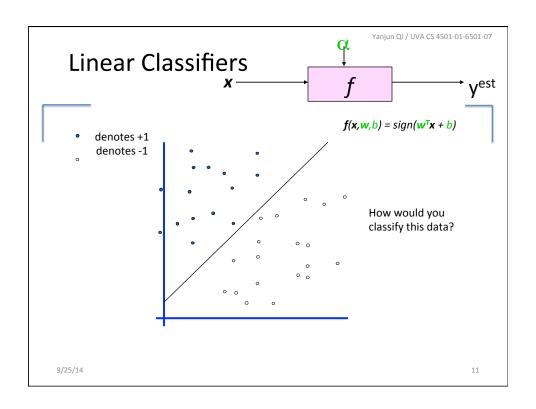
9/25/14

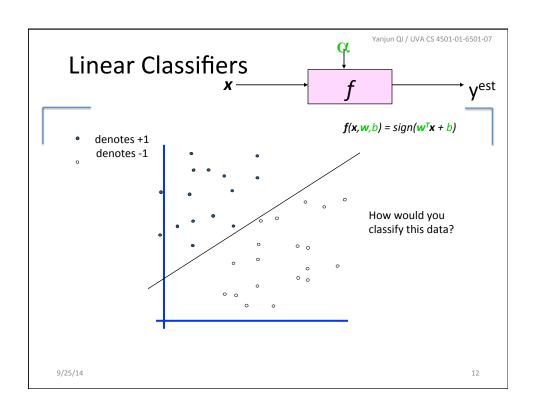
Today

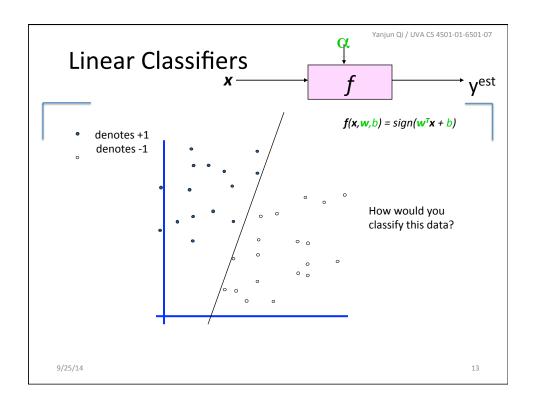
Review of Classification
Support Vector Machine (SVM)

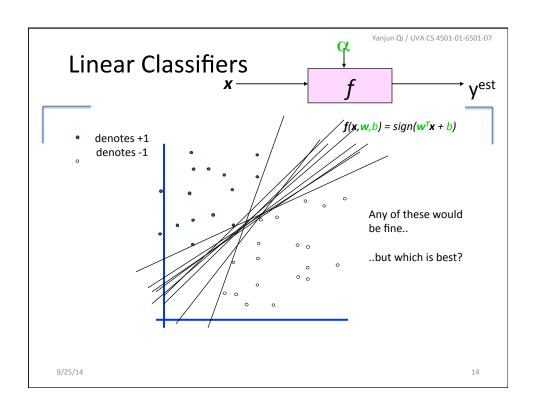
✓ Large Margin Linear Classifier
✓ Define Margin (M) in terms of model parameter
✓ Optimization to learn model parameters (w, b)
✓ Non linearly separable case
✓ Optimization with dual form

