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Where we are ? =
Five major sections of this course

ow

O Classification (supervised)

=

U Unsupervised models
U Learning theory
O Graphical models

9/25/14 2

9/25/14



Yanjun Qi / UVA CS 4501-01-6501-07

[ Review of Classification —‘

U Support Vector Machine (SVM)
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case
v’ Optimization with dual form

9/25/14

e.q SUPERVISED Linear Binary Classifier

f Y

f(x,w,b) = sign(w" x + b)

@ denotes +1 point
B denotes -1 point

? denotes future
points

w” x + b<0

of25/14 Courtesy slide from Prof. Andrew Moore’s tutorial
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Types of classifiers

* We can divide the Iar%e variety of classification
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors
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A study comparing Classifiers
=» 11 binary classification problems / 8 metrics

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL CAL ACC FSC LFT ROC APR BEP RMS MXE MEAN OPT-SEL
BST-DT PLT | .843% 779 .939 .963 .938 .929* | .880 .896 .896 917
RF PLT | .872% .805 .934* 957 .931 .930 .851 .858 .892 .898
BAG-DT - .846 .781 .938* .962%  .937* 918 .845 872 .887* .899
BST-DT 150 .826* .860* .929* .952 921 .925% .854 815 .885 917*
RF - .872 .790 .934* .957 .931 .930 .829 .830 .884 .890
BAG-DT PLT .841 774 .938%* .962% .937* 918 .836 .852 .882 .895
RF 1S0 .861%  .861 1923 .946 .910 .925 .836 776 .880 .895
BAG-DT 180 .826 .843* .933%* .954 .921 .915 .832 791 877 .894
SVM PLT .824 .760 .895 .938 .898 913 .831 .836 .862 .880
ANN - .803 762 910 .936 .892 .899 .811 .821 .854 .885
SVM 1S0 .813 .836* .892 .925 .882 911 .814 744 .852 .882
ANN PLT 815 (748 910 1936 892 899 1783 785 846 875
ANN 150 .803 .836 .908 .924 .876 .891 N 718 .842 .884
BST-DT - .834* .816 .939 .963 .938 .929* .598 .605 .828 .851
KNN PLT 757 707 .889 .918 872 872 742 764 815 .837
KNN - 756 728 .889 .918 872 .872 729 718 .810 .830
KNN 150 755 758 .882 .907 .854 .869 .738 .706 .809 .844
BST-STMP PLT 724 .651 .876 .908 .853 .845 716 754 791 .808
SVM - 817 .804 .895 .938 .899 913 .514 467 .781 .810
BST-STMP 1S0 .709 744 873 .899 .835 .840 .695 .646 .780 .810
BST-STMP - 741 .684 .876 .908 .853 .845 .394 .382 .710 726
DT 150 648 .654 .818 .838 .756 778 .590 .589 .709 774
9/25/14 6
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X X X ¥ A Dataset
for binary

’7 classiﬁcatip_p_—‘

_———

_———

~———

Output as
Binary Class:
only two
possibilities

» Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]

9/25/14 7
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History of SVM

* SVMiis inspired from statistical learning theory [3]
e SVM was first introduced in 1992 [1]

* SVM becomes popular because of its success in handwritten digit
recognition
— 1.1% test error rate for SVM. This is the same as the error rates of a carefully
constructed neural network, LeNet 4.
¢ See Section 5.11 in [2] or the discussion in [3] for details

* SVMis now regarded as an important example of “kernel methods” ,
arguably the hottest area in machine learning ten years ago

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 5 144-152, Pittsburgh, 1992.

[2] L. Bottou et al. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2" edition, Springer, 1999.
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[ Review of Classification —‘

O Support Vector Machine (SVM)
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case
v’ Optimization with dual form
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Linear Classifiers 1
X f yest
fix,w,b) = sign(w'x + b)
° denotes +1
o denotes-1 . .
o o o ) How would you
Jd e’ ° classify this data?
9/25/14 10
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Linear Classifiers

1

f yest

fix,w,b) = sign(w'x + b)

How would you
classify this data?

X
° denotes +1
denotes -1 . .
o L]
o ° e
o
o o
[ °
. o
©° o
o
9/25/14
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Linear Classifiers

X
° denotes +1

denotes -1

1

f yest

fix,w,b) = sign(w'x + b)

How would you
classify this data?

9/25/14
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Linear Classifiers
X

° denotes +1

denotes -1 e
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1

f yest

fix,w,b) = sign(w'x + b)

How would you
classify this data?

9/25/14
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Linear Classifiers

X
° denotes +1

denotes -1 e
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1

f yest

fix,w,b) = sign(w'x + b)

Any of these would
be fine..