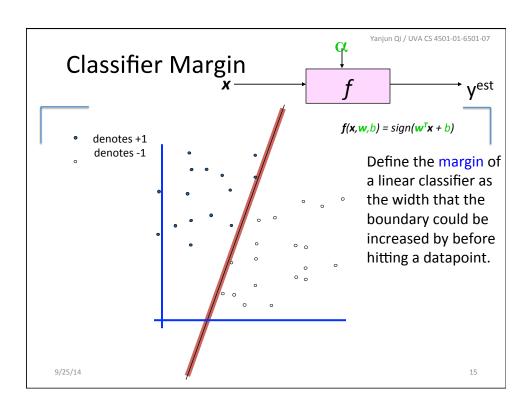


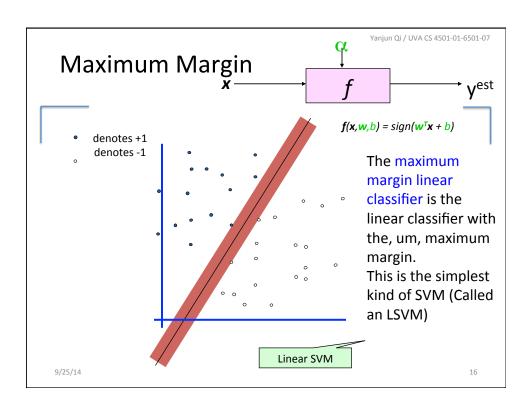


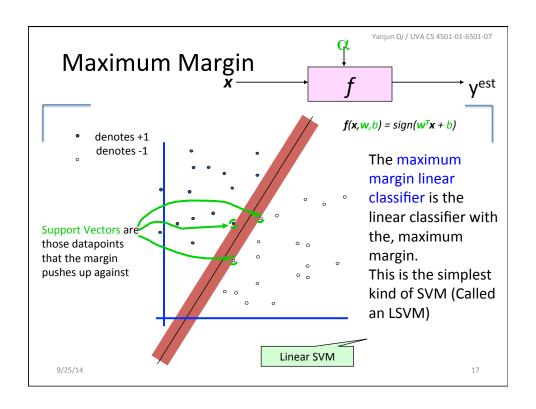


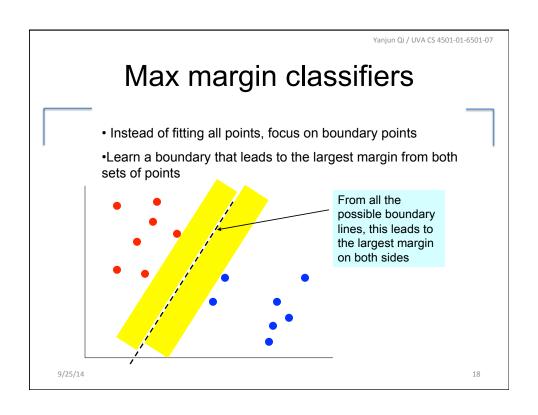


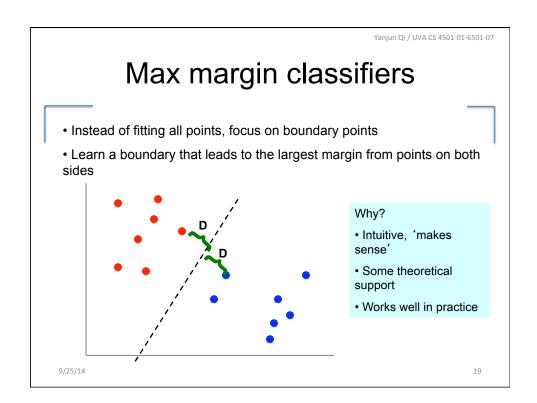


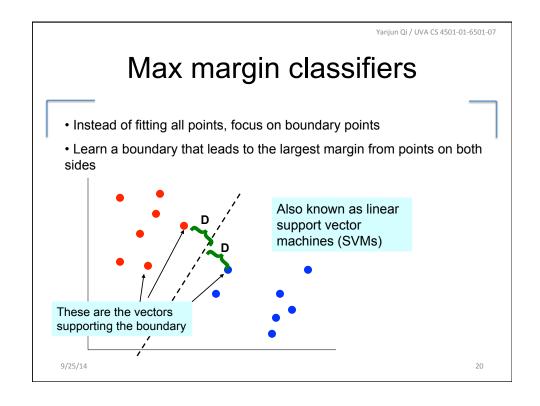






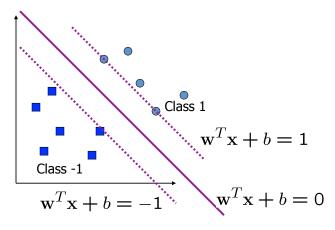


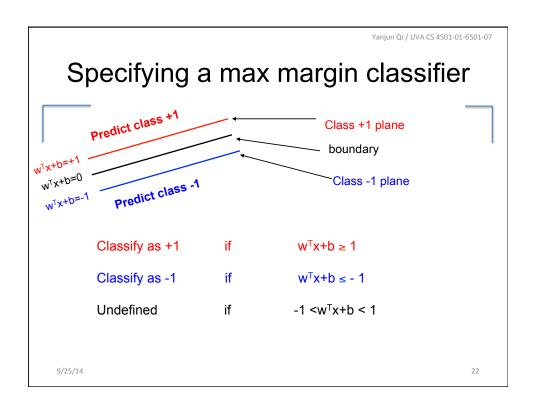


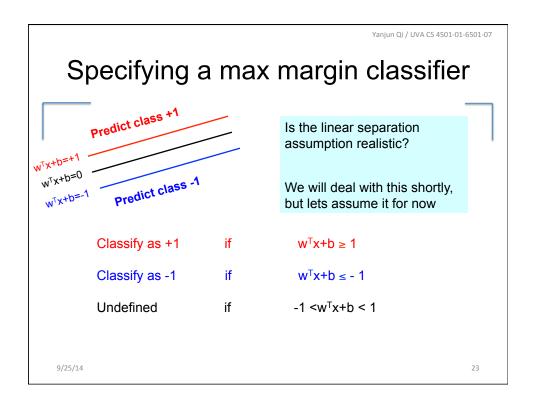


Max-margin & Decision Boundary

 The decision boundary should be as far away from the data of both classes as possible







Today

Review of Classification

Support Vector Machine (SVM)

✓ Large Margin Linear Classifier

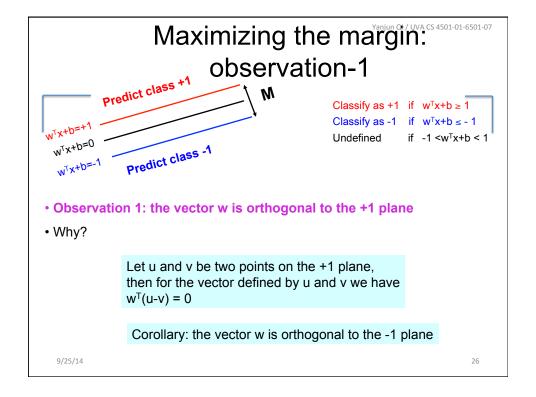
✓ Define Margin (M) in terms of model parameter

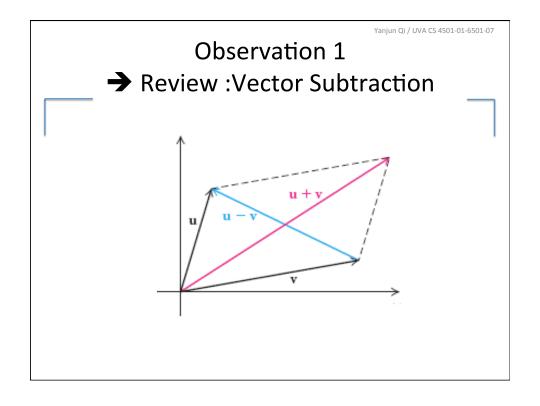
✓ Optimization to learn model parameters (w, b)