..but which is best?

9/25/14
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Classifier Margin
X

° denotes +1

denotes -1
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f

yest

fix,w,b) = sign(w'x + b)

9/25/14

Define the margin of
a linear classifier as
the width that the
boundary could be
increased by before
hitting a datapoint.

15

Maximum Margin
X

° denotes +1

denotes -1
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f

yest

fix,w,b) = sign(w'x + b)

9/25/14

The maximum
margin linear
classifier is the
linear classifier with
the, um, maximum
margin.

This is the simplest
kind of SVM (Called
an LSVM)

16
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Maximum Margin
X

° denotes +1

f yest

fix,w,b) = sign(w'x + b)

denotes -1 .
The maximum
margin linear
. ° classifieris the
linear classifier with
Support Vectors are/:

those datapoints the, maximum

that the margin 5 . margin.
pushes up against ° 6 This is the simplest
. kind of SVM (Called
an LSVM)
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

*Learn a boundary that leads to the largest margin from both
sets of points

P ) Y, From all the
° / possible boundary
Py # lines, this leads to
(] /! the largest margin
’ on both sides
® [ J /,
A (] (]
7
V4
y ° °
/
(]
/ L
/
’ ([
/
7
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

* Learn a boundary that leads to the largest margin from points on both
sides

Y ([ ’
° e Why?
D / .
° Cny/ « Intuitive, ‘makes
R sense’
® o / \ PY » Some theoretical
e support
/7
/ ¢ ¢ * Works well in practice
, [ J
, [ J
// ®
7/
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

* Learn a boundary that leads to the largest margin from points on both
sides

° ® ’
PY / Also known as linear
° D//' support vector
2D machines (SVMs)
() 4
[ J ,/ PY
4
[/ 74
These are the vectors ° ®

supporting the boundary

l /

7
9/25/14
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Max-margin & Decision Boundary

* The decision boundary should be as far away from
the data of both classes as possible
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Specifying a max margin classifier

+
P edict c\as® Class +1 plane
v

T boundary

—xA
\NT‘/\‘\"O"\- / \
\Nx,gbso A ass A Class -1 plane
C

\Nw,(-\-‘o"\ P‘ed'\
Classify as +1 if Wix+b = 1
Classify as -1 if Wix+b < - 1
Undefined if -1 <wTx+b < 1

9/25/14 22
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Specifying a max margin classifier

g ¥\
W Is the linear separation

assumption realistic?

\NT‘/\“"O;‘\-/\ /
\NT‘/\"'b:O A q g q
{ c\as® We will deal with this shortly,

=-A \
Wro predi© but lets assume it for now

Classify as +1 if wWix+b = 1
Classify as -1 if Wix+b < - 1
Undefined if -1 <wTx+b < 1

9/25/14 23
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Today
] Review of Classification

O Support Vector Machine (SVM)
v’ Large Margin Linear Classifier
‘\/ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case
v’ Optimization with dual form
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Maximizing the margin

Classify as +1 if w'x+b =1
“ 2SS A N\ Classi.fy as-1 if wix+b=<-1

predt if -1 <wTx+b < 1
\N\'s/\‘\'b;‘\—/\
=0
\NT‘/‘*b A
=" dict clas®
W ¥ Pfe
* Lets define the width of the margin by M
* How can we encode our goal of maximizing M in terms of
our parameters (w and b)?
* Lets start with a few obsevrations
9/25/14 25
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Maximizing the margi
observation-1
\asS A N\
ict ©
V\ Classify as +1 if wx+b =1
N Classify as -1 if wix+b=<-1
WO 50 Undefined  if -1 <w™x+b <1
WIRE -t class A
\NT)C"‘O;A P‘,ed\c

* Observation 1: the vector w is orthogonal to the +1 plane

* Why?
Let u and v be two points on the +1 plane,
then for the vector defined by u and v we have
wT(u-v) =0
Corollary: the vector w is orthogonal to the -1 plane
9/25/14 26
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Observation 1
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=» Review :Vector Subtraction

Observation 1
=» Review :Vector Product
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-

° ° °
(] ) [ ] [

- 3 L * O - = =
° ° ° °
L] ) ) o

(0

9/25/14
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=» Review :

Observation 1
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ector Product

=

(-1 2)(5) -3

9/25/14
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Observation 1
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=» Review :Vector Product
(-2 2 )< ; =2 [

9/25/14

30

9/25/14

15



Yanjun Qi / UVA CS 4501-01-6501-07

Observation 1

=>» Review :Vector Product =» Orthogonal

Co : N

(5 2
9/26/14

D) =0 |
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Observation 1 =» Review :Vector Norm