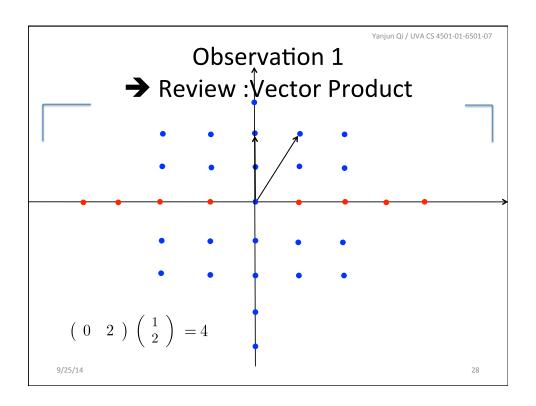
✓ Non linearly separable case

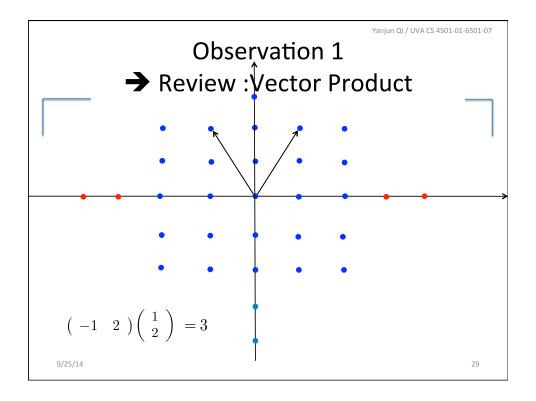
✓ Optimization with dual form

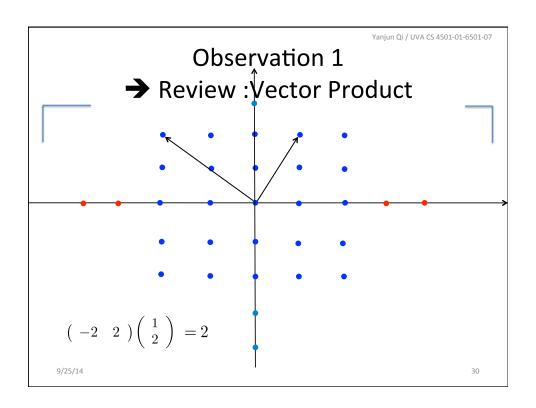
Yanjun Qi / UVA CS 4501-01-6501-07 Maximizing the margin Classify as +1 if $w^Tx+b \ge 1$ Predict class +1 Classify as -1 if $w^Tx+b \le -1$ Undefined if $-1 < w^T x + b < 1$ $w^T x + b = 0$ Predict class -1 $W^TX+b=-1$ · Lets define the width of the margin by M How can we encode our goal of maximizing M in terms of our parameters (w and b)? · Lets start with a few obsevrations 9/25/14 25

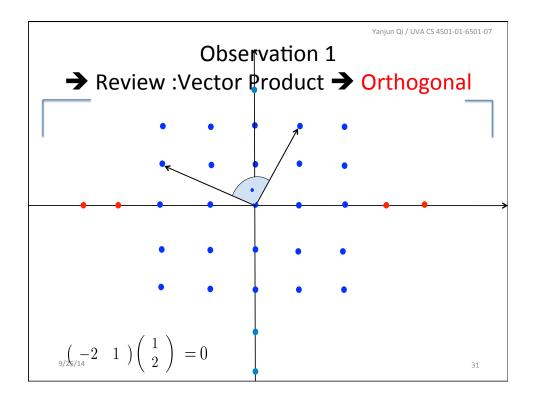


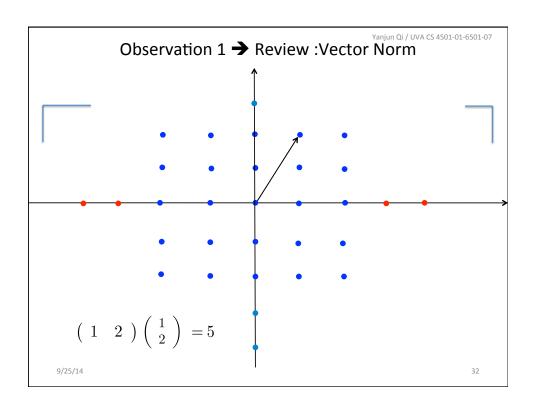


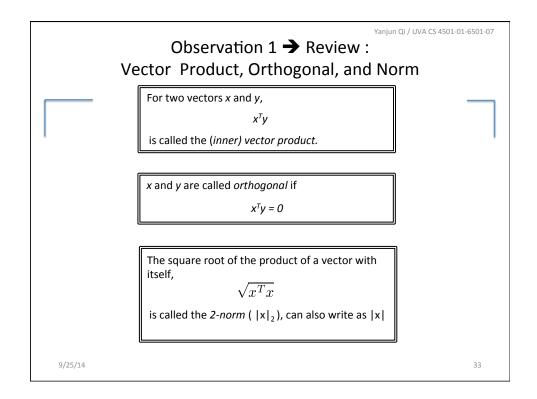


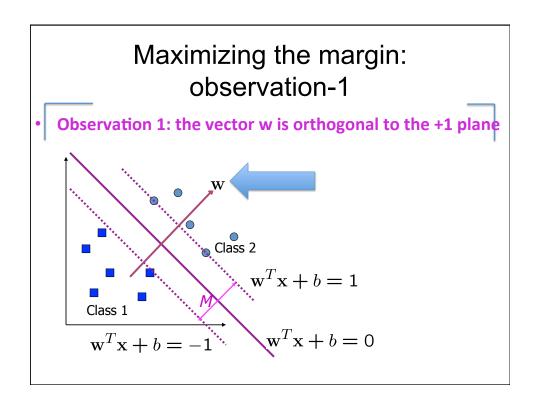




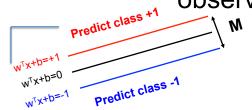








Maximizing the margin: observation-1



Classify as +1 if $w^Tx+b \ge 1$ Classify as -1 if $w^Tx+b \le -1$ Undefined if $-1 < w^Tx+b < 1$

- Observation 1: the vector w is orthogonal to the +1 plane
- Why?

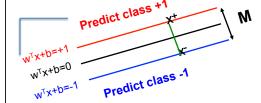
Let u and v be two points on the +1 plane, then for the vector defined by u and v we have $\mathbf{w}^T(\mathbf{u}\text{-}\mathbf{v}) = 0$

Corollary: the vector w is orthogonal to the -1 plane

9/25/14

35

Maximizing the margin: observation-2



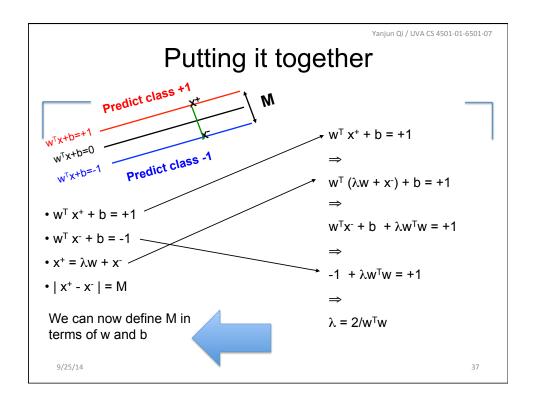
Classify as +1 if $w^Tx+b \ge 1$ Classify as -1 if $w^Tx+b \le -1$ Undefined if -1 < $w^Tx+b \le 1$

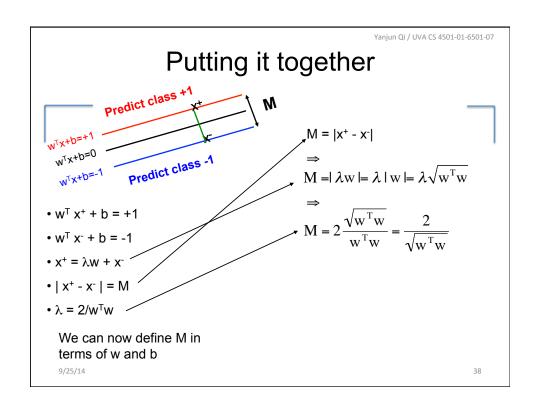
- Observation 1: the vector w is orthogonal to the +1 and -1 planes
- Observation 2: if x^+ is a point on the +1 plane and x^- is the closest point to x^+ on the -1 plane then

$$x^+ = \lambda w + x^-$$

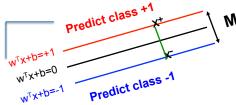
Since w is orthogonal to both planes we need to 'travel' some distance along w to get from x⁺ to x⁻

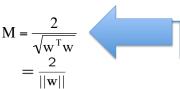
9/25/14





Finding the optimal parameters





Yanjun Qi / UVA CS 4501-01-6501-07

We can now search for the optimal parameters by finding a solution that:

- 1. Correctly classifies all points
- 2. Maximizes the margin (or equivalently minimizes w^Tw)

Several optimization methods can be used: Gradient descent, simulated annealing, EM etc.