]

9/25/14
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Vector Product, Orthogonal, and Norm

—
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Observation 1 =» Review :

For two vectors x and y,
Xy

is called the (inner) vector product.

x and y are called orthogonal if

x'y=0

The square root of the product of a vector with
itself,

T

T

is called the 2-norm ( | x|, ), can also write as |x]|

=

33

*| Observation 1: the vector w is orthogonal to the +1 plan}a

Class 1

Maximizing the margin:

observation-1

@
“@ Class 2

WTX + b=1

wlix4+b=_-1"

WTX-I—b:O

9/25/14
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Maximizing the m
observation-1

EY
. 4 c\as®
dict © W
M Classify as +1 if wTx+b =1
_xA Classify as -1 if wix+b=<-1
\N‘()Q\‘b . . T
_0 Undefined if -1<wTx+b <1
\Nw-\—b \a55 A

=A icl ©
\N‘V)Q\"O p‘-ed‘c

* Observation 1: the vector w is orthogonal to the +1 plane
* Why?

Let u and v be two points on the +1 plane,

then for the vector defined by u and v we have

wT(u-v) =0

Corollary: the vector w is orthogonal to the -1 plane

9/25/14 35
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Maximizing the margi

_observation-2
S
et c\as X
pred! W Classify as +1 if wTx+b =1
N Classify as -1 if wix+b=<-1
WA Undefined  if -1 <w™x+b <1
\Nw-\—b’ \255 g
—=A dict ©
\Nx,g-vb pre

* Observation 1: the vector w is orthogonal to the +1 and -1 planes

» Observation 2: if x* is a point on the +1 plane and x is the closest point
to x* on the -1 plane then

xt=Aw+Xx

Since w is orthogonal to both planes
we need to ‘travel’ some distance
along w to get from x* to x-
9/25/14 36
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Putting it together

+
oredict 2% \ )
el - WT X +b=+1
=0
WIRE « c1ass A =

=A \
\NT*'\"O P‘-ed\

wl (AW + x°) + b = +1
=
cwWT x*+ b =+1
wix +b +AwTw = +1
cwWIx +b=-1
=
Xt =Aw+ X

| =M -1+ AwTw = +1
. X"'_X' =

=

We can now define M in A= 2/wTw
terms of wand b

9/25/14 37
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Putting it together

o ¥
5 tc\as X
, predic
— + -
\NT)@—‘O"M g M= - x
\NT\/:\'D=0 \255 A =
_ et ©
\NT)@-‘O’A p"ed‘ct M=lAwl=Alwl= A w'w
. =
. + =
wl xt+b=+1 wTw 2

*Wix +b=-1 M=2 w'w =\/WTW
eX*=AW+ X

s xt-x|=M

e A =2/wTw

We can now define M in
terms of wand b
9/25/14 38
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Finding the optimal parameters

o ¥
R == U
_xA - WTW “

\N‘Y)Q\—‘O’b’o 2

Tx¥0~ ’1 —_

W _A et 0\395 ||W||
\NT)@-‘O’ P‘-ed\

We can now search for the optimal parameters by finding a
solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used:
Gradient descent, simulated annealing, EM etc.

9/25/14 39

Yanjun Qi / UVA CS 4501-01-6501-07

[ Review of Classification —‘

O Support Vector Machine (SVM)

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
‘\/ Optimization to learn model parameters (w, b)
v Non linearly separable case
v’ Optimization with dual form
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Optimization Step

Yanjun Qi / UVA CS 4501-01-6501-07

i.e. learning optimal parameter for SVM

x\ 2
<o C\2S° M=
M W Vw'w
—xA -
\N‘Y)Q\‘b’*o
WTy@-b’ \a55 A
W0 predict®
-
1. Correctly classifies all points b
. 2. Maximizes the margin (or equivalently minimizes w'w
Min (wTw)/2 L oin (oreq y )

subject to the following constraints:

For all xin class + 1

wTx+b = 1 Atotal of n

. constraints if
For all xinclass -1 we have n
WTx+b < -1 input samples

9/25/14
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Optimization Review:
Ingredients

* Obijective function
* Variables
e Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

42

9/25/14
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Optimization with Quadratic
programming (QP)

Quadratic programming solves optimization problems of the following form:
u'Ru
2

min,, +d'u+c

subject to n inequality constrain

a.u, +a U, +..<b .
1t T Al 1 Quadratic term

When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or

a,u +a,u, +..<b

n

and k equivalency constraints:

Ayl + Ay oty + .= D, simulated annealing
Qg + Gy olly + o= b,y
9/25/14 43
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SVM as a QP prOblem R as | matrix, d as zero

vector, c as 0 value
’ pred
_A
\N‘()Q\‘b""