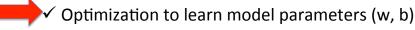
9/25/14

39

Yanjun Qi / UVA CS 4501-01-6501-07

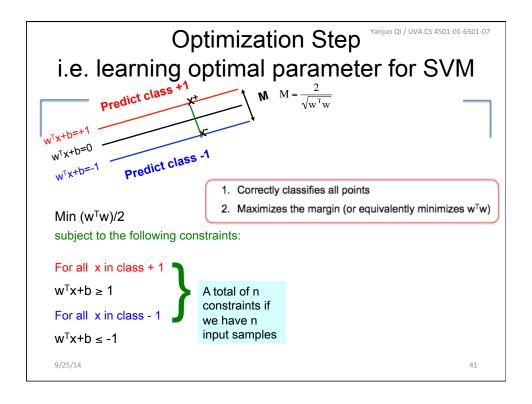
Today

- ☐ Review of Classification
- ☐ Support Vector Machine (SVM)
 - ✓ Large Margin Linear Classifier
 - ✓ Define Margin (M) in terms of model parameter



- ✓ Non linearly separable case
- \checkmark Optimization with dual form

9/25/14



Optimization Review: Ingredients

- Objective function
- Variables
- Constraints

Find values of the variables that minimize or maximize the objective function while satisfying the constraints

Optimization with Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

$$\min_{U} \frac{u^{T}Ru}{2} + d^{T}u + c$$

subject to n inequality constraints

$$a_{11}u_1 + a_{12}u_2 + \ldots \leq b_1$$

: : :

$$a_{n1}u_1 + a_{n2}u_2 + \dots \le b_n$$

and k equivalency constraints:

$$a_{n+1,1}u_1 + a_{n+1,2}u_2 + \dots = b_{n+1}$$

: : :

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots = b_{n+k}$$

Quadratic term

When a problem can be specified as a QP problem we can use solvers that are better than gradient descent or simulated annealing

43

SVM as a QP problem

Predict class +1 $M = \frac{2}{\sqrt{w^T w}}$ $M = \frac{2}{\sqrt{w^T w}}$

 $\min_{U} \frac{u^{T} R u}{2} + d^{T} u + c$

subject to n inequality constraints:

Yanjun Qi / UVA CS 4501-01-6501-07

R as I matrix, d as zero vector, c as 0 value

$$a_{11}u_1 + a_{12}u_2 + \dots \le b_1$$

$$\vdots$$
 \vdots \vdots \vdots $a_{n1}u_1 + a_{n2}u_2 + ... \le b_n$

and k equivalency constraints:

$$a_{n+1,1}u_1 + a_{n+1,2}u_2 + ... = b_{n+1}$$

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots = b_{n+k}$$

Min (w^Tw)/2

subject to the following inequality constraints:

For all x in class + 1

 $w^Tx+b \ge 1$

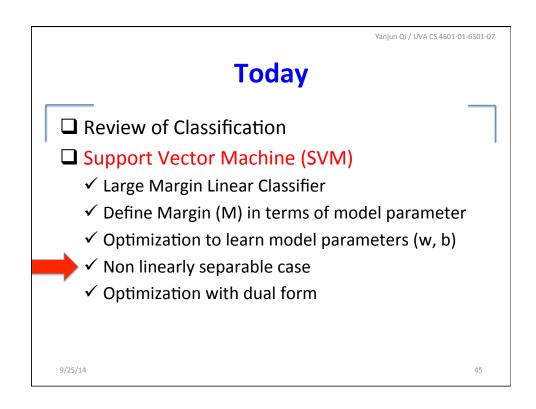
For all x in class - 1

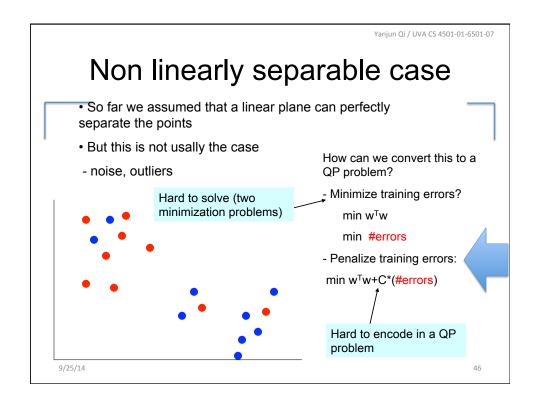
 $w^Tx+b \le -1$

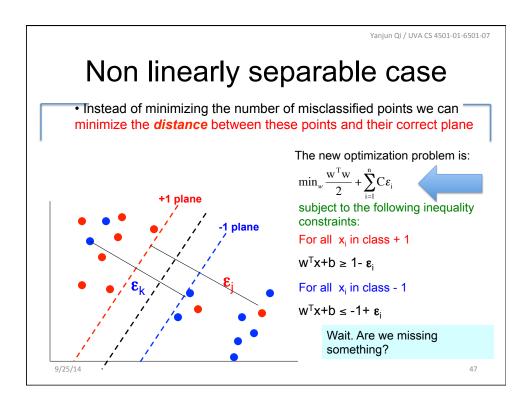
x in class - 1 ≤ -1

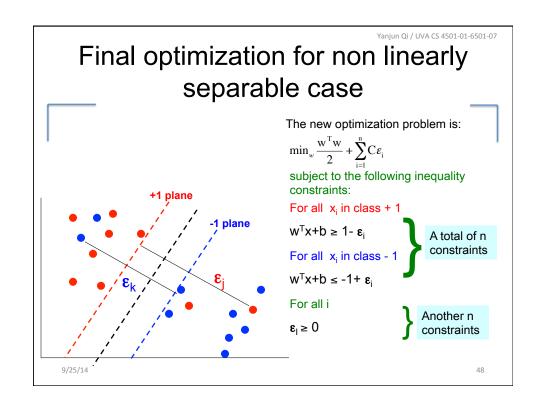
A total of n constraints if we have n input samples

9/25/14









$\begin{array}{c} \text{Where we are} \\ \text{Two optimization problems: For the separable and non separable cases} \\ \hline \begin{array}{c} \min_{w} \frac{w^T w}{2} \\ \text{For all } x \text{ in class} + 1 \\ w^T x + b \geq 1 \\ \text{For all } x \text{ in class} + 1 \\ w^T x + b \leq -1 \\ \end{array}$

Today

Review of Classification

Support Vector Machine (SVM)

✓ Large Margin Linear Classifier

✓ Define Margin (M) in terms of model parameter

✓ Optimization to learn model parameters (w, b)

✓ Non linearly separable case

✓ Optimization with dual form

Where we are

Two optimization problems: For the separable and non separable cases

 $\begin{aligned} & \text{Min } (w^T w)/2 \\ & \text{For all } x \text{ in class} + 1 \\ & w^T x + b \geq 1 \\ & \text{For all } x_i \text{ in class} + 1 \\ & w^T x + b \geq 1 - \epsilon_i \\ & \text{For all } x_i \text{ in class} - 1 \\ & w^T x + b \leq -1 \end{aligned}$

- Instead of solving these QPs directly we will solve a dual formulation of the SVM optimization problem
- The main reason for switching to this type of representation is that it would allow us to use a neat trick that will make our lives easier (and the run time faster)

9/25/14

51

Optimization Review: Constrained Optimization with Lagrange

- When equal constraints
- \rightarrow optimize f(x), subject to $g_i(x)$
- Method of Lagrange multipliers: convert to a higher-dimensional problem
- Minimize

$$f(x) + \sum \lambda_i g_i(x)$$

\\/

w.r.t. $(x_1 ... x_n; \lambda_1 ... \lambda_k)$

An alternative (dual) representation of the SVM QP

- · We will start with the linearly separable case
- Instead of encoding the correct classification rule and constraint we will use LaGrange multiplies to encode it as part of the our minimization problem

Min $(w^Tw)/2$ For all x in class +1 $w^Tx+b \ge 1$ For all x in class -1 $w^Tx+b \le -1$ Why? Min $(w^Tw)/2$ $(w^Tx_i+b)y_i \ge 1$

9/25/14

53

An alternative (dual) representation of the SVM QP

• We will start with the linearly separable case

Min $(w^Tw)/2$ $(w^Tx_i+b)y_i \ge 1$

• Instead of encoding the correct classification rule a constraint we will use Lagrange multiplies to encode it as part of the our minimization problem

Recall that Lagrange multipliers can be applied to turn the following problem:

References

- Big thanks to Prof. Ziv Bar-Joseph @ CMU for allowing me to reuse some of his slides
- Prof. Andrew Moore @ CMU's slides
- Elements of Statistical Learning, by Hastie, <u>Tibshirani and Friedman</u>

9/18/14 55