FNY

ct (‘,\ass

W el |
min,, 5 +d u+c

Tﬁb:o A subject to n inequality constraints:
W A fpry c\ass ”
T pred‘c ayy + apl, + ...< b,
Min (WTw)/2 Al + Qi+ ...<b,
subject to the following inequality and k equivalency constraints:
n+ll

constraints: a

U+ @, 0l + =D,
For all xin class + 1 : :

Wix+b = 1 Atotal of n oty + Aoy + o= b,y
. constraints if

For all xin class -1 we have n

WTx+b < -1 input samples

9/25/14 44
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[ Review of Classification —‘

O Support Vector Machine (SVM)
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

‘ v Non linearly separable case
v’ Optimization with dual form
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Non linearly separable case

*So far we assumed that a linear plane can perfectly
separate the points

* But this is not usally the case
How can we convert this to a

- noise, outliers QP problem?

Hard to solve (two - Minimize training errors?

e o° minimization problems) min wTw
e © min #errors
([ J
° - Penalize training errors:
Lo .
P min wTw+C*(#errors)
g ° °
[
° o ®
o ® Hard to encode in a QP
problem
®e

9/25/14 46

9/25/14

23



Yanjun Qi / UVA CS 4501-01-6501-07

Non linearly separable case
*Instead of minimizing the number of misclassified points we can ‘
minimize the distance between these points and their correct plane

The new optimization problem is:

T n
. ww
min + ) Ceg,
w 2 2 1

subject to the following inequality
constraints:

+1 plane
/

For all x;in class + 1
wix+b = 1- g

For all x;inclass - 1
wix+b < -1+ ¢

Wait. Are we missing
something?

7
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Final optimization for non linearly
separable case

The new optimization problem is:
T n
w

+EC€i

min,,

subject to the following inequality
+1 plane constraints:
/7

Forall x;in class + 1
wTx+b = 1- g Atotal of n

For all x;inclass - 1 el

wix+b < -1+ ¢

Forall i

Another n
g=0 constraints

9/25/14 ° 48
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W W
min,, 7
For all xin class + 1
wTx+b = 1

For all xinclass -1

Where we are

T n

min,, + E Ce,

.=l
For all x;in class + 1
wix+b = 1- g

For all x;in class - 1

wTx+b < -1+ ¢
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Two optimization problems: For the separable and non separable cases

-

wix+b < -1
Forall i
4 € 2:() /7
. ° / . o y
e/ e/
[ ] L[] V4 4 /7 [ ] [ ] / / /7
’ ,’ ’ ° ’ ,’ /
’ , ’ / , /
° ° // ’ // ® ° ° // 4 // °
’ ’
/ 4 / 4
, // , ® / /l ;7 ®
’ , ’ ° ’ , ’ °
7 , 4 V4 / 4 ° °
;7 ® ° ;7 ® °
’ , o ’ , o
’ , / ’ , 4

’ , / 4 ’ ’

yi . 4 hd / 4 hd
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O Support Vector Machine (SVM)
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

v Non linearly separable case
‘ v/ Optimization with dual form
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Where we are

Two optimization problems: For the separable and non separable cases
T n

. W
Min (wTw)/2 min, = +§C£i
Forall xin class + 1 Forall x;in class + 1

Wix+b = 1 wix+b = 1- g

. For all x;in class - 1
For all xinclass -1

T
Wix+b < -1+ ¢
wTx+b < -1 i

Forall i

=0

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

* The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

9/25/14 51

Optimization Review:
Constrained Optimization with Lagrange

* When equal constraints T
* =>» optimize f(x), subject to g,(x)

* Method of Lagrange multipliers: convert to a
higher-dimensional problem

* Minimize

16+ 3 2g,(x)

° w.r.t. (xl...xn;ﬂ.l...ﬂk)

9/25/14
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An alternative (dual) representation
of the SVM QP

Min (WTw)/2 —‘

. . . For all xin class +1
» We will start with the linearly separable case orall xin class

.
« Instead of encoding the correct classification rule WiX+b = 1

and constraint we will use LaGrange multiplies to

; R For all xin class -1
encode it as part of the our minimization problem

wix+b < -1
Why? ll
Min (WTw)/2
‘ (WTx+b)y; = 1 ‘

9/25/14
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An alternative (dual) representation
of the SVM QP

Min (WTw)/2 ‘

(WTx+b)y, = 1
» We will start with the linearly separable case

« Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:

min, x?

st.x=b

To

min, max,, X2 -a(x-b)

st.a=0
9/25/14
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